September 1994 SYNTHESIS 909

Synthesis of ω -Phthalimidoalkylphosphonates

Yong-Jin Chun, Jee-Heon Park, Gyeong-Mun Oh, Suk-In Hong, Yong-Joon Kim*a

^a Department of Chemical Engineering, Korea University, Seoul 136-701, South Korea

^b Lab. of Org. Syn., Il-Dong Pharmacy Co., Ansung, Kyonggi-do 456-830, South Korea

Received 25 October 1993; revised 20 January 1994

Diethyl phthalimidoalkylphosphonates were synthesized by the reaction of diethyl bromoalkylphosphonates with N-(tert-butyldimethylsilyl)phthalimide in the presence of tetrabutylammonium fluoride.

Aminophosphonic acids and their peptide derivatives are of interest due to their biological activities since the first isolation of 2-aminoethylphosphonic acid (2-AEP) from several organisms and human beings. $^{1-3}$ For example, 2-AEP shows a considerable herbicidal activity. The phosphonate analogues of γ -aminocarboxylic acid (GA-BA), which are used for inhibitory central neurotransmitters, have some affinity for GABA binding sites. Phosphonodipeptides and phosphonooligopeptides based on L- and D-1-AEP and aminomethylphosphonic acid (Alaphosphin) inhibit the growth of various types of pathogenic bacteria. 6

Syntheses of aminoalkylphosphonic acids and their esters 3 have been developed by various methods. 7.8 For example, diethyl phthalimidoethylphosphonate (3b) was synthesized by the Michaelis-Arbuzov reaction of N-(2-bromoethyl)phthalimide with triethyl phosphite. 9.10 When a reverse process is applied by reacting potassium phthalimide with 2-bromoethylphosphonate, the desired diethyl phthalimidoethylphosphonate (3b), was not formed, instead vinyl phosphonate was obtained by hydrogen bromide elimination⁴ as shown in Scheme 1.

Scheme 1

In this paper we wish to report a new synthesis of diethyl phthalimidoalkylphosphonates 3 involving the reaction of diethyl alkylphosphonates 1 with N-(tert-butyldi-

methylsilyl)phthalimide (2)¹¹ in the presence of tetrabutylammonium fluoride (TBAF). This method seems to be mild for the synthesis of 3 in fairly good yield as shown in Scheme 2.

1,3 a b c d
n 1 2 3 4

Scheme 2

This procedure employs the *N*-(*tert*-butyldimethylsilyl)phthalimide (2)/tetrahydrofuran system instead of potassium phthalimide/dimethylformamide in the first stage of Gabriel synthesis, which was easily activated by a naked fluoride ion of TBAF. *N*-(*tert*-Butyldimethylsilyl)phthalimide (2) was prepared from *tert*-butyldimethylsilyl chloride (TBDMSCl) and phthalimide in the presence of triethylamine. The yields of phthalimidoalkylphosphonates 3 were increased by decreasing chain length of bromoalkylphosphonates 1 (Table).

Phthalimidoalkylphosphonates **3** are precusors of aminoalkylphosphonic acid (conversion via the well-known hydrazinolysis followed by acid hydrolysis of the ester) and their peptide derivatives.

IR spectra were measured on a Perkin-Elmer 710B IR spectrometer.

¹H NMR spectra were obtained on a JNM-PMX 60 NMR spectrometer.

*N-(tert-*Butyldimethylsilyl)phthalimide (2):

To a stirred and cooled (ice-salt bath) mixture of phthalimide (14.71 g, 0.1 mol) and TBDMSCl (15.07 g, 0.1 mol) in CH₂Cl₂ (100 mL) was slowly added NEt₃ (10.12 g, 0.1 mol). The mixture was refluxed for 6 h and cooled. The precipitated triethylammonium chloride was filtered and the filtrate was washed successively with 5% HCl solution (2 × 50 mL), H₂O (2 × 50 mL) and brine (2 × 50 mL). The organic layer was dried (Na₂SO₄), filtered and concentrated under reduced pressure; white crystals; yield: 18.59 g (71%); mp 117 °C (Lit. 11 mp 115.5–117 °C).

Diethyl Phthalimidoalkylphosphonates 3: General Procedure:

TBAF (5.23 g, 0.02 mol) was slowly added to a mixture of diethyl bromoalkylphosphonates 1 (0.01 mol) and N-(tert-butyldimethylsilyl)phthalimide (2; 0.01 mol) in anhydr. THF (25 mL) in a round-bottomed flask equipped with a reflux condenser under N₂ atmo-

Table. Diethyl Phthalimidoalkylphosphonates 3 Prepared

Prod- uct	n	Yield (%)		mp (°C) (solvent)	Lit. ⁴ mp (°C)	IR (neat) v (cm ⁻¹)	1 H NMR (CDCl ₃ /TMS) δ , J (Hz)
		found*	reported4	,	mp (C)	v (cm)	U, J (112)
3a	1	85	70	67	64-66	1250, 1020ь	1.40 (t, 6H, J= 7, 2CH ₃), 3.85 (d, 2H, NCH ₂), 4.05 (m, 4H, 2OCH ₂),
3b	2	84	67	(hexane) oil	-	1225, 1020	7.45 (s, $4H_{arom}$) 1.35 (t, $6H$, $J = 7$, $2CH_3$), 1.81–2.55 (dd, $2H$, CH_2P), 3.97 (m, $2H$, NCH_2), 4.25 (m, $4H$, $2OCH_2$), 7.48 (s, $4H_{arom}$)
3e	3	79	95	oil	_	1250, 1030	$1.32 \text{ (t, 6H, } J = 7, 2\text{ CH}_3), 1.51-2.25 \text{ [m, 4H, (CH}_2)_2], 3.68 \text{ (m, 2H, NCH}_2), 4.15 \text{ (m, 4H, 2OCH}_2), 7.75 \text{ (s, 4H}_{arom})$
3d	4	75	85	oil	72-75	1230, 1020	$1.30 \text{ (t, 6H, } J=7, 2\text{CH}_3), 1.47-2.10 \text{ [m, 6H, (CH}_2)_3], 3.63 \text{ (m, 2H, NCH}_2), 4.05 \text{ (m, 4H, 2OCH}_2), 7.75 \text{ (s, 4H}_{arom})$

^a Yield of isolated product 3 based on 1.

sphere at r.t. The mixture was refluxed for $8\,h^{12}$ and concentrated under reduced pressure. The oily residue was diluted with CH_2Cl_2 (25 mL), washed successively with H_2O (2 × 25 mL) and brine (2 × 25 mL), dried (Na_2SO_4), filtered and concentrated under reduced pressure. The crude products were submitted to chromatography on a silica gel column (EtOAc/hexane, 4:1) to give the desired compounds 3 (Table).

We wish to thank the Korea Research Foundation for financial support (Non Directed Research Fund) and the Daewoo Foundation for Post-Graduate Research Aid Fellowship (to Y. J. Chun).

- (1) Itasaka, O. Biochemistry of Natural C-P Compounds; Maruzen Ltd.; Kyoto, 1984.
- (2) Hoagland, R.E. In Biologically Active Natural Products; Culter, H.G.; Ed.; ACS Symposium Series 380; American Chemical Society: Washington D.C., 1988.

- (3) Toy, A.D.; Walsh, E.N. Phosphorus and Chemistry in Everyday Living; American Chemical Society; Washington D.C., 1987.
- (4) Tanaka, J.; Kuwano, E.; Eto, M. J. Fac. Agr. Kyushu Univ. 1986, 30, 209.
- (5) Kerr, D.I.B.; Ong, J.; Prager, R.H. Br. J. Pharmacol. 1990, 99, 422.
- (6) Atherton, F.R.; Hassall, C.H.; Lambert, R.W. J. Med. Chem. 1986, 29, 29, and references cited therein.
- (7) Engel, R. Org. React. 1988, 36, 175.
- (8) Engel, R. Synthesis of Carbon-Phosphorus Bonds; CRC Press: Boca Raton, FL, 1988.
- (9) Kosolapoff, G.M. J. Am. Chem. Soc. 1947, 69, 2112.
- (10) Yamauchi, K.; Ohtsuki, S.; Kinoshita, M. J. Org. Chem. 1984, 49, 1158, and references cited therein.
- (11) Kita, Y.; Haruta, J.; Fujii, T.; Segawa, J.; Tamura, Y. Synthesis 1981, 451.
- (12) For n = 1, 12 h.

^b Measured as KBr pellet.