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Iron-Catalyzed C–H/N–H Activation by Triazole Guidance: 
Versatile Alkyne Annulation 

G. Cera
+
, T. Haven

+
 and L. Ackermann*

Iron-catalyzed C–H/N–H functionalizations were achieved by the 
aid of modular triazole amides. The alkyne annulation allowed for 
the expedient synthesis of valuable isoquinolone scaffolds with 
high levels of chemo-, site- and regio-selectivities. 

Isoquinolones represent a privileged structural motif that 
occurs in biological active molecules, as well as antitumor, 
anti-malaria and anti-inflammatory compounds.

[1]
 Traditional 

methods for their syntheses, including the Bischler-Napieralski 
and the Pictet-Spengler reaction, often suffer from the need 
for pre-activated substrates and harsh reaction conditions, 
among others.

[2]
 However, over the last decade, transition-

metal catalyzed C–H functionalizations
[3]

 have emerged as a 
powerful alternative for conventional isoquinolone syntheses. 
Thus, toxic and/or precious 4d and 5d transition metals were 
exploited,

[4]
 while the use of cost-effective and 

environmentally-benign 3d metals offered a viable option with 
bidentate directing groups.

[5,6]
 Very recently, our group 

established a novel family of triazolylamine (TAM) directing 
groups,

[7]
 which emerged as a powerful and modular 

alternative to the frequently employed 8-aminoquinoline 
directing group, particularly highlighting the prospect of 
establishing novel iron-catalyzed C–H activations.

[8,9]  

 
 
 
 

 
 

 
 
 
 
Figure 1 Chemo-divergent iron-catalyzed C–H functionalizations by 
modular triazole guidance.  

 

Despite considerable advances, all triazole-assisted C–H 
activations were thus far limited to single C–H 
functionalization. In this context, we have very recently 
disclosed an iron-catalyzed C–H alkynylation, enabling a C–H 
alkynylation/deprotection sequence for the assembly of 3,4-
unsubstituted isoquinolones.

[9c] 
In contrast, we now probed 

the first TAM-assisted C–H/N–H functionalization for an iron-
catalyzed alkyne annulation strategy. Indeed, the modular 
nature of the TAM group facilitated the iron-catalyzed C–H/N–
H activation for the synthesis of 3,4-decorated isoquinolones, 
on which we report herein (Figure 1).

[10,11]
  

Preliminary orienting reactions with alkyne 2a highlighted the 
importance of the Thorpe-Ingold effect in controlling the 
chemo-selectivity of the triazole-guided C–H/N–H 
activation.

[12]
 Hence, while the previously used gem-

disubstitution on the methylene backbone resulted in a lack of 
reactivity (Table1, entry 1), triazolyl amide 1b being devoid of 
the gem-disubstitution enabled the synthesis of isoquinolone 
3ba (entry 2). 
 
Table 1 Optimization of the iron-catalyzed C–H annulation 

 

Entry R Ligand RMgX Yield (%)[a] 

1 Me (1a) dppen TMS(CH2)MgCl --- 
2 H (1b) dppen TMS(CH2)MgCl 74 
3 H dppen TMS(CH2)MgCl ---[b] 
4 H dppen TMS(CH2)MgCl 16[c] 
5 H dppen PhMgCl 5 
6 H dppen CyMgCl --- 
7 H dppen i-PrMgBr 57 
8 H dtB-bipy TMS(CH2)MgCl --- 
9 H dppf TMS(CH2)MgCl --- 

11 H phen TMS(CH2)MgCl --- 
12 H dppe TMS(CH2)MgCl 51 
13 H dppe --- --- 
14 H dppe iPrMgBr 16[c] 
15 H dppe iPrMgBr 81 

[a] Reaction conditions: 1a (0.30 mmol), Fe(acac)3 (10 mol %), ligand 
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(15 mol %), RMgX (1.50 mmol), ZnBr2·TMEDA (0.45 mmol), DCIB (0.60 
mmol), THF (0.50 ml), 50 °C, 16 h; yields of isolated product. [b] 
Reaction without DCIB. [c] Reaction without ZnBr2·TMEDA. DCIB=1,2-
dichloro-2-methylpropane. 

 
It is noteworthy that zinc salts and 1,2-dichloroisobutane

[13]
 

proved to be mandatory for promoting the C–H 
functionalization (entries 3-4), whereas among a variety of 
ligands, dppe was identified as being optimal (entries 5-11).  
The optimized catalyst was found to be broadly applicable to 
the step-economical C–H/N–H transformation of different N-
triazole-substituted benzamides 1 (Scheme 1).  
 

 
Scheme 1 Impact of the TAM substitution pattern 

 
Furthermore, a representative set of isoquinolones 3 was 
accessed by the versatile iron-catalyzed C–H/N–H 
functionalization strategy (Scheme 2). Thus, amides 1 
displaying alkyl- or aryl-substituents were found competent 
substrates, site-selectively delivering the corresponding 
isoquinolones 3fa-3ha. The catalytic system was found 
tolerant to ethers, thioethers and even amines (3ia-3la). 
Electron-withdrawing groups on the arene led to somewhat 
lower yields, highlighting the importance of electronic effects 
on the C–H/N–H functionalization regime. Further, different 
symmetrical alkynes could be used likewise, thereby delivering 
the corresponding isoquinolones 3bb-bc. 

 

 
Scheme 2 Scope of iron-catalyzed C–H/N–H functionalization of 
benzamides 1. 
 

The selectivity of C–H/N–H functionalizations with 
unsymmetrical alkynes 4 was subsequently investigated. To 
this end, several aryl-1-butyne derivatives were submitted to 
the iron-catalyzed C–H/N–H activation. To our delight, the 
synthesis of isoquinolones 5 proceeded with complete regio-
selectivity,

[13]
 which can be rationalized by the compact nature 

of the iron catalyst (Scheme 3). Thereby, diversely decorated 
arenes bearing electron-donating or electron-withdrawing 
groups were efficiently converted, delivering the 
corresponding isoquinolones 5ba-bg. The protocol was also 
found to be competent in the presence of extended aromatic 
systems, such as naphthalene derivatives and heteroarenes, 
providing isoquinolones 5bh and 5bi with complete regio-
selectivity.  

 

 

 

 

 

 

 

 

Scheme 3 Regio-selective iron-catalyzed C–H/N–H activation 

 
Given the outstanding selectivity features of the triazole-
guided iron-catalyzed C–H/N–H activation, we became 
intrigued to elucidate its mode of action. Indeed, reactions 
conducted in the presence of typical radical scavengers, led to 
only a slight decrease in catalytic efficacy. Notably, the 
hydroarylation product 3bb´ was isolated here as a by-product 
(Scheme 4).  

 

Scheme 4 Probing SET-type mechanism 
 

Page 2 of 4ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
3 

M
ay

 2
01

7.
 D

ow
nl

oa
de

d 
by

 C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
23

/0
5/

20
17

 1
5:

46
:5

7.
 

View Article Online
DOI: 10.1039/C7CC03376A

http://dx.doi.org/10.1039/c7cc03376a


Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

These findings render a radical-based C–H functionalization 
less likely to be operative, and indicate an initial migratory 
alkyne insertion as the key step. Furthermore, by performing 
inter- and intramolecular kinetic experiments we observed a 
lack of primary isotopic effect within the initial formation of 
the hydroarylation product 3ba’, which suggests the C–H 
metalation step not to be kinetically-relevant (Scheme 5).  

 

 

Scheme 5 Inter- and intramolecular KIE studies 

 
Moreover, a stoichiometric reaction in the absence of the 
oxidant failed to deliver any product, thus rendering a low-
valent iron catalysis regime unlikely to be operative (Scheme 6, 
a).

[14] 
Finally, when submitting intermediate 3bb´ to otherwise 

identical reaction conditions (Scheme 6, b), a conversion to the 
isoquinolone 3bb was not viable, suggesting a 7-membered 
metallacycle as the key intermediate for the C–N formation. 

 

 

Scheme 6 Mechanistic experiments 

 
Based on our mechanistic studies, we propose a plausible 
catalytic cycle for the alkyne annulation to initiate by the facile 
C–H metalation to generate metallacyle 7. Subsequently, a 
migratory insertion of alkyne 2 occurs, delivering the key 
intermediate 8, while a single electron oxidation and the 
subsequent reductive elimination provides the final product 3 
(Scheme 7).  

 

 

 

Scheme 7 Plausible catalytic cycle 

 

 
Conclusions 
 
In conclusion, we have developed the unprecedented iron-
catalyzed C–H/N–H functionalization by triazole

[15]
 assistance. 

The modular nature of the TAM motif set the stage for a facile 
C–H activation within an oxidative C–H/N–H functionalization 
manifold. Thereby, a versatile iron catalyst enabled alkyne 
annulations for the synthesis of synthetically meaningful 3,4-
substituted isoquinolones with ample scope.  

Acknowledgements 

Generous support by the European Research Council under the 

European Community’s Seventh Framework Program (FP7 

2007–2013)/ERC Grant agreement no. 307535 and the 

Alexander von Humboldt foundation (fellowship to G.C.) is 

gratefully acknowledged. 

 

Notes and references 

 
1 (a) K. W. Bentley, Nat. Prod. Rep. 2006, 23, 444-463; (b) K. 

W. Bentley, In the Isoquinoline Alkaloids, Hardwood 
Academy, Amsterdam, 1998, vol 1. 

2 (a) J. Alvarez-Builla, J. J. Vaquero and J. Barluenga, Modern 
Heterocyclic Chemistry, Wiley-VCH, Verlag, 2011; for a 
review on Bischler-Napieralski and Pictet-Spengler reactions, 
see (b): V. A. Glushkov and Y. V. Shklyaev, Chem. Heterocycl. 
Compd. 2001, 37, 663-687. 

3 Representative recent reviews on C−H activation: (a) T. 
Gensch, M. N. Hopkinson, F. Glorius and J. Wencel-Delord, 
Chem. Soc. Rev. 2016, 45, 2900−2936; (b) C. Borie, L. 
Ackermann and M. Nechab, Chem. Soc. Rev. 2016, 45, 
1368−1386; (c) J.–K. Kim, K. Shin and S. Chang, Top. 
Organomet. Chem. 2015, 55, 29−51; (d) S.–A. Girard, T. 
Knauber and C.–J. Li, Angew. Chem. Int. Ed. 2014, 53, 

Page 3 of 4 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
3 

M
ay

 2
01

7.
 D

ow
nl

oa
de

d 
by

 C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
23

/0
5/

20
17

 1
5:

46
:5

7.
 

View Article Online
DOI: 10.1039/C7CC03376A

http://dx.doi.org/10.1039/c7cc03376a


COMMUNICATION Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

74−100; (e) G. Rouquet and N. Chatani, Angew. Chem. Int. 
Ed. 2013, 52, 11726−11743; (f) P. B. Arockiam, C. Bruneau 
and P. H. Dixneuf, Chem. Rev. 2012, 112, 5879−5918; (g) L. 
Ackermann, Chem. Rev. 2011, 111, 1315-1345; (h) T. Satoh 
and M. Miura, Chem. Eur. J. 2010, 16, 11212−11222; (i) R. 
Giri, B.–F. Shi, K.–M. Engle, N. Maugel and J.–Q. Yu, Chem. 
Soc. Rev. 2009, 3, 3242−3272; (j) R. G. Bergman, Nature 
2007, 446, 391−393 and references cited therein. 

4 For representive recent reviews see: (a) L. Ackermann, Acc. 
Chem. Res. 2014, 47, 281-295; (b) G. Song, F. Wang and X. Li, 
Chem. Soc. Rev. 2012, 41, 3651-3678; (c) T. Satoh and M. 
Miura, Chem.-Eur. J. 2010, 16, 11212-11122. Selected 
examples of isoquinolone syntheses via C–H 
functionalizations with 4d and 5d metals: for rhodium, see: 
(d) N. J. Webb, S. P. Madsen and S. A. Raw, Org. Lett. 2014, 
16, 4716-4721; (e) H. Wang, C. Grohmann, C. Nimphius and 
F. Glorius, J. Am. Chem. Soc. 2012, 134, 19592-19595; (f) T. K. 
Hyster and T. Rovis, J. Am. Chem. Soc. 2010, 132, 10565-
10569; (g) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. 
Chem. Soc. 2010, 132, 5858-5859. For ruthenium, see: (h) B. 
Li, H. Feng, S. Xu and B. Wang, Chem. Eur. J. 2011, 17, 12573-
12577; (i) L. Ackermann, A. V. Lygin and N. Hoffmann, 
Angew. Chem. Int. Ed. 2011, 123, 6503-6506; (j) L. 
Ackermann and S. Fenner, Org. Lett. 2011, 13, 6548-6551. 
For palladium, see: (k) X. Peng, W. Wang, C. Jiang, D. Sun, Z. 
Xu and C.–H. Tung, Org. Lett. 2014, 16, 5354-5357. For 
rhenium see: (l) Q. Tang, D. Xia, X. Jin, Q. Zhang, X. -Q. Sun 
and C. Wang, J. Am. Chem. Soc. 2013, 135, 4628-4631. 

5 Selected examples of isoquinolone syntheses via bidentate-
assisted C–H functionalizations with 3d metals: for nickel 
see: (a) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto and N. 
Chatani, J. Am. Chem. Soc. 2011, 133, 14952-14955; for 
cobalt see: (b) X.-Q Hao, C. Du, X. Zhu, P.-X. Li, J.-H. Zhang, J.-
L. Niu and M.-P. Song, Org. Lett. 2016, 18, 3610-3613; (c) R. 
Mei, H. Wang, S. Warratz, S. A. Macgregor and L. Ackermann, 
Chem. -Eur. J. 2016, 22, 6759-6753; (d) G. Sivakumar, A. 
Vijeta and M. Jeganmohan, Chem. -Eur. J. 2016, 22, 5899-
5903; (e) L: Grigorjeva and O. Daugulis, Angew. Chem. Int. 
Ed. 2014, 53, 10209−10212; (f) L: Grigorjeva and O. Daugulis, 
Org. Lett. 2014, 16, 4684-4687.  

6 A review: O. Daugulis, J. Roane and L. D. Tran, Acc. Chem. 
Res. 2015, 48, 1053-1064. 

7 For examples of triazolyl-amine (TAM) assisted C–H 
functionalizations with 4d transition metals, see: (a) D. 
Santrac, S. Cella, W. Wang and L. Ackermann, Eur. J. Org. 
Chem. 2016, 32, 5429-5436; (b) X. Ye, Y. Zhang, Y. He and X. 
Shi, Tetrahedron 2016, 72, 2756-2762; (c) G. Zhang, X. Xie, J. 
Zhu, S. Li, C. Ding and D. Ding, Org. Biomol. Chem. 2015, 13, 
5444–5450 (d) H. H. Al Mamari, E. Diers and L. Ackermann, 
Chem. -Eur. J. 2014, 20, 9739-9743. For examples of 1,2,3 
triazole-assisted-C–H functionalizations see: (e) A. Irastorza, 
J. M. Aizpurua and A. Correa, Org. Lett. 2016, 18, 1080-1083; 
(f) X. Ye and X. Shi, Org. Lett. 2014, 16, 4448-4451; (g) X. Ye, 
Z. He, T. Ahmed and X. Shi, Chem. Sci. 2013, 4, 3712-3716; 
(h) L. Ackermann, R. Born and R. Vicente, Chem. Sus. Chem. 
2009, 2, 546-549; (i) L. Ackermann, R. Vicente and A. 
Althammer, Org. Lett. 2008, 10, 2299-2302.  

8 For reviews on iron catalysis, see: (a) O. M. Kuzmina, A. K. 
Steib, A. Moyeux, G. Cahiez and P. Knochel, Synthesis 2015, 
47, 1696-1705; (b) I. Bauer and H.-J. Knölker, Chem. Rev., 
2015, 115, 3170-3387; (c) A. Fürstner, Angew. Chem. Int. Ed. 
2014, 53, 8587-8598; (d) C.–L. Sun, B.–J. Lie and Z.–J. Shi, 
Chem. Rev. 2011, 111, 1293−1314; (e) S. Enthaler, K. Junge 
and M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3317−3321; 
(f) Iron Catalysis in Organic Chemistry B. Plietker, Ed.; Wiley-
VCH: Weinheim, 2008; (g) A. Correa, O. Garcia Mancheño 
and C. Bolm, Chem. Soc. Rev. 2008, 37, 1108-117.  

9 For representative recent reviews on iron-catalyzed C–H 
functionalizations, see: (a) G. Cera and L. Ackermann, Top. 
Curr. Chem. 2016, 374, 57; (b) E. Nakamura and N. Yoshikai 
J., Org. Chem. 2010, 75, 6061-6067. For iron-catalyzed C–H 
functionalizations through triazole assistance, see: (c) G. 
Cera, T. Haven and L. Ackermann, Chem. -Eur. J. 2017, 23, 
3577-3582; (d) G. Cera, T. Haven and L. Ackermann, Angew. 
Chem. Int. Ed. 2016, 55, 1484-1488; (e) K. Graczyk, T. Haven 
and L. Ackermann, Chem. Eur. J. 2015, 21, 8812-8815; (f) Q. 
Qu, H. H. Al Mamari, K. Graczyk, E. Diers and L. Ackermann, 
Angew. Chem. Int. Ed. 2014, 53, 3868-3871. 

10 For a recent elegant example of iron-catalyzed C–H 
hydroarylation/annulation strategy see: T. Jia, C. Zhao, R. He, 
H. Chen and C. Wang, Angew. Chem. Int. Ed. 2016, 55, 5268-
5271. 

11 For a recent study on quinolone assistance: T. Matsubara, L. 
Ilies and E. Nakamura, Chem. Asian J. 2016, 11, 380-384. 

12 R. M. Beesley, C. K. Ingold and J. F. Thorpe, J. Chem. Soc., 
Trans., 1915, 107, 1080-1106. 

13  For detailed information, see the Supporting Information. 
14 Y. Sun, H. Tang, K. Chen, L. Hu, J. Yao, S. Shaik and H. Chen, J. 

Am. Chem. Soc. 2016, 138, 3715-3730. 
15 For the traceless removal of the reusable TAM group, see 

references [9c-f]. 
 

Page 4 of 4ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
3 

M
ay

 2
01

7.
 D

ow
nl

oa
de

d 
by

 C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
23

/0
5/

20
17

 1
5:

46
:5

7.
 

View Article Online
DOI: 10.1039/C7CC03376A

http://dx.doi.org/10.1039/c7cc03376a

