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Abstract—A series of artemisinin derived esters 7a–j, incorporating pharmacologically privileged substructure, such as biphenyl,
adamantane and fluorene, have been prepared and evaluated for antimalarial activity against multidrug-resistant (MDR) Plasmo-
dium yoelii nigeriensis by oral route. Several of these compounds were found to be more active than the antimalarial drugs b-artee-
ther 4 and artesunic acid 5. Ester 7i, the most active compound of the series, provided 100% and 80% protection to the infected mice
at 24 mg/kg · 4 days and 12 mg/kg · 4 days, respectively. In this model b-arteether provided 100% and 20% protection at 48 mg/
kg · 4 days and 24 mg/kg · 4 days, respectively.
� 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Artemisinin and its clinically useful derivatives.
The discovery of artemisinin 1, as the active principle of
the Chinese traditional drug against malaria, Artemisia
annua, is a major breakthrough in malaria chemother-
apy. The derivatives of artemisinin, for example, dihyd-
roartemisinin 2, artemether 3, arteether 4 and artesunic
acid 5 (Fig. 1), are more active than the parent com-
pound, and are currently the drugs of choice for the
treatment of malaria caused by multidrug-resistant
P. falciparum.2,3

While these compounds show high efficacy when admin-
istered by systemic routes, they are comparatively
less active when given by oral route. We have recently
reported the synthesis of a series of lipophilic ether
derivatives of dihydroartemisinin, incorporating phar-
macologically privileged substructures such as biphenyl,
adamantane and fluorene, some of which showed high
order of antimalarial activity against multidrug-resistant
P. yoelii in mice by oral route.4 A noticeable feature of
these derivatives was that a-isomers, the minor products
of acid catalysed etherification of dihydroartemisinin,
0960-894X/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.bmcl.2007.12.074

Keywords: Dihydroartemisinin; Arteether; Antimalarial; Multidrug-

resistant; 1,2,4-Trioxanes.
q Ref. 1.
* Corresponding author. Tel.: +91 0522 2612411 18x4220; fax: +91 522

2623405; e-mail: chandancdri@yahoo.com
were significantly more active than the corresponding
b-isomers. Since base-catalysed esterification of dihyd-
roartemisinin with acid chlorides/anhydrides furnishes
exclusively a-isomers,5 it made commercial sense to us
to prepare and evaluate for activity the corresponding
ester derivatives, incorporating these pharmacologically
privileged substructures. In the event, several of these
derivatives, showed very promising antimalarial activity
against multidrug-resistant malaria in mice by oral
route. Herein, we report the details of this study.6

Dihydroartemisinin 2 was prepared from artemisinin 1
using the known procedure.7 The acid chlorides RCOCl
6a–j were prepared from the corresponding carboxylic
acids by heating with thionyl chloride at 50–60 �C for
2–3 h and reacted with dihydroartemisinin 2 in the pres-
ence of triethylamine in dry dichloromethane at 0 �C for
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Scheme 1. Synthesis of ester derivatives 7a–j.

Table 1. Ester derivatives 7a–j

Compound

O

O

O

O

O

H

H

R

O

R = 

Mp % Yield

7a 59–61 �C 57

7b H2C 63–65 �C 57

7c
O

H2C

57–59 �C 56

7d OH2C 86–88 �C 53

7e 85–87 �C 49

7f H2C 115–117 �C 58

7g
H2C

73–75 �C 57

7h H2CH2C· 115–116 �C 55

7i 75–77 �C 52

7j H2C 73–75 �C 57
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2 h to furnish ester derivatives 7a–j in 49–58% yields
(Scheme 1, Table 1).8

Antimalarial drugs b-arteether and artesunic acid, when
given orally at 48 mg/kg · 4 days, provide 100% protec-
tion to the mice infected with multidrug-resistant P. yoelii
nigeriensis. At 24 mg/kg · 4 days, while artesunic acid
does not provide any protection, b-arteether provides
only 20% protection. Since the objective of the present
study was to select compounds having activity profile
better than that of b-arteether and artesunic acid, all
the newly prepared ester derivatives 7a–j were initially
screened against multidrug-resistant P. yoelii nigeriensis
in Swiss mice at 48 mg/kg · 4 days by oral route.9 All
these ester derivatives provided 100% protection at this
dose and therefore all these active compounds were fur-
ther screened at 24 mg/kg · 4 days. Compounds 7f, 7i
and 7j which showed 100% protection at 24 mg/kg · 4
days were further tested at 12 mg/kg · 4 days. The re-
sults are summarized in Table 2.

The semi-synthetic derivatives of artemisinin such as
artemether 3, arteether 4 and artesunic acid 5 are highly
effective against both chloroquine-sensitive and resistant
malaria. They are fast acting and are currently the drugs
of choice for the treatment of complicated cases of ma-
laria caused by multidrug-resistant P. falciparum. While
these drugs show high efficacy when administered by
systemic routes, they are comparatively less active when
given orally. In our search for artemisinin derivatives
with high efficacy by oral route, we had recently re-
ported a series of ether derivatives of dihydroartemisi-
nin, incorporating adamantane, biphenyl and fluorene
moieties. Several of these lipophilic derivatives were
found to be 2–4 times more active than arteether by oral
route.5,10,11 We also observed that the a-isomers, that is,
8a–d of these ether derivatives were significantly more
active than the corresponding b-isomers 9a–d (Fig. 2).

This was a serious limitation because the a-isomers were
the minor products (20–25% of the a- and b-mixture)
and the isolation of the pure isomers required extensive
chromatographic separation. The observation, however,
suggested that a bulkier group on the a-face of the mol-
ecule has beneficial effect on antimalarial activity and



Table 2. Blood schizontocidal activity of esters 7a–j against multidrug-resistant (MDR) strain P. yoelii nigeriensis in Swiss mice via oral route9

Compound LogP Dose (mg/kg · 4 days)a % Suppression of parasitaemia on day 4b,c Cured/ Treated

7a 6.95 48 100 5/5

24 100 3/5

7b 6.89 48 100 5/5

24 100 3/5

7c 6.53 48 100 5/5

24 100 2/5

12 100 0/5

7d 6.53 48 100 5/5

24 100 1/5

7e 6.05 48 100 5/5

24 100 0/5

7f 5.99 48 100 5/5

24 100 5/5

12 100 1/5

7g 5.85 48 100 5/5

24 100 4/5

12 100 0/5

7h 6.41 48 100 5/5

24 100 3/5

12 100 0/5

7i 6.61 48 100 5/5

24 100 5/5

12 100 4/5

7j 6.79 48 100 5/5

24 100 5/5

12 100 0/5

4 3.84 48 100 5/5

24 100 1/5

5 3.04 48 100 5/5

24 100 0/5

a The drug dilutions of compounds were prepared in groundnut oil and administered to a group of mice at each dose, from day 0 to 3, once daily.
b Percent suppression = [(C–T)/C] · 100; where C = parasitaemia in control group and T = parasitaemia in treated group.
c 100% suppression of parasitaemia means no parasites were detected in 50 oil immersion fields during microscopic observation.12
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Figure 2. Structure of active ether derivatives of dihydroartemisinin
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prompted us to prepare ester derivatives of dihydroarte-
misinin incorporating similar substructure. The ester
derivatives of dihydroartemisinin have the advantage
over the ether derivatives as they are obtained exclu-
sively as a-isomers and therefore their purification does
not require elaborate chromatographic separation. In
the event we prepared and screened against multidrug-
resistant P. yoelii 10 ester derivatives 7a–j incorporating
adamantane, biphenyl and fluorene moieties. The lipo-
philicity of these derivatives (LogP 5.85–6.95) is compa-
rable with that of the active ether derivatives 8a–d
(LogP 5.51–6.91) earlier reported by us.

As can be seen from Table 2, all these compounds
provided 100% protection at 48 mg/kg · 4 days and
therefore all these derivatives are at least as effective as
b-arteether which provided 100% and 20% protection
at 48 mg/kg · 4 days and 24 mg/kg · 4 days; respec-
tively. Among the biphenyl derivatives only 7a and
7b provided significant protection (60% protection)
at 24 mg/kg · 4 days. The adamantane-based esters
showed better activity profile; while compound 7f pro-
vided 100% protection at 24 mg/kg, compounds 7g and
7h provided 80% and 60% protection, respectively, at
this dose. Even at 12 mg/kg · 4 days compound 7f
showed 100% clearance of parasitaemia12 on day 4
and 20% of the treated mice survived beyond day 28.
In this series adamantane moiety linked through C-1
and separated by one CH2 from the ester group proved
to be the optimum for activity; absence of CH2 or
replacement of CH2 with CH2CH2 proved detrimental
to biological activity. The fluorene derivative 7i, the
most active compound of the series, provided 100% pro-
tection at 24 mg/kg · 4 days. At 12 mg/kg · 4 days, it
provided 80% protection. Its homologue 7j showed
100% protection at 24 mg/kg. At 12 mg/kg · 4 days, it
showed 100% clearance of parasitaemia on day 4 but
none of the treated mice survived beyond day 28.



Figure 3. Three-dimensional structure of compounds 7i, 8d and 9d.
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Since the present work on ester derivatives was inspired
by the excellent results shown by the structurally similar
ether derivatives,4 it is worthwhile to compare the bio-
logical activity of these two series. The ester derivatives
incorporating the biphenyl moiety on the whole are
much less active than their ether counterparts, two of
which (8a and 8b) had shown 100% protection at
12 mg/kg · 4 days. In the ether series, in fact, biphe-
nyl-based compounds were more active than the ada-
mantane- and fluorene-based derivatives. In the
adamantane-based compounds, both the series have
similar level of activity; in both these series the most ac-
tive compounds are twice as active as b-arteether. In the
fluorene-based series, the esters are marginally more ac-
tive than the ethers.

We also compared the three-dimensional structures of
ester 7i, the most active compound of the series, with
the corresponding ethers 8d (a-isomers) and 9d (b-iso-
mers) (Fig. 3).13 Clearly, there is a similarity in the
three-dimensional structures of 7i and 8d. In both these
compounds the C10–O moieties are placed away from
the trioxane group while in 9d it is very close. This prob-
ably accounts for the better activity profiles shown by a-
isomers of ethers and esters.14

In conclusion, we have prepared a series of lipophilic es-
ter derivatives of dihydroartemisinin, several of which
show better activity profile than b-arteether and artesu-
nic acid. Compound 7i, the most active compound of
the series, is more than twice as active as b-arteether
and artesunic acid.
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104.89 (C), 127.46 (CH), 127.66 (CH), 129.15 (CH), 130.23
(CH), 133.03 (C), 140.49 (C), 141.20 (C), 170.76 (C);
ESMS (m/z): 501 [M+Na]+; Anal. Calcd for (C29H34O6): C
72.77 H 7.16; Found C 72.47 H 7.53. Compound 7c: White
solid; FT-IR (KBr, cm�1): 1774.7, 1637.8, 1480.8, 1438.5,
1379.1, 1218.0, 1131.9, 1103.4, 1013.8, 770.4; 1H NMR
(200 MHz, CDCl3) d 0.77 (d, 3H, J = 7.1 Hz, CH3), 0.96
(d, 3H, J = 5.3 Hz, CH3), 1.25–2.07 (m, 10H), 1.44 (s, 3H,
CH3), 2.30–2.44 (m, 1H), 2.50–2.57 (m, 1H), 4.67 (s, 2H),
5.44 (s, 1H, C12–H), 5.80 (d, 1H, J = 9.8 Hz, C10–H), 6.87–
7.62 (m, 9H); 13C NMR (50 MHz, CDCl3) d 12.38 (CH3),
20.60 (CH3), 22.37 (CH2), 24.98 (CH2), 26.32 (CH3), 32.18
(CH), 34.47 (CH2), 36.61 (CH2), 37.68 (CH), 45.64 (CH),
51.93 (CH), 66.08 (CH2), 80.49 (C), 91.99 (CH), 93.07
(CH), 104.96 (C), 113.22 (CH), 122.59 (CH), 127.50 (CH),
128.45 (CH), 128.93 (CH), 130.04 (CH), 131.67 (CH),
138.43 (C), 155.08 (C), 168.32 (C); ESMS (m/z): 512
[M+Na]+; Anal. Calcd for (C29H34O7): C 70.43 H 6.93;
Found C 70.28 H 7.15. Compound 7d: White solid; FT-IR
(KBr, cm�1): 2928.9, 2874.4, 1774.3, 1607.4, 1519.4,
1488.0, 1452.0, 1379.4, 1354.4, 1273.2, 1178.5, 1133.1,
1103.1, 1081.8, 1013.2, 764.3; 1H NMR (200 MHz,
CDCl3) d 0.83 (d, 3H, J = 7.0 Hz, CH3), 0.96 (d, 3H,
J = 5.1 Hz, CH3), 1.17–2.07 (m, 10H), 1.43 (s, 3H, CH3),
2.31–2.44 (m, 1H), 2.55–2.62 (m, 1H), 4.70 and 4.80 (2 · d,
2H, J = 16.1 Hz, COCH2O), 5.46 (s, 1H, C12–H), 5.91 (d,
1H, J = 9.8 Hz, C10–H), 6.96–7.55 (m, 9H); ESMS (m/z):
517 [M+Na]+; HR-EIMS for (C29H34O7): Measured
494.2326, Calculated 494.2305; Anal. Calcd for
(C29H34O7Æ0.1H2O): C 70.43 H 6.93; Found C 70.21 H
6.94. Compound 7e: White solid; mp 85–87 �C; FT-IR
(KBr, cm�1): 3020.4, 2910.3, 1742.5, 1451.9, 1368.5,
1219.4, 1133.5, 1098.3, 1022.0, 769.0; 1H NMR
(200 MHz, CDCl3) d 0.82 (d, 3H, J = 7.1 Hz, CH3), 0.96
(d, 3H, J = 5.6 Hz, CH3), 1.25–2.01 (m, 25H), 1.42 (s, 3H,
CH3), 2.29–2.43 (m, 1H), 2.53–2.59 (m, 1H), 5.42 (s, 1H,
C12–H), 5.75 (d, 1H, J = 9.7 Hz, C10–H); 13C NMR
(50 MHz, CDCl3) d 12.58 (CH3), 20.63 (CH3), 22.42
(CH2), 24.97 (CH2), 26.29 (CH3), 28.28 (3 · CH), 32.37
(CH2), 34.53(CH2), 36.87 (3 · CH2), 37.64 (CH), 38.98
(3 · CH2), 41.20 (CH), 45.73 (CH), 52.07 (CH), 80.58 (C),
91.94 (CH), 104.71 (C), 176.63 (C); ESMS (m/z): 469
[M+Na]+; Anal. Calcd for (C26H38O6): C 69.92 H 8.57;
Found: C 69.48 H 8.46. Compound 7f: White solid; mp
115–117 �C; FT-IR (KBr, cm�1): 2914.3, 1751.0, 1452.2,
1401.9, 1375.0, 1267.5, 1161.1, 1096.0, 1020.3; 1H NMR
(200 MHz, CDCl3) d 0.87 (d, 3H, J = 7.0 Hz, CH3), 0.96
(d, 3H, J = 5.6 Hz, CH3), 1.25–2.08 (m, 25H), 1.42 (s, 3H,
CH3), 2.15–2.23 (m, 2H), 2.29–2.45 (m, 1H), 2.50–2.61 (m,
1H), 5.43 (s, 1H, C12–H), 5.77 (d, 1H, J = 9.8 Hz, C10–H);
13C NMR (50 MHz, CDCl3) d 12.84 (CH3), 20.62 (CH3),
22.38 (CH2), 25.01 (CH2), 26.34 (CH3), 29.00 (3 · CH),
31.98 (CH), 33.21 (C), 34.54 (CH2), 36.63 (CH2), 37.12
(3 · CH2), 37.68 (CH), 42.73 (3 · CH2), 45.77 (CH), 49.18
(CH2), 51.99 (CH), 80.51 (C), 91.76 (CH), 91.96 (CH),
104.75 (C), 170.92 (C); FABMS (m/z): 461 [M+H]+; ESMS
(m/z): 483 [M+Na]+; Anal. Calcd for (C27H40O6): C 70.40
H 8.75; Found C 70.87 H 9.09. Compound 7g: White
solid; mp 73–75 �C; FT-IR (KBr, cm�1) 2909.7, 2855.5,
1742.2, 1452.4, 1411.7, 1377.5, 1251.0, 1150.0, 1099.7,
1021.8, 757.0; 1H NMR (200 MHz, CDCl3) d 0.83 (d, 3H,
J = 6.9 Hz, CH3), 0.96 (d, 3H, J = 5.0 Hz, CH3), 1.25–2.06
(m, 25H), 1.43 (s, 3H, CH3), 2.24–2.37 (m, 1H), 2.46–2.57
(m, 3H), 5.44 (s, 1H, C12–H), 5.78 (d, 1H, J = 9.8 Hz, C10–
H); 13C NMR (50 MHz, CDCl3) d 12.46 (CH3), 20.60
(CH3), 22.37 (CH2), 24.99 (CH2), 26.33 (CH3), 28.24
(2 · CH), 31.90 (2 · CH2), 32.17 (3 · CH), 34.51 (CH2),
36.62 (CH2), 37.64 (CH), 38.56 (2 · CH2), 39.24
(2 · CH2), 41.36 (CH), 45.70 (CH), 51.97 (CH), 80.50
(C), 91.84 (CH), 92.00 (CH), 104.78 (C), 172.58 (C);
FABMS (m/z): 461 [M+H]+; ESMS (m/z): 478 [M+NH4]+,
483 [M+Na]+; Anal. Calcd for (C27H40O6): C 70.40 H
8.75; Found C 70.12 H 9.10. Compound 7h: White solid;
FT-IR (KBr, cm�1): 2920.0, 2853.7, 1751.5, 1591.3,
1457.0, 1378.5, 1352.1, 1161.9, 1096.4, 1022.0; 1H NMR
(200 MHz, CDCl3) d 0.86 (d, 3H, J = 7.0 Hz, CH3), 0.95
(d, 3H, J = 5.6 Hz, CH3), 1.25–2.10 (m, 27H), 1.43 (s, 3H,
CH3), 2.15–2.24 (m, 2H), 2.36–2.45 (m, 1H), 2.53–2.59 (m,
1H), 5.43 (s, 1H, C12–H), 5.77 (d, 1H, J = 9.8 Hz, C10–H);
13C NMR (50 MHz, CDCl3) d 12.85 (CH3), 20.63 (CH3),
22.39 (CH2), 24.99 (CH2), 26.35 (CH3), 29.01 (3 · CH),
31.99 (CH), 33.22 (C), 34.53 (CH2), 35.15 (CH2), 36.64
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141.90 (C), 169.87 (C); FABMS (m/z): 476 [M]+,
477[M+H]+; ESMS (m/z): 499 [M+Na]+; Anal. Calcd for
(C29H32O6): C 73.09 H 6.77; Found C 73.38 H 6.73.
Compound 7j: White solid; FT-IR (KBr, cm�1) 2929.9,
2877.2, 1747.2, 1653.9, 1529.6, 1450.4, 1350.9, 1275.6,
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7.51–7.58 (m, 2H), 7.75 (d, 2H, J = 7.4 Hz); 13C NMR
(50 MHz, CDCl3) d 12.61 (CH3), 20.65 (CH3), 22.46
(CH2), 25.03 (CH2), 26.38 (CH3), 32.11 (CH), 34.53
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yoelii nigeriensis. Multidrug-resistant Plasmodium yoelii
nigeriensis used in this study is resistant to chloroquine,
mefloquine and halofantrine. The colony bred Swiss mice
of either sex (20 ± 2 g) were inoculated intraperitoneally
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