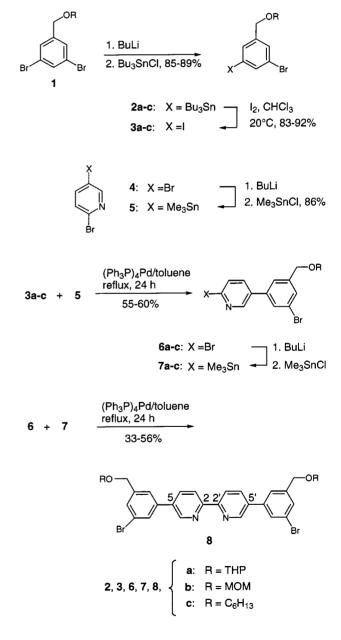
Synthesis of 5,5'-Disubstituted 2,2'-Bipyridines for Modular Chemistry

Oliver Henze, Uwe Lehmann, A. Dieter Schlüter*

Freie Universität Berlin, Institut für Organische Chemie, Takustr. 3, D-14195 Berlin, Germany Fax +49(30)8383357; E-mail: adschlue@chemie.fu-berlin.de

Received 6 October 1998


Abstract: A 0.5–11 g scale synthesis of the 5,5'-disubstituted 2,2'bipyridines **8** is described. The pyridine units are connected to one another by Pd-catalyzed cross-coupling reactions. This method allows one to introduce bromo functions and flexible chains at the terminal phenyls which optimizes this class of bidentate ligands for supra- and macromolecular applications.

Key Words: Stille cross-coupling, bipyridines, supramolecular chemistry, modular chemistry

We have recently reported on repetitive syntheses of oligophenylene rods and hexagons using a construction kit of orthogonally protected building blocks.^{1,2} These building blocks can be variably connected to one another by transition-metal mediated cross-coupling chemistry and allow to prepare a variety of monodisperse products with a reasonable quantity/effort ratio. We are presently developing a related methodology for the synthesis of shapepersistent macrocycles with integral 2,2':2:6"-terpyridine donor moieties for the subsequent transition-metal complexation and supramolecular assembly.³ The goal of the present contribution is to expand this project to bipyridines. It describes a multigram scale synthesis of symmetrical bipyridines 8 in which pyridines, already containing all the substituents later required for achieving compatibility with the existing modules, are connected in the last step to bipyridines by the Stille reaction.

Bipyridines are one of the the most important ligands in supramolecular chemistry⁴ and many syntheses have been reported.⁵ One synthetic way to 5,5'-disubstituted bipyridines uses 5,5'-dibromobipyridines as starting material.⁶ In a recent elegant example this compound was used to introduce acetylene units at these positions via transion metal-catalyzed coupling reactions.⁷ The route most often used to 5,5'-dibromobipyridines involves direct bromination of bipyridines under harsh conditions.⁷ With commonly available pressure equipments this reaction only gives a few grams of pure product. Additionally, workup is somewhat inconvenient. Some 2,2'-bipyridines^{8,9} including the parent compound¹⁰ have also been prepared by connecting two pyridine precursors at C-2 with the help of transition metal complexes.

Intrigued by this work and given our experience with Suzuki and Stille cross-coupling reactions^{3,11} a route to the symmetrical target bipyridines **8** was devised based on the coupling of properly substituted pyridines (Scheme). Pyridine **7** was selected as the key compound, because it contains the Stille functionalities, a trimethyltin (TMSn) group at C-2, an aryl bromide substituent for further growth reactions once the bipyridines is formed, and finally, a flexible substituent which not only increases the solubility but is also designed as a protected anchor group for manifold purposes. An important prerequisite for the feasibility of this strategy was the high selectivity of the Stille coupling between 6 and 7 towards coupling at pyridine C-2.¹²

Scheme

Synthesis 1999, No. 4, 683 - 687 ISSN 0039-7881 © Thieme Stuttgart · New York

The reactions depicted in the Scheme were carried out with three different R substituents [R = tetrahydropyrany](THP), methoxymethyl (MOM), and hexyl]. Compounds 1 were prepared from the readily available corresponding benzyl alcohol.¹³ Lithiation of 1 and subsequent stannylation allowed the selective incorporation of one tributylstannyl (TBSn) group to give 2 which was quantitively converted into the iodo analog 3. The use of TBSn as place holder in this iodination reaction is superior to the more commonly used alternative trimethylsilyl because of its lower, in fact, practically lack of interference with THP.¹⁴ The commercially available pyridine **4** was selectively stannylated at C-3 to give $5^{8,15}$ and then coupled with compounds 3 to give the key pyridines 6 on the 2 g (R = THP), 32 g (MOM), and 25 g scale (R = C_6H_{13}) and in 55-60% yields. The coupling between 3 and 5 proceeds in fact regioselectively as shown in the Scheme. Compound 5 does not undergo homopolymerization under the applied conditions. The conversion of 6 into 7 was carried out by the standard sequence of lithiation/stannylation. Pyridine 7 was used as the crude material because it decomposes rapidly on silica gel during chromatography and in a Kugelrohr apparatus on attempted distillation. The components 6 and 7 were subjected to a Stille coupling using the standard conditions¹⁶ using 3 mol % of Pd[(PPh₃)₄] as a catalyst. This coupling afforded the desired bipyridines 8 on a 400 mg (R = THP), 7 g (R =MOM) and 11 g scale ($R = C_6 H_{13}$). The most convincing structural proof for 8 is its ¹³C NMR spectrum which shows exactly the 11 expected aromatic signals.

All chemicals were purchased from Aldrich and Acros Chimica and used without further purification. Solvents: anhyd Et_2O , THF and toluene were distilled from sodium/benzophenone. The mass spectra were recorded in the electron impact (EI) mode.

2-(3,5-Dibromobenzyloxy)tetrahydropyran (1a)

To a stirred solution of 3,5-dibromobenzyl alcohol (5.0 g, 18.8 mmol) and dihydropyran (4.0 g, 47.6 mmol) in CH_2Cl_2 (40 mL) was added TsOH·H₂O at 20 °C. After stirring for 12 h, an aq 20% NaHCO₃ solution (20 mL) was added, the phases were separated, the aqueous phase was extracted with CH_2Cl_2 (20 mL) and the combined organic phases were washed with H₂O (50 mL). The organic phase was dried (MgSO₄), the solvent removed and the resulting oil chromatographed on silica gel (EtOAc/hexane, 1:6) to give **1a** as a colorless oil; yield: 6.04 g (92%); R_f 0.54 (EtOAc/hexane, 1:6).

Anal. calcd for $C_{12}H_{14}Br_2O_2$ (350.0): C, 41.18; H, 4.03. Found C, 40.81; H, 3.82.

¹H NMR (CDCl₃/TMS, 250 MHz): δ = 1.45–1.95 (m, 6 H, THP), 3.49–3.61 (m, 1 H, THP), 3.80–3.94 (m, 1 H, THP), 4.41 (d, 1 H, *J* = 13 Hz, benzyl-H), 4.64–4.72 (m, 2 H, benzyl-H, THP), 7.44 (s, 2 H, phenyl-H), 7.59 (s, 1 H, phenyl-H).

¹³C NMR (CDCl₃,/TMS, 63 MHz): δ = 18.96, 25.15, 30.15, 61.74, 66.87, 97.63, 122.60, 128.83, 132.62, 142.23.

MS (EI, 60 eV): *m*/*z* (%) = 348 (0.2), 350 (0.5), 352 (0.3).

1,3-Dibromo-5-(methoxymethoxymethyl)benzene (1b)

To a vigorously stirred suspension of P_2O_5 (120 g) in CCl₄ (300 mL) was added a solution of 3,5-dibromobenzyl alcohol (40.0 g, 150.4 mmol) in dimethoxymethane (480 g, 6.4 mol). After 10 h this mix-

ture was added carefully to a 20% K_2CO_3 solution (1 L) at 0 °C and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (200 mL) and the combined organic phases were washed with H₂O (300 mL). The organic phase was dried (MgSO₄), the solvent removed and the resulting oil chromatographed on silica gel (EtOAc/hexane, 1:6) to give **1b** as a colorless oil; yield: 45.2 g (97%); R_f 0.53 (EtOAc/hexane, 1:6).

Anal. calcd for $C_9H_{10}Br_2O_2$ (310.0): C, 34.87; H, 3.25. Found C, 34.69; H, 3.16.

¹H NMR (CDCl₃/TMS, 250 MHz): δ = 3.40 (s, 3 H, CH₃), 4.50 (s, 2 H, CH₂), 4.69 (s, 2 H, CH₂), 7.42 (s, 2 H, phenyl-H), 7.58 (s, 1 H, phenyl-H).

¹³C NMR (CDCl₃/TMS): δ = 55.41, 67.39, 95.77, 122.81, 129.05, 132.99, 141.92.

MS (EI, 70 eV): *m/z* (%) = 308 (1.0), 310 (2.0), 312 (1.0), 250 (100).

1,3-Dibromo-5-hexyloxymethylbenzene (1c)

To a stirred solution of NaH (4.3 g, 180.0 mmol) in THF (250 mL) under N₂ was added dropwise a solution of 3,5-dibromobenzyl alcohol (40 g, 150.0 mmol) in THF (50 mL). After stirring for 1 h, hexyl bromide (39.6 g, 240 mmol) was added and the mixture refluxed for 24 h. After cooling to 20 °C, H₂O was added until all salts had dissolved and the mixture diluted with Et₂O (100 mL). The phases were separated, the aqueous phase was extracted with Et₂O (2 × 100 mL) and the combined organic phases were washed with brine (100 mL). The organic phase was dried (MgSO₄), the solvent removed, and the resulting oil was distilled to afford **1c** as a colorless oil; yield: 44.1 g (84%); bp 127 °C/0.02 mbar; R_f 0.81 (EtOAc/hexane, 1:6).

Anal. calcd for $C_{13}H_{18}Br_2O$ (350.1): C, 44.60; H, 5.18. Found C, 44.63; H, 4.98.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 0.90$ (t, 3 H, J = 7 Hz, CH₃), 1.21–1.43 (m, 6 H, γ-, δ-, ε-CH₂), 1.53–1.67 (m, 2 H, β-CH₂), 3.47 (t, 2 H, J = 7 Hz, α-CH₂), 4.42 (s, 2 H, benzyl-CH₂), 7.42 (s, 2 H, phenyl-H), 7.56 (s, 1 H, phenyl-H).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 14.03, 22.59, 25.79, 29.60, 31.62, 70.98, 71.20, 122.86, 128.96, 132.90, 142.84.

MS (EI, 80 eV): *m*/*z* (%) = 348 (0.9), 350 (1.7), 352 (0.8), 250 (100).

Tributyltin Derivatives 2; General Procedure

To a stirred suspension of the respective **1** (14.1 mmol) in Et₂O (50 mL) at -78 °C was added dropwise a solution of 1.6 M of BuLi in hexane (9.7 mL, 15.5 mmol). After 2 h, Bu₃SnCl (5.53 g, 17.0 mmol) was added and the mixture was allowed to warm to 20°C. Then H₂O (30 mL) was added, the phases were separated, the aqueous phase extracted with Et₂O (2 × 50 mL) and the combined organic phases were washed with H₂O (100 mL). The organic phase was dried (MgSO₄), the solvent removed and the resulting oil chromatographed on silica gel (EtOAc/hexane, 1:10) to give **2** as a colorless oil.

Amounts of **1** used and yields for **2**: **1a**: 4.95 g, product **2a**: 6.75 g (85%); $R_f 0.55$ (EtOAc/hexane, 1:10). **1b**: 4.40 g, product **2b**: 6.45 g (87%); $R_f 0.60$ (EtOAc/hexane, 1:10). **1c**: 4.74 g, product **2c**: 6.77 g (89%); $R_f 0.56$ (EtOAc/hexane, 1:20).

2-(3-Bromo-5-tributylstannylbenzyloxy)tetrahydropyran (2a) Anal. calcd for $C_{24}H_{41}BrO_2Sn$ (560.2): C, 51.46; H, 7.38. Found C, 51.28; H, 7.11.

¹H NMR (CDCl₃/TMS, 250 MHz): δ = 0.81–0.92 (m, 9 H, CH₃), 1.01–1.10 (m, 6 H, CH₂), 1.25–1.40 (m, 6 H, CH₂), 1.45–1.96 (m, 12 H, CH₂, THP), 3.49–3.61 (m, 1 H, THP), 3.82–3.96 (m, 1 H, THP), 4.44 (d, 1 H, benzyl-H, ²*J* = 13 Hz), 4.66–4,78 (m, 2 H, benzyl-H, THP), 7.32 (s, 1 H, phenyl-H), 7.47 (s, 2 H, phenyl-H). ¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 9.69, 13.60, 19.24, 25.41, 27.27, 28.94, 30.46, 62.03, 68.05, 97.72, 123.12, 130.17, 133.79, 137.60, 139.84, 145.03.

MS (EI, 60 eV): m/z (%) = 557 (0.4), 559 (0.7), 661 (0.4), 503 (100).

1-Bromo-5-tributylstannyl-3-(methoxymethoxymethyl)benzene (2b)

Anal. calcd for $C_{21}H_{37}BrO_2Sn$ (520.1): C, 48.50; H, 7.17. Found C, 48.36; H, 6.88.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 0.85-0.95$ (m, 9 H, CH₃), 1.02–1.11 (m, 6 H, CH₂), 1.26–1.41 (m, 6 H, CH₂) 1.48–1.61 (m, 6 H, CH₂), 3.44 (s, 3 H, CH₃), 4.58 (s, 2 H, CH₂), 4.71 (s, 2 H, CH₂), 7.33 (s, 1 H, phenyl-H), 7.46 (s, 1 H, phenyl-H), 7.49 (s, 1 H, phenyl-H).

 ^{13}C NMR (CDCl₃/TMS, 63 MHz): δ = 9.69, 13.59, 27.26, 28.93, 55.32, 68.45, 95.71, 123.15, 130.26, 133.85, 137.80, 139.41, 145.20.

MS (EI, 70 eV): m/z (%) = 519 (0.6), 461 (36.7), 463 (52.8), 465 (33.8).

1-Bromo-3-hexyloxymethyl-5-tributylstannylbenzene (2c)

Anal. calcd for C₂₅H₄₅BrOSn (560.2): C, 53.60; H, 8.10. Found C, 53.69; H, 7.81.

¹H NMR (CDCl₃/TMS, 250 MHz): δ = 0.79–0.96 (m, 12 H, CH₃), 1.03–1.12 (m, 6 H, butyl-CH₂), 1.24–1.48 (m, 12 H, CH₂), 1.48– 1.69 (m, 8 H, CH₂), 3.48 (t, 2 H, *J* = 7 Hz, α-CH₂), 4.47 (s, 2 H, *J* = 7 Hz, benzyl-CH₂), 7.33 (s, 1 H, phenyl-H), 7.42 (s, 1 H, phenyl-H), 7.49 (s, 1 H, phenyl-H).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 9.69, 13.60, 14.00, 22.60, 25.86, 27.28, 28.96, 29.70, 31.67, 70.62, 72.15, 123.13, 130.05, 133.58, 137.57, 140.27, 145.00.

MS (EI, 70 eV): m/z (%)= 559 (1.8), 501 (79.5), 503 (100), 505 (73.2).

Conversion of 2 to Iodo Compounds 3; General Procedure

To a solution of the respective **2** (8.80 mmol) in CHCl₃ (50 mL) were added small portions of I₂ (2.20 g, 8.80 mmol) at 20 °C and the resulting mixture was stirred at this temperature for 30 min when an aq sat. solution of KF (20 mL) was added. Then aq 2 N Na₂CO₃ solution (25 mL) was added and the resulting mixture extracted with CHCl₃ (3 × 50 mL). The organic phase was washed with aq sat. Na₂S₂O₅ solution (50 mL), dried (MgSO₄), and the solvent removed. The resulting oil was chromatographed on silica gel (EtOAc/hexane, 1:20) to give **3** as a colorless oil.

Amounts of **2** used and yields for **3**: **2a**: 4.90 g, product **3a**: 3.22 g (92%); $R_f 0.40$ (EtOAc/hexane, 1:20). **2b**: 3.50 g, product **3b**: 2.21 g (91%); $R_f 0.36$ (EtOAc/hexane, 1:20). **2c**: 3.36 g, product **3c**: 2.17 g (92%); $R_f 0.67$ (EtOAc/hexane, 1:20).

The conversions of **1** into **3** were also carried out at larger scales without isolating the intermediate **2**. **1b**: 38.5 g (124.2 mmol); yield of **3b**: 36.8 g (83%). **1c**: 37.0 g (105.7 mmol); yield of **3c**: 36.1 g (85%). In this larger scale, **3c** was isolated by distillation; bp 140 °C/0.008 mbar; without addition of KF solution.

2-(3-Bromo-5-iodobenzyloxy)tetrahydropyran (3a)

Anal. calcd for C₁₂H₁₄BrIO₂ (397.0): C, 36.30; H, 3.55. Found C, 36.26; H, 3.41.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 1.43-1.90$ (m, 6 H, THP), 3.47–3.59 (m, 1 H, THP), 3.79–3.90 (m, 1 H, THP), 4.40 (d, 1 H, benzyl-H, ²*J* = 13 Hz), 4.62–4.71 (m, 2 H, benzyl-H, THP), 7.46 (s, 1 H, phenyl-H), 7.61 (s, 1 H, phenyl-H), 7.72 (s, 1 H, phenyl-H).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 19.08, 25.24, 30.26, 61.94, 66.89, 94.29, 97.79, 122.76, 129.71, 134.88, 138.35, 142.37.

MS (EI, 60 eV): *m*/*z* (%) = 398 (1.3), 396 (1.2), 295 (100), 297 (91).

1-Bromo-3-iodo-5-(methoxymethoxymethyl)benzene (3b)

Anal. calcd for $C_9H_{10}BrIO_2$ (357.0): C, 30.28; H, 2.82. Found C, 30.21; H, 2.72.

685

¹H NMR (CDCl₃/TMS, 250 MHz): δ = 3.39 (s, 3 H, CH₃), 4.48 (s, 2 H, CH₂), 4.66 (s, 2 H, CH₂), 4.44 (s, 1 H, phenyl-H) 7.60 (s, 1 H, phenyl-H), 7.72 (s, 1 H, phenyl-H).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 55.35, 67.16, 94.33, 95.68, 122.76, 129.66, 134.84, 138.47, 141.91.

MS (EI, 70 eV): m/z (%) = 356 (9.3), 358 (9.0), 296 (47.0), 298 (45.5).

1-Bromo-3-hexyloxymethyl-5-iodobenzene (3c)

Anal. calcd for C₁₃H₁₈BrIO (397.1): C, 39.32; H, 4.57. Found C, 39.53; H, 4.26.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 0.89$ (t, 3 H, J = 7 Hz, CH₃), 1.21–1.45 (m, 6 H, γ-, δ-, ε-CH₂), 1.51–1.69 (m, 2 H, β-CH₂), 3.46 (t, 2 H, J = 7 Hz, α-CH₂), 4.40 (s, 2 H, benzyl-CH₂), 7.42 (s, 1 H, phenyl-H), 7.60 (s, 1 H, phenyl-H), 7.72 (s, 1 H, phenyl-H).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 14.07, 22.60, 25.79, 29.59, 31.62, 70.94, 71.02, 94.39, 122.90, 129.61, 134.78, 138.43, 142.89.

MS (EI, 70 eV): *m*/*z* (%) = 396 (4.8), 398 (4.7), 296 (100), 298 (98).

2-Bromo-5-trimethylstannylpyridine (5)

To a stirred suspension of 4 (25.0 g, 106 mmol) in Et₂O (700 mL) was added dropwise at -78 °C a solution 1.6 M of BuLi in hexane (70.0 mL, 112 mmol). After 4 h, Me₃SnCl (22,5 g, 112 mmol) was added to the resulting red solution and the mixture was allowed to warm to 20 °C. Then H₂O (300 mL) was added, the phases were separated, the aqueous phase was extracted with Et₂O (2 × 100 mL) and the combined organic phases were washed with H₂O (2 × 300 mL). The organic phase was dried (MgSO₄), the solvent removed and the resulting oil chromatographed over silica gel (EtOAc/hexane, 1:6) to give a colorless oil; yield: 29.1 g (86%); R_f 0.56 (EtOAc/hexane, 1:6); bp 86°C/0.03 mbar).

HRMS: *m/z* calcd for C₈H₁₂BrNSn 320.91745, found 320.91738.

¹H NMR (CDCl₃/TMS, 270 MHz): δ = 0.31 [s, 9 H, Sn(CH)₃], 7.40 (d, 1 H, pyrid-H, ³*J* = 8 Hz), 7.58 (dd, 1 H, pyrid-H, ³*J* = 8 Hz, ⁴*J* = 2 Hz), 8.31 (d, 1 H, pyrid-H, ⁴*J* = 2 Hz).

¹³C NMR (CDCl₃, 63 MHz): δ = -9.6, 127.7, 135.8, 142.7, 145.4, 156.6.

MS (EI, 70 eV): *m/z* (%) = 319 (7.1), 321 (10.6), 323 (6.6), 304 (68.9), 306 (100), 308 (64.5), 276 (23.0).

Coupling of Iodides 3 with 2-Bromo-5-trimethylstannylpyridine (5); General Procedure

To a solution of the respective **3** (6.90 mmol) and **5** (7.60 mmol) in toluene (15 mL) was added (Ph₃P)₄Pd (240 mg, 0.20 mmol) and the mixture refluxed for 24 h. After cooling to 20 °C, first an aq sat. KF solution (15 mL) and then aq 2 N Na₂CO₃ solution (25 mL) were added. After removal of the solids formed, the phases were separated, the aqueous phase was extracted with toluene, the combined organic phases were washed with H₂O (2 × 50 mL) and dried (MgSO₄). After removal of the solvent, the residual oil was chromatographed on silica gel (EtOAc/hexane, 1:10) to give **6** as a colorless oil which slowly crystallized.

Amounts of **3** and **5** used and yields for **6**: **3a**: 2.70 g (6.90 mmol), **5**: 2.40 g (7.60 mmol), product **6a**: 2.17 g (59%); mp 90 °C; $R_f 0.16$ (EtOAc/hexane, 1:10). **3b**: 54.70 g (153.2 mmol), **5**: 51.60 g (160.8 mmol), product **6b**: 32.70 g (55%); mp 67 °C; $R_f 0.13$ (EtOAc/hexane, 1:10). **3c**: 40.00 g (100.7 mmol), **5**: 35.54 g (110.7 mmol), product **6c**: 24.7 g (58%); mp 39 °C; $R_f 0.28$ (EtOAc/hexane, 1:20).

2-Bromo-5-[3-bromo-5-(tetrahydropyran-2-yloxymethyl)phenyl]pyridine (6a)

HRMS: *m*/*z* calcd for C₁₇H₁₇Br₂NO₂ 424.96260, found 424.96423.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 1.35-1.83$ (m, 6 H, THP), 3.39–3.49 (m, 1 H, THP), 3.71–3.84 (m, 1 H, THP), 4.39 (d, 1 H, benzyl-H, ²*J* = 13 Hz), 4.62 (dd, 1 H, THP), 4.68 (d, 1 H, benzyl-H, ²*J* = 13 Hz), 7.32 (s, 1 H, phenyl-H), 7.36–7.44 (m, 3 H, 2 phenyl-H, 1 pyrid-H), 7.56 (d, 1 H, pyrid-H, ³*J* = 8 Hz, ⁴*J* = 2 Hz), 8.39 (d, 1 H, pyrid-H, ⁴*J* = 2 Hz).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 18.95, 25.00, 30.07, 61.78, 67.30, 97.66, 122.84, 124.26, 127.68, 128.38, 129.97, 133.93, 136.46, 137.92, 141.13, 141.33, 147.86.

MS (EI, 60 eV): *m*/*z* (%) = 425 (1.3), 427 (2.3), 429 (1.2), 327 (100).

2-Bromo-5-[3-bromo-5-methoxymethoxymethyl)phenyl] pyridine (6b)

Anal. calcd for C₁₄H₁₃Br₂NO₂ (387.1): C, 43.44; H, 3.38; N, 3.61. Found C, 43.33; H, 3.33; N, 3.47.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 3.38$ (s, 3 H, CH₃), 4.59 (s, 2 H, CH₂), 4.69 (s, 2 H, CH₂), 7.40 (s, 1 H, phenyl-H), 7.46–7.54 (m, 3 H, 2 phenyl- H, 1 pyrid- H), 7.64 (dd, 1 H, pyrid-H, ³*J* = 8 Hz, ⁴*J* = 2 Hz), 8.49 (d, 1H, pyrid-H, ⁴*J* = 2 Hz).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 55.36, 67.88, 95.79, 123.12, 124.52, 127.93, 128.85, 130.25, 134.20, 136.68, 138.34, 141.17, 141.42, 148.13.

MS (EI, 70 eV): m/z (%) = 385 (7.5), 387 (14.2), 389 (7.2), 327 (100).

2-Bromo-5-(3-bromo-5-hexyloxymethylphenyl)pyridine (6c)

Anal. calcd for $C_{18}H_{21}Br_2NO$ (427.2): C, 50.61; H, 4.96; N, 3.28. Found C, 50.52; H, 4.92; N, 3.16.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 0.89$ (t, 3 H, J = 7 Hz, CH₃), 1.20–1.46 (m, 6 H, γ-, δ-, ε-CH₂), 1.53–1.70 (m, 2 H, β-CH₂), 3.51 (t, 2 H, J = 7 Hz, α-CH₂), 4.52 (s, 2 H, benzyl-CH₂), 7.41 (s, 1 H, phenyl-H), 7.50–7.56 (m, 3 H, 2 phenyl-H, 1 pyrid.-H), 7.68 (dd, 1 H, pyrid.-H, ³J = 8 Hz, ⁴J = 2 Hz), 8.52 (d, 1 H, pyrid. H, ⁴J = 2 Hz).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 13.96, 22.52, 25.77, 29.57, 31.56, 71.01, 71.64, 123.21, 124.42, 128.01, 128.80, 130.21, 134.45, 136.78, 138.41, 141.48, 142.11, 148.26.

MS (EI, 70 eV): *m*/*z* = 425 (5.0), 427 (9.4), 429 (4.8), 327 (100).

Bipyridines 8; General Procedure

To a stirred solution of the respective **6** (1.80 mmol) in Et₂O (20 mL) was added at -78 °C a 1.6 N solution of BuLi in hexane (1.2 mL, 1.9 mmol). After 2 h, to the resulting red solution was added a solution of Me₃SnCl (5% excess based on BuLi) in Et₂O (10 mL). The mixture was allowed to reach 20 °C and the solvent removed. To the remaining brownish oil 7 was added a second portion of the same **6** dissolved in toluene (10 mL). After the addition of (Ph₃P)₄Pd (3 mol %), the mixture was refluxed for 24 h and then cooled to 20 °C. Then, first an aq sat. KF solution (15 mL) was added ef followed by aq 2 N Na₂CO₃ solution (25 mL) before the organic material was extracted with toluene (50 mL). The organic phase was washed with H₂O (100 mL) and dried (MgSO₄). After removal of the solvent, the residual oil was chromatographed on silica gel (EtOAc/hexane, 1:3) to give a yellow oil which slowly crystallized.

Amounts of **6** used and yields for **8**: **6a** first portion: 780 mg (1.80 mmol), second portion: 770 mg (1.80 mmol), product **8a**: 420 mg (34%); mp 144 °C; R_f 0.19 (EtOAc/hexane, 1:3). **6b** first portion: 14.0 g (36.2 mmol), second portion: 14.0 g (36.2 mmol), product **8b**: 7.3 g (33%); mp 143 °C; R_f 0.10 (EtOAc/hexane, 1:3). **6c** first portion: 12.0 g (28.1 mmol), second portion: 12.0 g (28.1 mmol), product **8c**: 11.0 g (56%); mp 90 °C; R_f 0.19 (EtOAc/hexane, 1:6).

5,5'-Bis-[3-bromo-5-(tetrahydropyran-2-yloxymethyl)phenyl]-2,2'-bipyridyl (8a)

Anal. calcd for $C_{34}H_{34}Br_2N_2O_2$ (694.5): C, 58.80; H, 4.94; N, 4.03. Found C, 58.81; H, 4.89 $\,$ 3.64.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 1.41-1.90$ (m, 12 H, THP), 3.44–3.59 (m, 2 H, THP), 3.77–3.91 (m, 2 H, THP), 4.46 (d, 2 H, benzyl-H, ²*J* = 13 Hz), 4.68 (dd, 2 H, THP), 4.77 (d, 2 H, benzyl-H, ²*J* = 13 Hz), 7.50 (s, 4 H, phenyl-H), 7.61 (s, 2 H, phenyl-H), 7.90 (dd, 2 H, pyrid-H, ³*J* = 8 Hz, ⁴*J* = 2 Hz), 8.43 (d, 2 H, pyrid-H, ³*J* = 8 Hz), 8.80 (d, 2 H, pyrid-H, ⁴*J* = 2 Hz).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 19.22, 25.31, 30.40, 62.12, 67.78, 97.98, 120.92, 123.12, 124.71, 128.91, 130.08, 134.93, 135.10, 139.50, 141.46, 147.50, 154.88.

MS (EI, 60 eV): *m*/*z* = 692 (10.3), 694 (20.2), 696 (11.8), 594 (100).

5,5*-Bis-[3-bromo-5-(methoxymethoxymethyl)phenyl]-2,2'-bipyridyl (8b)

Anal. calcd for $C_{28}H_{26}Br_2N_2O_4$ (614.3): C, 54.74; H, 4.27; N, 4.56. Found C, 54.85; H, 4.31; N, 4.40.

¹H NMR (CDCl₃/TMS, 250 MHz): δ = 3.44 (s, 6 H, CH₃), 4.65 (s, 4 H, CH₂), 4.75 (s, 4 H, CH₂), 7.57 (s, 4 H, phenyl-H), 7.70 (s, 2 H, phenyl-H), 7.99 (dd, 2 H, pyrid-H, ³*J* = 8 Hz, ⁴*J* = 2 Hz), 8.50 (d, 2 H, pyrid-H, ³*J* = 8 Hz), 8.89 (d, 2 H, pyrid-H, ⁴*J* = 2 Hz).

¹³C NMR (CDCl₃/TMS, 63 MHz): δ = 55.49, 68.15, 95.92, 121.00, 123.21, 124.78, 129.14, 130.15, 134.95, 135.19, 139.65, 141.08, 147.53, 154.94.

MS (EI, 70 eV): *m*/*z* = 612 (53.4), 614 (100), 616 (55.4).

5,5'-Bis-(3-bromo-5-hexyloxymethylphenyl)-2,2'-bipyridyl (8c):

Anal. calcd for $C_{36}H_{42}Br_2N_2O_2$ (694.5): C, 62.23; H, 6.10; N, 4.03. Found C, 62.22; H, 6.16; N, 3.88.

¹H NMR (CDCl₃/TMS, 250 MHz): $\delta = 0.89$ (t, 6 H, J = 7 HZ, CH₃), 1.19–1.46 (m, 12 H, γ-, δ-, ε-CH₂), 1.55–1.70 (m, 4 H, β-CH₂), 3.54 (t, 4 H, J = 7 Hz, α-CH₂), 4.58 (s, 4 H, benzyl-CH₂), 7.53 (s, 4 H, phenyl-H), 7.68 (s, 2 H, phenyl-H), 7.99 (dd, 2 H, pyrid-H, ³J = 8 Hz, ⁴J = 2 Hz), 8.50 (d, 2 H, pyrid-H, ³J = 8 Hz), 8.88 (d, 2 H, pyrid-H, ⁴J = 2 Hz).

 ^{13}C NMR (CDCl₃/TMS, 63 MHz): δ = 13.98, 22.55, 25.81, 29.62, 31.60, 70.97, 71.78, 120.94, 123.15, 124.49, 128.88, 129.93, 134.95, 135.09, 139.53, 141.91, 147.50, 154.90.

MS (EI, 70 eV): *m*/*z* (%) = 692 (43.3) 694 (82.0), 696 (48.7).

Acknowledgement

Support of this work by the Deutsche Forschungsgemeinschaft (Sfb 448, Teilprojekt A1) and the Fonds der chemischen Industrie is gratefully acknowledged. O. H. thanks the Graduiertenkolleg "Synthetische, mechanistische und verfahrenstechnische Aspekte von Metallkatalysatoren" for financial support. We thank M. Mujkic for her competent help with some of the experiments.

References

1998

- Hensel, V.; Schlüter, A. D. Lieb. Ann., Recueil 1997, 303. Hensel, V.; Lützow, K.; Jacob, J.; Geßler, K.; Saenger, W.; Schlüter, A. D. Angew. Chem. 1997, 109, 2768; Angew. Chem. Int. Ed. Engl. 1997, 36, 2654. Hensel, V.; Schlüter, A. D. Chem. Eur. J. 1998, 5, 421. Hensel, V.; Schlüter, A. D. Eur. J. Org. Chem., in press.
- (2) For a recent review on repetitive/iterative synthesis in organic chemistry, see:
 Top. Curr. Chem., Vol. 197, Vögtle, F., Ed.; Springer: Berlin,

- (3) Lehmann, U.; Henze, O.; Schlüter, A. D. *Chem. Eur. J.*, in press.
- (4) For example, see: Comprehensive Supramolecular Chemistry, Lehn, J.-M., Ed.; Vol. 9, Pergamon: London, 1996.
- (5) Spitzner, D. In *Houben-Weyl*, 4th ed., Vol. E 7b, Kreher, R., Ed.; Thieme: Stuttgart, 1992; p 304, 318, 322, 433, 437, 446, 530, 593, 614, 615, 628, 656.
- (6) Romero, F. M.; Ziessel, R. *Tetrahedron Lett.* **1995**, *36*, 6471.
- (7) Hissler, M.; El-ghayoury, A.; Harriman, A.; Ziessel, R. Angew. Chem. 1998, 110, 1804; Angew. Chem. Int. Ed. Engl. 1998, 37, 1717.
 Grosshenny, V.; Romero, F. M.; Ziessel, R. J. Org. Chem. 1997, 62, 1491, and references cited therein.
- (8) For example, see: Bolm, C.; Ewald, M.; Felder, M.; Schlinghoff, G. Chem. Ber. 1992, 125, 1169.

- (9) For an oligopyridine synthesis, see: Cardenas, D. J.; Sauvage, J.-P. Synlett 1996, 916.
- (10) Yamamoto, Y.; Azuma, Y.; Mitoh, H. Synthesis 1986, 564.

687

- (11) Schlüter, A. D.; Wegner, G. *Acta Polymer.* 1993, 44, 59.
 Frahn, J.; Karakaya, B.; Schäfer, A.; Schlüter, A. D. *Tetrahedron* 1997, 53, 15459.
- (12) It is not clear whether the coupling of **6** and **7** follows exclusively a cross-coupling pattern.
- (13) Dickinson, R. P.; Dack, K. N.; Long, C. J.; Steele, J. J. Med. Chem. 1997, 40, 3442.
- (14) Stannyl instead of the more commonly used silyl group was introduced because iododestannylation proceeds at milder conditions than iododesilylation and, thus, leaves even the sensitive THP group intact.
- (15) Parham, W. E.; Piccirilli, R. M. J. Org. Chem. 1977, 42, 257.
- (16) Stille, J. K. Angew. Chem. **1986**, 98, 504; Angew. Chem. Int. Ed. Engl. **1986**, 25, 508.