Easy Access to Phosphonothioates

Pierre-Yves Renard,^{*[a, b]} Hervé Schwebel,^[a] Philippe Vayron,^[a, b] Ludovic Josien,^[a] Alain Valleix,^[a] and Charles Mioskowski^{*[a, c]}

Abstract: A new and particularly mild method for the formation of phosphorus – sulfur bonds has been achieved through base-catalyzed addition of thiocyanate to the corresponding H-phosphine oxide, phosphinate, or phosphonate. This reaction procedure offers many advantages: the use as starting material of a stable and not oxygen-sensitive phosphorus(v) species, particularly mild and nonaqueous reaction conditions and workup (a pivotal point for these sensitive phosphonothioates), and, through optimized access to thiocyanates, a wider scope of substrates. This method has been applied to achieve the synthesis of substrate analogues for the study of antibody-catalyzed hydrolysis of acetylcholinesterase inhibitor PhX (**11**).

Introduction

Phosphonothioates and thiophosphonates are increasingly widely used in biological applications, mainly as enzymatically stable phosphate analogues for pest control,^[1] but also as nonhydrolysable ribonucleotide mimics for use in chemotherapy.^[1a-b, 2] Phosphonothioate VX [S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate, also known as A4] has, for instance, been described as the most powerful acetylcholinesterase inhibitor.^[3] In the course of our studies on catalytic antibodies, aimed at the neutralization of this highly toxic nerve agent,^[4] we needed to synthesize a number of less toxic phenylphosphonothioate analogues of these methylphosphonothioates. Because of the presence of a highly basic nitrogenbearing side chain, classical methods of synthesis of the phosphorus-sulfur bond failed.^[5] We had to develop a new and mild method for the formation of this fragile P-S bond, without any acidic, basic, or even aqueous workup.

[a]	Dr. PY. Renard, Dr. C. Mioskowski, H. Schwebel,
	Dr. P. Vayron, L. Josien, A. Valleix
	CEA, CE-Saclay
	Service des Molécules Marquées
	Bât. 547, 91191 Gif sur Yvette Cedex (France)
	Fax: (+33)1-69-08-79-91
	E-mail: pierre-yves.renard @cea.fr, mioskow@aspirine.u-strasbg.fn and for the strasbg.fn and for the strasbg.
[b]	Dr. PY. Renard, Dr. P. Vayron DGA/DCE, CE du Bouchet, BP3
[c]	Dr C Mioskowski
[0]	Université Louis Pasteur
	Faculté de Pharmacie
	Laboratoire de Synthèse Bioorganique (UMR 7514)
	74, route du Rhin, 67401 Illkirch-Graffenstaden (France)
	Fax: (+33) 3-90-24-43-06

Results and Discussion

Keywords:

toxicology

phosphorothioates

phosphorylation • thiocyanates •

Among the means allowing efficient access to phosphonothioates, the Michaelis-Arbuzov-like addition of sulfenyl halides,^[6] thiosuccinimides/phthalimides,^[7] or disulfides^[8] to phosphites offers an easy workup of the required kind. However, phosphites are highly oxygen-sensitive species, and the reaction conditions required for the formation either of sulfenyl chloride or of thiosuccinimides proved to be incompatible with the nitrogen-bearing side chain, and-in the few cases in which their synthesis has been achieved-many byproducts were formed together with the phosphonothioate.^[9] As far as nonactivated disulfides are concerned, they display too low a reactivity, high reaction temperatures are required, and one half of the side chain has to be discarded in the process. Unsymmetrical activated (through 2-nitro- and 2,4dinitrophenylsulfenyl) disulfides also provide reactive substrates for Michaelis - Arbuzov and Michaelis - Arbuzov-like addition to phosphites,^[10] but their synthesis is incompatible with many functional groups. We therefore turned to thiocyanates as pseudo-halogens for the Michaelis - Arbuzov-like reaction. Only one such example has been described,^[11] and its requirement for a high reaction temperature proved to be incompatible with the thermally unstable thiocyanate moieties. As an illustration, O,O-diethyl phenylphosphonite was heated with N,N-diisopropylaminoethyl thiocyanate (3a) (see Scheme 1; prepared from the corresponding alcohol and lead thiocyanate as previously described^[12]). Whatever the reaction conditions we used, no trace of the corresponding phosphonothioate was detected.

In order to develop a practical synthetic scheme for diversely substituted phosphonothioates, two issues had to

be addressed: 1) with the classical thiocyanation methods we were using we were faced with both low yields and poor reproducibility, and so accessibility to a wide array of sulfur-bearing side chains required optimized access to substituted alkyl thiocyanates, and 2) alkyl thiocyanates being thermally unstable, and the targeted phosphonothioates particularly sensitive, mild phosphorus – sulfur bond formation under nonthermal conditions had to be achieved.

Scheme 1. Formation of thiocyanates: i) Pb(SCN)₂, Br₂ then PPh₃, 0°C, CH₃CN; ii) Me₃Si-N=C=S, *n*Bu₄NF, THF.

Optimized access to alkyl thio-

cyanates: Alkyl thiocyanates

are one of the most important synthetic intermediates for the preparation of sulfur-containing organic compounds. Not only have natural products containing the thiocyanate group attracted attention,^[13] but this functional group can also be used as a masked mercapto group or a precursor for sulfurcontaining heterocycle compounds. Yet the low nucleophilicity of the NCS- ion, compared with that of simple thiols, requires relatively harsh reaction conditions. For introduction of the thiocyanate group into an organic molecule, the use of metal thiocyanates (usually K-SCN, Na-SCN, or Zn(SCN)₂ formed in situ) with organic halides or sulfonates has been generalized.^[14] However, the thiocyanate group is poorly stable when heated or subjected to acidic conditions. Simple chromatography on silica gel or prolonged heating over 70°C can cause intramolecular rearrangement to the thermodynamically favored isothiocyanate isomer (this rearrangement occurs preferentially with primary thiocyanates, and so heating or use of dissociative solvents such as HMPA or DMF should be avoided for such fragile compounds).^[15] Thiocyanates can also be obtained from alcohols,^[12] silyl ethers,^[16] or amines^[17] by use of the electrophilic phosphorane Ph₃P(SCN)₂, produced in situ. However, the results are unreliable and not reproducible because of the low thermal

Abstract in French: Dans cet article, nous décrivons une nouvelle méthode, particulièrement douce, de formation d'une liaison phosphore soufre. Elle consiste en l'addition, en présence d'une quantité catalytique de base, d'un thiocyanate sur un hydrogéno oxyde de phosphine, phosphinate ou phosphonate. Cette procédure offre plusieurs avantages: les produits de départs sont des espèces du phosphore(v) stables et peu sensibles à l'oxygène; le traitement se fait dans des conditions douces et non aqueuse, un point crucial pour les phosphonothioates fragiles formés; enfin, grâce à un accès optimisé à divers phosphonothioates, un plus large panel de produits de départ est accessible. Cette méthode a été appliquée à la synthèse d'analogues de substrats pour l'étude de la catalyse abzymatique de l'hydrolyse d'inhibiteurs de l'acétylcholine estérase comme le PhX (**11**). stability of the required intermediate (SCN)₂, and—once again-various quantities of rearranged isothiocyanate byproducts. This substitution has also been performed on alkyl halides with trimethylsilyl isothiocyanate, but only when activated with a stoichiometric amount of a strong Lewis acid such as $TiCl_4^{[18]}$ or when the reaction is performed on activated benzylic compounds with HMPA as solvent.^[19] In any case, variable quantities of contaminating isothiocyanates were also formed. We had previously found that when trimethylsilyl isothiocyanate was treated with stoichiometric amounts of tetrabutylammonium fluoride, the tetrabutylammonium thiocyanate salt formed in situ afforded an improved route to alkyl thiocyanate through nucleophilic substitution of alkyl halide.[20] This reaction offered a particularly easy workup, gave superior and reproducible yields, and could be performed at room temperature, preventing the formation of rearranged isothiocyanate by-products. For primary alkyl bromides, reaction was complete after overnight (or one hour for highly reactive benzyl bromide) standing at room temperature. For a secondary alkyl bromide (2b), three days heating in THF at 60°C with an excess (1.5 equiv) of nBu₄N-SCN was required. Careful temperature monitoring was crucial. Under these reaction conditions, no trace of isothiocyanate was detected by GC/MS. For thiocyanates 3b-f, successive precipitation of the resulting tetrabutylammonium salts with diethyl ether and pentane gave thiocyanates of > 98% purity as determined by GC/MS. For **3a**, flash chromatography had to be undertaken. The main results are summarized in Scheme 1.

Notably, such a method for the formation of thiocyanates gave high yields of functionalized thiocyanates **3a**, **3d**, and **3 f**, whereas formation of the corresponding sulfenyl chlorides and thiosuccinimides either failed or gave poor yields together with troublesome purification procedures.

Phosphorothioate formation: For phosphorus-sulfur bond formation, we decided to use H-phosphonates as air-stable phosphorus starting materials. Two strategies were then feasible: either the Michaelis-Arbuzov-like condensation on reactive *O*-trimethylsilyl phosphonite, formed in situ,^[10] or

- 2911

nucleophilic addition to activated sulfur in the thiocyanate derivatives. The Pudovik (or Abramov - Pudovik)^[21] reaction is well known for the construction of P–C bonds. Namely, α hydroxyphosphonate is formed through nucleophilic addition of anions of phosphinic acids to electrophiles such as aldehydes or ketones. As in the more reactive sulfenyl halide or thiosuccinimide/phthalimide, the sulfur atom in the thiocyanate group is also likely to be the target of nucleophilic addition. Conventional Pudovik conditions (heating under base-catalyzed conditions, typically with alkoxides of tertiary amines) or milder procedures (silyl-Abramov reaction with in situ preparation of silylphospho(i)nite by heating of H-phospho(i)nates under reflux with neat hexamethyldisilazane)^[21c] failed due to the thermal instability of alkyl thiocyanate.^[15] This side reaction is shown in Scheme 2, for an initial attempt at thermally-induced Pudovik addition of O-ethyl phenylphosphinate (4a) to cyclohexyl thiocyanate (3b) with a stoichiometric amount of base. Almost complete isomerization of cyclohexyl thiocyanate to cyclohexyl isothiocyanate occurred, yielding 78% phosphinate 5 and only trace amounts of the targeted phosphonothioate.

Scheme 2. Thermal Pudovik-like addition of cyclohexyl thiocyanate (iPr_2NEt , DMF, 110 °C).

In sharp contrast to this result, we found that when the reaction was performed at room temperature, with toluene as solvent and either a stoichiometric amount of diisopropylethylamine or a catalytic amount of a stronger, hindered, nonnucleophilic base such as phosphazene P_{4} - $tBu^{[22]}$ (1%) or DBU (5%), the Pudovik-like reaction took place readily at room temperature. As summarized in Scheme 3 and Table 1, high yields of phospho-, phosphono-, or phosphinothioates could be isolated after simple filtration on a pad of silica gel or flash chromatography of the crude reaction mixture.

The best yields and shorter reaction times were observed with the highly reactive benzyl thiocyanate (3c). Unactivated primary (3e) and secondary (3b) alkyl thiocyanates gave

Scheme 3. Room temperature Pudovik-like addition of ethyl phenyl-phosphonate to cyclohexyl thiocyanate (phosphazene P_{4} -tBu (1%), toluene, 3 h, 25 °C).

2912

Table 1. Nucleophilic addition of H-phosphonates (**7a**, **8a**), phosphinates (**4a**, **9a**), or phosphine oxide (**6a**) to alkylthiocyanates, catalyzed by phosphazene P_4 -*t*Bu.^[a]

O H R ¹ O H O R ¹ O C N O R ¹ O R ¹ H O R ¹ H H	0 R-P-O 9a-e	a: R = H b: R = S-cyclohexyl c: R = S-Bn d: R = S-3-hydroxypropyl e: R = S-3-cyanopropyl
ve l	R-SCN	Product (Yield [%])
3	3b	4b (82)
3	3c	4c (93) ^[b]
3	3 d	4d (50)
3	3e	4e (94)
3	3b	6b (86)
3	3c	6c (88) ^[b]
3	3 d	6d (34)
3	3e	6e (83)
3	3b	7b (79)
3	3c	7c (86) ^[b]
3	3 d	7d (68)
3	3e	7e (81)
3	3b	8b (82)
3	3c	8c (90) ^[b]
3	3d	8d (54) ^[c]
3	3b	9b (85)
3	3c	9c (87) ^[b]
3	3e	9e (92) ^[c]
	O R ¹ O ⁻ ^R OR ¹ 7a-e: R = Et 8a-e: R = Bn	$\begin{array}{c} O \\ R^{1}O^{-}H^{-}OR^{1} \\ \hline Ta-e: R = Et \\ \hline ga-e: R = Bn \end{array} \qquad \begin{array}{c} O \\ R-P-O \\ \hline ga-e \end{array}$ $\begin{array}{c} Ve \\ \hline \\ ye \\ \hline \\ ve \\ \hline \\ \\ 3b \\ 3c \\ 3d \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3e \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3d \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3c \\ 3e \\ 3b \\ 3c \\ 3c \\ 3e \\ 3b \\ 3c \\ 3e \\ 3b \\ 3c \\ 3e \\ 3e \\ 3e \\ 3b \\ 3c \\ 3e \\ 3e \\ 3b \\ 3c \\ 3e \\ 3e \\ 3b \\ 3c \\ 3e \\ 3e \\ 3e \\ 3e \\ 3e \\ 3e \\ 3e$

The reaction was performed in toluene (0.25 m), with 1% hindered base as catalyst, for 3 h at room temperature. The yield of isolated product is indicated. [b] Reaction time: 1.5 h. [c] Reaction time: 18 h.

good yields, whereas free alcohol **3d** gave lower but still acceptable yields. This reaction procedure was then extended to the less toxic phenylphosphonothioate analogues of methylphosphonothioate VX (Scheme 4). As thiocyanate **3a** already bears a highly basic moiety, use of an additional base

Scheme 4. Synthesis of VX analogues (THF, 70 $^{\circ}\text{C},$ 24 h or neat, 25 $^{\circ}\text{C},$ 10 d).

was not necessary. Mild heating (70 °C, THF) of a stoichiometric mixture of thiocyanates with *O*-ethyl phenylphosphinate (**4a**) for 24 hours or stirring at room temperature under a gentle nitrogen flow for 10 days gave almost quantitative yields of the corresponding phosphonothioate, as estimated by ³¹P NMR and GC/MS analysis of the crude reaction mixture. Yet purification of those highly sensitive products was particularly tricky. In our hands, the best purification procedure proved to be semipreparative HPLC with a Zorbax SB-CN column and a hexane/methyl *tert*-butyl ether (60:40) mixture as mobile phase.

As an illustration of the role of the basic nitrogen atom in the thiocyanate, no addition was observed when thiocyanate **3 f**, bearing an amide moiety instead of the amine moiety (R = C(O)Et), was heated with *O*-ethyl phenylphosphinate (**4a**). Heating only promoted degradation of the thiocyanate moiety. On the other hand, treatment of this thiocyanate with 1% phosphazene P₄-*t*Bu in toluene at room temperature provided, after 3 hours, an 87% yield of phosphonothioate **13** (Scheme 5) (to be compared with 26% after 24 hours heating at 70 °C with 1 equiv triethylamine).

Scheme 5. Synthesis of phosphonothioate 13 (Phosphazene P_4 -*t*Bu (1%), toluene).

During the hydroxide-promoted hydrolysis of methylphosphonothioate VX, both side chains can be cleaved, yielding nontoxic *O*-ethyl methylphosphonic acid (88%), together with the still toxic *S*-2-(diisopropylamino)ethyl methylphosphonothioic acid (12%).^[23] The same hydrolysis profile was observed with phenylphosphonothioate (**11**). In our efforts aimed at the degradation of these neurotoxic warfare agents, the amount of the still toxic P–O bond-cleavage by-products has to be carefully monitored. Conventional methods for the formation of these phosphonothioic acids in good yields failed. Only the use of our Pudovik-like condensation of phenylphosphinic acid **10** on the two alkyl thiocyanates gave satisfactory yields after 10 days at room temperature (Scheme 4).

Conclusion

In conclusion, we have shown that addition of H-phosphi(o)nate to thiocyanate under catalysis by hindered, nonnucleophilic bases appears to be a mild alternative route for the formation of the P–S bond. This type of reaction requires two parameters to be carefully balanced: reactivity at the sulfur atom and accessibility to this activated moiety. In our hands, thiocyanates displayed such features and proved compatible with a wider array of functional groups than previously described sulfur activated species.

Experimental Section

General remarks: Reagents were purchased from Aldrich. All solvents were distilled before use, and reactions were performed under N₂ atmosphere. All chromatography (flash) was performed with Merck Silica gel 60 (0.02 – 0.04 mm). TLC was performed with fluorescent Merck F254 glass plates. NMR spectra were recorded on a Bruker AC 300 (300.15 MHz for ¹H, 75.4 MHz for ¹³C, and 121.5 MHz for ³¹P) in CDCl₃ unless stated otherwise. Chemical shifts (δ) are given in ppm and the coupling constants (*J*) are expressed in Hertz. MS were obtained with a Finnigan–Mat 4600 quadrupole system (chemical ionization with NH₃). Flash column chromatography was performed on Merck silica gel (60 Å, 230–400 mesh). Elemental analyses were recorded at the Institut de Chimie des Substances Naturelles, Gif sur Yvette.

General procedure for thiocyanation of alkyl bromide: Trimethylsilyl isothiocyanate (140 μ L, 1.1 mmol) was added at room temperature to a solution of bromide (1.0 mmol) in dry THF (10 mL). Tetrabutylammonium fluoride (1.1 mL of a 1.0 M solution in THF) was then added dropwise. The reaction course was monitored either by TLC or by GC/MS. Once the reaction was complete, THF was evaporated, and the reaction mixture was triturated with pentane. Simple filtration of tetrabutylammonium salts yielded thiocyanate, the purity of which was checked by GC/MS. When needed, further flash chromatography on silica gel was performed.

N,*N*-Diisopropyl-(2-thiocyanatoethyl)-amine (3a) from 2-diisopropylaminoethanol: Bromine (150 μ L, 2.86 mmol) dissolved in acetonitrile (10 mL) was added dropwise to a suspension of lead thiocyanate (1.0 g, 3.12 mmol) in acetonitrile (50 mL), cooled to 0 °C. Once the addition was complete, the lead bromide was decanted, and the supernatant was added dropwise to a cooled (-40 °C) solution of triphenylphosphine (750 mg, 2.9 mmol) dissolved in acetonitrile (15 mL). After 30 min at -40 °C, 2-diisopropylaminoethanol (460 μ L, 2.6 mmol) dissolved in acetonitrile (10 mL) was added dropwise, and the reaction mixture was kept for 2 h at -40 °C, and then allowed to reach room temperature overnight. Solvents were then evaporated in vacuo, and the crude reaction mixture was chromatographed on silica gel (hexane/ethyl acetate 95:5) to yield thiocyanate **3a** (272 mg, 56 %) as a pale yellow oil.

N,*N*-Diisopropyl-(2-thiocyanatoethyl)-amine (3a) from (2-bromoethyl)diisopropylamine: The thiocyanation procedure was undertaken on the bromide (1.12 g, 3.92 mmol), yielding the thiocyanate (540 mg, 76%) after flash chromatography (pentane/ethyl acctate 80:20). ¹H NMR (300.15 MHz, CDCl₃): δ =3.11 (t, ³*J*(H,H) = 7 Hz, 2H), 2.97 (hept, ³*J*(H,H) = 6.5 Hz, 2H), 2.80 (t, ³*J*(H,H) = 7 Hz, 2H), 0.99 (d, ³*J*(H,H) = 6.5 Hz, 12H); ¹³C NMR (75.4 MHz, CDCl₃): δ =114.0 (SCN), 48.1 (2C), 43.6, 35.9, 20.8 (4C); MS (1.C./NH₃): *m/z* (%): 187 (100) [*M*+H]⁺; IR (neat): $\bar{\nu}$ =2968, 2152 (SCN), 1464, 1388, 1366, 1289, 1205, 1161 cm⁻¹; elemental analysis calcd (%) for C₉H₁₈N₂S (188.2): C 58.02, H 9.74, N 15.03; found C 58.41, H 9.69, N 14.51.

Thiocyanatocyclohexane (3b): white powder; m.p. 38-39 °C (decomp); ¹H NMR (300.15 MHz, CDCl₃): $\delta = 3.7$ (tt, ³*J*(H,H) = 4.0, 11.0 Hz, 1H), 2.04 (dd, ³*J*(H,H) = 3.0, 13.0 Hz, 2H), 1.75 (dt, ³*J*(H,H) = 9.0, 4.0 Hz, 2H), 1.60-1.10 (m, 6H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 111.05$ (SCN), 47.4, 33.2 (2 C), 25.4 (2 C), 24.4; IR (KBr): $\tilde{\nu} = 2938$, 2857, 2151 (SCN), 1450, 1343, 1263, 1206, 994, 889, 716 cm⁻¹; MS (I.C./NH₃): *m/z* (%): 159 [*M*+NH₄]⁺ (100), 176 [*M*+N₂H₇]⁺ (70).

Benzyl thiocyanate (3c): This compound was identical to the commercially available product. White powder; m.p. 41–42 °C (lit: 41.5–43 °C); ¹H NMR (300.15 MHz, CDCl₃): δ = 7.35 (m, 5 H), 4.09 (s, 2H); IR (KBr): $\tilde{\nu}$ = 3033, 2992, 2145 (SCN), 1491, 1453, 1425, 1243 cm⁻¹; elemental analysis calcd (%) for C₈H₇NS: C 64.40, H 4.73, N 9.35; found C 64.37, H 4.69, N 9.44.

3-Thiocyanato-propan-1-ol (3d): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 3.73$ (t, ³*J*(H,H) = 6.0 Hz, 2H), 3.06 (t, ³*J*(H,H) = 6.0 Hz, 2H), 2.53 (brs, 1H, OH), 2.01 (quint, ³*J*(H,H) = 6.0 Hz, 2H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 112.4$ (SCN), 59.3, 31.7, 30.15; IR (neat): $\tilde{\nu} = 3421, 2947, 2883, 2155$ (SCN), 1643, 1427, 1051, 915 cm⁻¹; MS (I.C./NH₃): m/z (%): 135 [M+NH₄]⁺.

4-Thiocyanatobutyronitrile (3e): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 3.08$ (t, ³*J*(H,H) = 7.0 Hz, 2H), 2.60 (t, ³*J*(H,H) = 7.0 Hz, 2H), 2.21 (quint, ³*J*(H,H) = 7.0 Hz, 2H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 118.1$ (CN), 111.2 (SCN), 32.1, 25.6, 15.7; IR (neat): $\tilde{\nu} = 2939$, 2875, 2249 (CN), 2155 (SCN), 1448, 1425, 1285, 1265 cm⁻¹; MS (I.C./NH₃): *m/z* (%): 144 [*M*+NH₄]⁺ (100).

N-Isopropyl-*N*-(2-thiocyanatoethyl)-propionamide (3 f): Trimethylsilyl isothiocyanate (140 µL, 1.1 mmol) was added at room temperature to a solution of bromide 2 f (222 mg, 1.0 mmol) in dry THF (10 mL). Tetrabutylammonium fluoride (1.1 mL of a 1.0 m solution in THF) was then added dropwise. The reaction course was monitored by TLC, and after the mixture had stirred for 16 hours, THF was evaporated, and the reaction mixture was triturated with pentane. Filtration yielded thiocyanate 3 f as a yellow oil (174 mg, 87% yield, 95% pure as estimated by GC/MS), which could either be used directly or be subjected to flash chromatography on silica gel (CH₂Cl₂/MeOH 98:2) to yield a pale yellow oil (124 mg, 62%). ¹H NMR (300.15 MHz, CDCl₃): δ = 4.10 (quint, ³*J*(H,H) = 6.5 Hz, 1H), 3.55 (t, ³*J*(H,H) = 5 Hz, 2H), 3.15 (t, ³*J*(H,H) = 5 Hz, 2H), 2.29 (q, ³*J*(H,H) = 7.5 Hz, 2H), 1.25 (d, ³*J*(H,H) = 6.5 Hz, 6H), 1.15 (t, ³*J*(H,H) =

- 2913

FULL PAPER

7.5 Hz, 3 H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 174.1, 112.2 (SCN), 53.5; 48.4, 41.2, 31.6, 26.9, 21.3, 9.4; IR (neat): $\bar{\nu}$ = 2979, 2154 (SCN), 1742, 1639 (C=O), 1461, 1422, 1158, 1071 cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 201 [*M*+H]⁺ (40), 218 [*M*+NH₄]⁺ (100).

[(Cyclohexylamino)thioxomethyl]-phenylphosphinic O-ethyl ester (5): A mixture of thiocyanato cyclohexane 3b (141 mg, 1 mmol), diisopropylethylamine (174 µL, 1 mmol), and ethyl phenylphosphinate 4a (151 µL, 1 mmol) in dry DMF (10 mL) was heated under reflux for 4 h. After the mixture had cooled, DMF and amine were evaporated under vacuum, and the crude reaction mixture was chromatographed (CH2Cl2/acetone 9:1) to yield thioamide 5 (243 mg, 78%) as a pale yellow powder. M.p. 109-109.5 °C; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 9.45$ (brt, 1H; NH), 7.98 (m, 2H), 7.57 (m, 1H), 7.45 (m, 2H), 4.39 (m, 1H), 4.15 (m, 2H), 2.10 (m, 1 H), 1.98 (m, 1 H), 1.80 – 1.60 (m, 4 H), 1.38 (t, ${}^{3}J(H,H) = 7.5$ Hz, 3 H), 1.35 (m, 2H), 1.23 (m, 2H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 193.8$ (d, ${}^{1}J(P,C) = 119 \text{ Hz}$, 133.2, 133.1 (d, ${}^{2}J(P,C) = 12 \text{ Hz}$, 2C) 128.3 (d, ${}^{3}J(P,C) =$ 12 Hz, 2C), 127.55 (d, ${}^{1}J(P,C) = 144$ Hz), 62.7 (d, ${}^{2}J(P,C) = 5$ Hz), 54.2 (d, ${}^{3}J(P,C) = 5 Hz$, 31.1, 31.0, 25.4, 24.9 (2C), 16.4 (d, ${}^{4}J(P,C) = 5 Hz$); ${}^{31}P$ NMR (121.5 MHz, CDCl₃): $\delta = 19.59$; MS (I.C./NH₃): m/z (%): 312 $[M+H]^+$ (80), 329 $[M+NH_4]^+$ (100).

General procedure for phosphonothioate formation: Phosphazene P_4 -tBu (1.0 M in *n*-hexanes, 0.025 mL, as supplied by Fluka) was added to a mixture of phosphinate (2.5 mmol, as supplied by Aldrich) and alkyl thiocyanate (2.5 mmol, prepared as previously described) in toluene (10 mL).

Caution: In order to remove produced hydrogen cyanide, a gentle nitrogen flow to a bubbling bottle containing 1.0M aqueous sodium hydroxide solution has to be used, and the pH of the solution was regularly checked and maintained (>12). Once TLC or GC/MC indicated the complete consumption of the starting products, the solvents were evaporated, and the crude reaction mixture was directly chromatographed on silica gel (CH₂Cl₂/ acetone 8:2).

Phenylphosphonothioic acid *S*-cyclohexyl ester *O*-ethyl ester (4b): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.90 – 7.80 (m, 2H), 7.61 – 7.55 (m, 1H), 7.52 – 7.45 (m, 2H), 4.21 (m, 2H), 3.15 (q of t, ³*J*(P,H) = ³*J*(H_{ax},H_{ax}) = 11 Hz, ³*J*(H_{ax},H_{eq}) = 4 Hz, 1H), 1.90 (m, 1H), 1.80 (m, 1H), 1.70 – 1.55 (m, 2H), 1.50 – 1.10 (m, 5H), 1.30 (t, ³*J*(H,H) = 7.0 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 132.4 (d, ¹*J*(P,C) = 105 Hz), 132.4, 131.1 (d, ²*J*(P,C) = 10 Hz, 2C), 128.5 (d, ³*J*(P,C) = 11 Hz, 2C), 62.1 (d, ²*J*(P,C) = 7 Hz), 45.1, 35.5 (d, *J*(P,C) = 5 Hz), 35.34 (d, ³*J*(P,C) = 5 Hz), 25.9 (2C, ⁴*J*(P,C) = 5 Hz), 25.34, 16.4 (d, ⁴*J*(P,C) = 7.5 Hz); ³¹P NMR (121.5 MHz, CDCl₃): δ = 44.70; IR (neat): \bar{v} = 2982, 2931, 2854, 1441, 1231, 118, 1024, 952 cm⁻¹; MS (ESI-TOF): *m/z* (%): 285 [*M*+H]⁺; elemental analysis calcd (%) for C₁₄H₂₁O₂PS: C 59.13, H 7.44; found C 58.85; H 7.24.

Phenylphosphonothioic *S*-benzyl ester *O*-ethyl ester (4c): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.90 – 7.80 (m, 2 H), 7.61 – 7.55 (m, 1 H), 7.52 – 7.45 (m, 2 H), 7.22 (m, 5 H), 4.35 – 4.09 (m, 2 H), 4.05 – 3.90 (m, 2 H), 1.30 (t, ³*J*(H,H) = 7.0 Hz, 3 H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 137.1 (d, ³*J*(P,C) = 5 Hz), 132.4, 132.65 (d, ¹*J*(P,C) = 105 Hz), 131.05 (d, ²*J*(P,C) = 10 Hz, 2 C), 128.75 (2 C), 128.45 (2 C), 128.4 (d, ³*J*(P,C) = 11 Hz, 2 C), 127.3, 62.1 (d, ²*J*(P,C) = 7 Hz), 34.4, 16.2 (d, ⁴*J*(P,C) = 5 Hz); ³¹P NMR (121.5 MHz, CDCl₃): δ = 44.20; IR (neat): $\tilde{\nu}$ = 3061, 3030, 2982, 2929, 1602, 1590, 1495, 1454, 1438, 1391, 1227, 1119, 1022, 954 cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 310 [*M*+H]⁺.

Phenylphosphonothioic *O*-ethyl ester *S*-(3-hydroxypropyl) ester (4d): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃), $\delta = 7.95 - 7.80$ (m, 2H), 7.61 - 7.45 (m, 3H), 4.26 (m, 2H), 3.86 - 3.79 (m, 1H), 3.72 - 3.65 (m, 1H), 3.48 (broad s, OH), 3.08 - 2.87 (m, 2H), 1.92 - 1.72 (m, 2H), 1.40 (t, ³*J*(H,H) = 7.0 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 132.7$, 132.4 (d, ¹*J*(P,C) = 120 Hz), 131.15 (d, ²*J*(P,C) = 12.5 Hz, 2C), 128.7 (d, ³*J*(P,C) = 15 Hz, 2C), 62.7 (d, ²*J*(P,C) = 7.5 Hz), 58.9, 33.4, 26.5, 16.4 (d, ⁴*J*(P,C) = 8.5 Hz); ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 47.11$; IR (neat): $\tilde{\nu} = 3466$ (broad), 2930, 1439, 1214, 1119, 1021, 956 cm⁻¹; MS (I.C.*J*NH₃): *m/z* (%): 261 [*M*+H]⁺ (85), 278 [*M*+NH₄]⁺ (100).

Phenylphosphonothioic acid *S*-(3-cyanopropyl) ester *O*-ethyl ester (4e): Pale yellow oil; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.92–7.80 (m, 2H), 7.63–7.45 (m, 3H), 4.26 (m, 2H), 2.99–2.79 (m, 2H), 2.43 (td, ³*J*(H,H) = 7.0 Hz, ⁵*J*(P,H) = 3.0 Hz, 2H), 1.98 (quint. d, ³*J*(H,H) = 7.0 Hz, ⁴*J*(P,H) = 3.0 Hz, 2H) 1.41 (t, ³*J*(H,H) = 7.0 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 132.9, 132.5 (d, ¹*J*(P,C) = 115 Hz), 131.2 (d, ²*J*(P,C) = 10 Hz, 2C), 128.8 (d, ³*J*(P,C) = 14 Hz, 2 C), 118.7, 62.7 (d, ²*J*(P,C) = 7.5 Hz), 28.8, 26.6, 16.4 (d, ⁴*J*(P,C) = 7.5 Hz), 15.9; ³¹P NMR (121.5 MHz, CDCl₃): δ = 44.20; IR (neat): $\tilde{\nu}$ = 2984, 2926, 2247 (CN), 1439, 1227, 1119, 1021, 956 cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 287 [*M*+NH₄]⁺; elemental analysis calcd (%) for C₁₁H₁₇O₃PS: C 50.76, H 6.58; found C 50.65, H 6.71.

Diphenylphosphinothioic *S*-cyclohexyl ester (6b): Pale orange crystals; m.p. 81-82 °C; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 7.90-7.80$ (m, 4H), 7.52–7.35 (m, 6H), 3.27 (q of t, 1H, ²*J*(H,P) = ³*J*(H_{ax},H_{ax}) = 10.5 Hz, ³*J*(H_{ax},H_{eq}) = 3.5 Hz), 1.96–1.81 (m, 2H), 1.69–1.57 (m, 2H), 1.55–1.40 (m, 3H), 1.33–1.15 (m, 3H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 134.2$ (d, ¹*J*(P,C) = 105 Hz, 2C), 132.2 (2C), 131.45 (d, ²*J*(P,C) = 9.5 Hz, 4C), 128.6 (d, ³*J*(P,C) = 12 Hz, 4C), 44.5, 35.6 (d, ³*J*(P,C) = 5 Hz, 2C), 25.8 (2C), 25.35; ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 42.49$; IR (KBr): $\tilde{\nu} = 3057, 2931, 2853, 1438,$ 1196, 1114, 996, 751, 726, 698, 570 cm⁻¹; MS (ESI-TOF): *m/z* (%): 316 [*M*]+ (100), 338 [*M*+Na]⁺ (30); elemental analysis calcd (%) for C₁₈H₂₁OPS: C 68.33, H 6.69; found C 68.33; H 6.66.

Diphenylphosphinothioic *S*-benzyl ester (6c): Colorless crystals; m.p. 87–88 °C; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 7.92-7.83$ (m, 4H), 7.54–7.39 (m, 6H), 7.22–7.15 (m, 5H), 4.03 (d, ³*J*(P,H) = 9 Hz, 2H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 136.8$, 133.1 (d, ¹*J*(P,C) = 107 Hz, 2C), 132.4 (2C), 131.6 (d, ²*J*(P,C) = 9 Hz, 2C), 129.0 (d, ³*J*(P,C) = 14 Hz, 2C), 128.8 (4C), 127.5, 33.3; ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 43.40$; IR (KBr): $\tilde{\nu} = 3058$, 1437, 1192, 1114, 996 cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 325 [*M*+H]⁺ (70), 342 [*M*+NH₄]⁺ (100); elemental analysis calcd (%) for C₁₉H₁₇OPS: C, 70.35, H, 5.28; found C, 70.52; H, 5.31.

Diphenylphosphinothioic *S*-(**3**-hydroxypropyl) ester (6d): Pale yellow oil; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 7.92 - 7.81$ (m, 4H), 7.61 - 7.43 (m, 6H), 3.79 (t, ³*J*(H,H) = 6.0 Hz, 2H) 2.93 (dt, ³*J*(P,H) = 13 Hz, ³*J*(H,H) = 6.0 Hz, 2 H), 1.83 (quint., *J*(H,H) = 6.0 Hz, 2 H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 132.9$ (d, ¹*J*(P,C) = 108 Hz, 2 C), 132.6 (2 C), 131.6 (d, ²*J*(P,C) = 6 Hz, 2 C), 128.8 (d, ³*J*(P,C) = 14 Hz, 2 C), 58.4, 33.1, 25.8; ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 46.92$; IR (neat): $\tilde{\nu} = 3383$ (broad), 3058, 2932, 2871, 1436, 1183, 1114, 1065 cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 293 [*M*+H]⁺ (100), 310 [*M*+NH₄]⁺ (30).

Diphenylphosphinothioic acid *S*-(3-cyanopropyl) ester (6e): Pale yellow oil; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.92 – 7.80 (m, 4H), 7.59 – 7.42 (m, 6H), 2.87 (dt, ³*J*(P,H) = 14.5 Hz, ³*J*(H,H) = 7.0 Hz, 2 H), 2.46 (t, ³*J*(H,H) = 7.0 Hz, 2 H), 2.01 (quint., *J*(H,H) = 7.0 Hz, 2 H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 134.7 (d, ¹*J*(P,C) = 110 Hz, 2 C), 132.7 (2 C), 131.5 (d, ²*J*(P,C) = 7 Hz, 2 C), 128.9 (d, ³*J*(P,C) = 12 Hz, 2 C), 118.8 (CN), 28.1, 26.6, 15.95; ³¹P NMR (121.5 MHz, CDCl₃): δ = 44.00; IR (neat): $\tilde{\nu}$ = 3058, 2929, 2247 (CN), 1589, 1481, 1436, 1196, 1115, 1097 cm⁻¹; MS (I.C./NH₃): *m/z* (%): 302 [*M*+H]⁺ (40), 319 [*M*+NH₄]⁺ (100).

Thiophosphoric *S*-cyclohexyl ester *O*,*O*'-diethyl ester (7b): Pale orange oil; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 4.12$ (m, 4H); 3.21 (q of t, ³*J*(P,H) = ³*J*(H_{ax},H_{ax}) = 11.5 Hz; ³*J*(H_{ax},H_{eq}) = 3.5 Hz, 1H), 2.05 (m, 2H), 1.75 (m, 2H), 1.55 – 1.20 (m, 6H), 1.32 (t, ³*J*(H,H) = 7.0 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 63.45$ (d, ²*J*(P,C) = 5 Hz, 2C), 45.6 (d, ²*J*(P,C) = 5 Hz), 35.35, 35.3, 25.9 (2C), 25.3, (d, ³*J*(P,C) = 6 Hz, 2C); ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 28.23$; IR (neat): $\tilde{\nu} = 2984$, 2933, 2856, 1448, 1251, 1019, 968 cm⁻¹; MS (ESI-TOF): *m*/*z* (%): 252 [*M*+H]⁺, 274 [*M*+Na]⁺ (100).

Thiophosphoric acid *S*-benzyl ester *O*,*O*'-diethyl ester (7c): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 7.35 - 7.25$ (m, 5 H), 4.09 (m, 4 H), 3.99 (d, ³*J*(P,H) = 14.5 Hz, 2 H), 1.42 (t, ³*J*(H,H) = 7 Hz, 6 H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 138.5$ (d, ³*J*(P,C) = 5 Hz), 129.9 (2 C), 129.7 (2 C), 128.6, 64.5 (d, ²*J*(P,C) = 7 Hz, 2 C), 36.0, 16.95 (d, ³*J*(P,C) = 6 Hz, 2 C); ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 27.22$; IR (neat): $\tilde{\nu} = 2981$, 2929, 2601, 2495, 2052, 1496, 1476, 1454, 1393, 1256, 1014, 972 cm⁻¹; MS (I.C./NH₃): *m/z* (%): 261 [*M*+H]⁺, 278 [*M*+NH₄]⁺ (100).

Thiophosphoric acid *O,O'*-diethyl ester *S*-(3-hydroxypropyl) ester (7d): Yellow oil, rapidly turning brown upon standing at room temperature; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 4.19 \text{ (m, 4 H)}$, 3.77 (t, ³*J*(H,H) = 6.5 Hz, 2 H), 3.02 (td, ³*J*(P,H) = 17 Hz, ³*J*(H,H) = 6.5 Hz, 2 H), 1.90 (quint. ³*J*(H,H) = 6.5 Hz, 2 H), 1.33 (t, ³*J*(H,H) = 7.0 Hz, 3 H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 64.0 (2 \text{ C})$, 59.3, 33.5, 27.2 (d, ²*J*(P,C) = 5.0 Hz), 16.1 (d, ³*J*(P,C) = 7.5 Hz, 2 C); ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 27.35$; MS (I.C./NH₃): *m/z* (%): 229 [*M*+H]⁺ (70), 246 [*M*+NH₄]⁺ (100).

Thiophosphoric S-(3-cyanopropyl) ester O,O'-diethyl ester (7e): Pale orange oil; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 4.32 - 4.05$ (m, 4H), 2.93

2914 -

© WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002 0947-6539/02/0813-2914 \$ 20.00+.50/0 Chem. Eur. J. 2002, 8, No. 13

(td, ${}^{3}J(P,H) = 16.5$ Hz, ${}^{3}J(H,H) = 6.5$ Hz, 2H), 2.49 (t, ${}^{3}J(H,H) = 6.5$ Hz, 2H), 2.08 (quint, ${}^{3}J(H,H) = 6.5$ Hz, 2H), 1.31 (t, ${}^{3}J(H,H) = 7$ Hz, 6H); ${}^{13}C$ NMR (75.4 MHz, CDCl₃): $\delta = 118.7$ (CN), 63.95 (d, ${}^{2}J(P,C) = 7.5$ Hz, 2C), 29.3, 26.7 (d, ${}^{3}J(P,C) = 5$ Hz), 16.1 (d, ${}^{3}J(P,C) = 7.5$ Hz, 2C), 15.93; ${}^{31}P$ NMR (121.5 MHz, CDCl₃): $\delta = 27.12$; IR (neat): $\tilde{\nu} = 2986$, 2938, 2248 (CN), 1248, 1016, 972 cm⁻¹; MS (ESI-TOF): m/z (%): 237 [M]⁺, 259 [M+Na]⁺.

Thiophosphoric *O,O'*-dibenzyl ester *S*-cyclohexyl ester (8b): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃): $\delta = 7.45 - 7.35$ (m, 10H), 5.20 - 5.05 (ABX system, two dd, ²*J*(H,H) = 8.5 Hz, ³*J*(P,H) = 16.5 Hz, 4H), 3.25 (q of t, ³*J*(P,H) = ³*J*(H_{ax},H_{ax}) = 10.5 Hz; ³*J*(H_{ax},H_{eq}) = 3.5 Hz, 1H), 2.05 (m, 2H), 1.72 (m, 2H), 1.57 - 1.40 (m, 3H), 1.35 - 1.20 (m, 3H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 131.2$ (d, ²*J*(P,C) = 6 Hz, 2C) 128.6 (4C), 128.5 (2C), 128.1 (4C), 68.9 (d, ²*J*(P,C) = 10 Hz, 2C), 45.9, 35.3 (d, ³*J*(P,C) = 6 Hz, 2C), 25.9 (2C), 25.3; ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 29.33$; IR (neat): $\tilde{\nu} = 2932$, 2854, 1453, 1252, 992 (broad), 738, 696 cm⁻¹; MS (ESI-TOF): *m/z* (%): 376 [*M*]+, 398 [*M*+Na]+ (100).

Thiophosphoric *S*-benzyl ester *O*,*O*'-dibenzyl ester (8c): Yellow oil; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.39 (m, 15 H), 5.07 (ABX system, ³*J*(P,H) = 11.5 Hz, 4 H), 4.03 (d, ³*J*(P,H) = 14.0 Hz, 2 H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 137.3, 135.5 (d, ³*J*(P,C) = 7 Hz, 2 C), 129.2 (2 C), 128.7 (8 C), 128.25 (4 C), 127.7, 69.0 (d, ²*J*(P,C) = 7.5 Hz, 2 C), 35.1; ³¹P NMR (121.5 MHz, CDCl₃): δ = 28.43; IR (neat): $\tilde{\nu}$ = 3063, 3032, 1496, 1455, 1378, 1260 (broad), 987 (broad) cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 385 [*M*+H]⁺ (10), 402 [*M*+NH₄]⁺ (100); elemental analysis calcd (%) for C₂₁H₂₁O₃PS: C 65.61, H 5.51; found C 65.47, H 5.61.

Thiophosphoric *O,O'*-dibenzyl ester *S*-(3-hydroxypropyl) ester (8d): Flash chromatography was performed with CH₂Cl₂/MeOH (8:2) as eluting system. Colorless oil; ¹H NMR (300.15 MHz, CD₃OD): δ = 7.42 – 7.25 (m, 10 H), 4.92 (AB – X system, ³*J*(P,H) = 15 Hz, ²*J*(H,H) = 3.0 Hz, 4 H), 3.62 (t, ³*J*(H,H) = 6.0 Hz, 2 H), 2.80 (td, ³*J*(P,H) = 13.5 Hz, ³*J*(H,H) = 6.0 Hz, 2 H), 1.81 (quint., ³*J*(H,H) = 6.0 Hz); ¹³C NMR (75.4 MHz, CD₃OD): δ = 139.4 (d, ³*J*(P,C) = 10 Hz, 2 C), 129.4 (4 C), 128.6 (2 C), 128.4 (4 C), 68.4 (2 C), 61.2, 34.75 (d, ²*J*(P,C) = 5 Hz), 27.9; ³¹P NMR (121.5 MHz, CD₃OD): δ = 20.35; MS (I.C./NH₃): *m*/*z* (%): 353 [*M*+H]⁺ (50), 370 [*M*+NH₄]⁺ (100).

10-Cyclohexyl-9-oxa-10-phosphaphenanthrene 10-oxide (9b): Colorless oil; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.99 (dt, J(H,H) = 8.0, 1.0 Hz, 1 H), 7.95 - 7.88 (m, 3 H), 7.68 (tt, J(H,H) = 1.0, 8.0 Hz, 1 H), 7.49 (dtd, J(H,H) = 8.0, 4.0, 1.0 Hz, 1 H), 7.38 (tt, J(H,H) = 1.0, 8.0 Hz), 7.26 (tt, J(H,H) = 1.0, 8.0 Hz, 1 H), 7.21 (dd, J(H,H) = 1.0, 8.0 Hz), 7.26 (tt, J(H,H) = ^{3}J (H_{ax},H_{ax}) = 12 Hz, ^{3}J (H_{ax},H_{cq}) = 3 Hz, 1 H), 2.13 - 1.95 (m, 2 H), 1.70 - 1.15 (m, 8 H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 149.5 (d, ^{2}J (P,C) = 7 Hz), 136.05 (d, ^{2}J (P,C) = 7 Hz), 130.7, 130.35 (d, ^{2}J (P,C) = 10 Hz), 128.6 (d, ^{3}J (P,C) = 12 Hz), 125.5 (d, ^{1}J (P,C) = 7 Hz), 45.4, 35.8, 35.2 (d, ^{2}J (P,C) = 7 Hz), 26.0, 25.2 (2 C); ³¹P NMR (121.5 MHz, CDCl₃): δ = 38.48; IR (neat): \tilde{r} = 2931, 2853, 1607, 1594, 1582, 1475, 1447, 1430, 1235, 1202, 116, 907 cm⁻¹; MS (I.C./NH₃): m/z (%): 331 [M+H]⁺ (25), 348 [M+NH₄]⁺ (100); elemental analysis calcd (%) for C₁₈H₁₉O₂PS: C 65.44, H 5.80; found C 65.51, H 5.94.

10-Benzylsulfanyl-9-oxa-10-phosphaphenanthrene 10-oxide (9c): White powder; m.p. 75–75.5 °C; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.97 (dt, *J*(H,H) = 7.5, 1.0 Hz, 1H), 7.94–7.87 (m, 3 H), 7.68 (tt, *J*(H,H) = 1.0, 7.5 Hz, 1H), 7.48 (dtd, *J*(H,H) = 8.0, 4.0, 1.0 Hz, 1H), 7.33 (tt, *J*(H,H) = 1.0, 7.5 Hz), 7.29–7.22 (m, 6H), 7.01 (dd, *J*(H,H) = 1.0, 8.0 Hz, 1H), 4.18 (t, ³*J*(P,H) = ²*J*(H,H) = 12 Hz, 1H), 4.09 (t, ³*J*(P,H) = ²*J*(H,H) = 12 Hz, 1H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 149.5 (d, ³*J*(P,C) = 10 Hz), 136.9 (d, ³*J*(P,C) = 5 Hz), 136.2, 133.9, 130.7, 130.6 (d, ²*J*(P,C) = 17 Hz), 129.1 (2C), 128.8 (2C), 128.7 (d, ³*J*(P,C) = 9.5 Hz), 127.7, 125.5 (d, ¹*J*(P,C) = 134 Hz), 125.2, 125.05, 123.85 (d, ³*J*(P,C) = 9.7 Hz), 122.2 (d, ²*J*(P,C) = 12 Hz), 120.5 (d, ⁴*J*(P,C) = 5 Hz), 34.2; ³¹P NMR (121.5 MHz, CDCl₃): δ = 37.78; IR (KBr): $\tilde{\nu}$ = 3062, 3032, 2979, 1588, 1491, 1471, 1451, 1425, 1264, 1234, 1201, 1112, 902 cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 339 [*M*+H]⁺ (25), 356 [*M*+NH₄]⁺ (100); elemental analysis calcd (%) for C₁₉H₁₅O₂PS: C 67.44, H 4.47; found C 67.35, H 4.38.

4-(10-Oxo-10*H***-9-oxa-10-phosphaphenanthren-10-ylsulfanyl)-butyronitrile** (**9e**): White powder; m.p. 173 – 175 °C; ¹H NMR (300.15 MHz, CDCl₃): δ = 7.98 (dt, *J*(H,H) = 6.0, 1.0 Hz, 1 H), 7.94 – 7.88 (m, 3 H), 7.73 (tt, *J*(H,H) = 1.5, 8.0 Hz, 1 H), 7.54 (dtd, *J*(H,H) = 8.0, 4.0, 1.0 Hz, 1 H), 7.42 (tt, *J*(H,H) = 1.5, 8.0 Hz), 7.29 (t, *J*(H,H) = 6.0 Hz, 1 H), 7.21 (dd, *J*(H,H) = 1.0, 8.0 Hz, 1 H), 3.12 – 2.85 (m, 2 H), 2.48 (t, *J*(H,H) = 7.0 Hz, 2 H), 2.08 (quint d, ³*J*(H,H) = 7.0 Hz, ⁴*J*(P,H) = 3.5 Hz, 2 H); ¹³C NMR (75.4 MHz, CDCl₃): δ = 149.3 (d, ²*J*(P,C) = 10 Hz), 136.15, 134.2, 131.0, 130.4 (d, ²*J*(P,C) = 12 Hz), 128.8 (d, ³*J*(P,C) = 17 Hz), 125.45 (d, ¹*J*(P,C) = 139 Hz), 125.3 (2 C), 124.1 (d, ³*J*(P,C) = 10 Hz), 122.5 (d, ²*J*(P,C) = 12 Hz), 120.4 (d, ⁴*J*(P,C) = 7 Hz), 118.7 (CN), 28.55, 26.90, 16.0; ³¹P NMR (121.5 MHz, CDCl₃): δ = 37.77; IR (KBr): $\tilde{\nu}$ = 2940, 2246 (CN), 1704, 1475, 1429, 1237, 1119 cm⁻¹; MS (I.C./ NH₃): *m*/*z* (%): 333 [*M*+NH₄]⁺ (100); elemental analysis calcd (%) for C₁₆H₁₄NO₂PS: C 60.94, H 4.48; found C 59.21; H 4.44.

Phenylphosphonothioic S-(2-diisopropylaminoethyl) ester O-ethyl ester PhX (11): Phosphinate 4a (720 µL, 4.5 mmol) and thiocyanate 3a (838 mg, 4.5 mmol) were stirred together at room temperature under a gentle nitrogen flow for 10 days. Once ³¹P NMR analysis of the crude mixture showed completion of the reaction, two successive silica gel chromatographic separations (CH₂Cl₂/MeOH 90:10 and then 95:5) were undertaken. Extra purification was achieved by semipreparative HPLC with a Zorbax SB-CN column, a mixture of hexane/methyl tert-butyl ether (60:40) as mobile phase, and UV detection at 214 nm, yielding phosphonothioate 11 (500 mg) as a colorless oil. Analytical HPLC analysis with the same elution conditions and detection method showed that 11 thus purified was >95% pure. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.91$ (m, 2H), 7.56 – 7.43 (m, 3H), 4.29-4.20 (m, 2H), 2.91 (hept, ${}^{3}J(H,H) = 7$ Hz, 2H), 2.73-2.63 (m, 2H) 2.58-2.52 (m, 2H), 1.39 (t, ${}^{3}J(H,H) = 7$ Hz, 3H), 0.92 (d, ${}^{3}J(H,H) = 7$ Hz, 12 H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 133.3$ (d, ¹*J*(P,C) = 126 Hz), 132.5, 131.3 (d, ${}^{2}J(P,C) = 10$ Hz, 2C), 128.5 (d, ${}^{3}J(P,C) = 14$ Hz, 2C), 62.1 (d, ${}^{2}J(P,C) = 6 \text{ Hz}$, 48.9, 46.3 (d, ${}^{3}J(P,C) = 4 \text{ Hz}$), 30.1, 20.9 (4C), 16.4 (d, ${}^{3}J(P,C) = 4 \text{ Hz}$; ${}^{31}P \text{ NMR}$ (121.5 MHz, CDCl₃): $\delta = 46.0$; IR (neat): $\tilde{\nu} =$ 3059, 2966, 2930, 1464, 1439, 1363, 1234, 1119, 1024, 952 cm⁻¹; MS (I.C./ NH₃): m/z (%): 330 [M+H]⁺.

Phenylphosphonothioic *S*-(2-diisopropylaminoethyl) ester (12): Phosphinic acid **10** (337 mg, 2.37 mmol) and thiocyanate **3a** (423 mg, 2.37 mmol) were dissolved in THF (4 mL) and stirred together at room temperature under a gentle nitrogen flow for 10 days. ³¹P NMR analysis of the crude mixture showed a mixture (ca. 50:50) of phosphonothioic acid **12** and remaining starting material **10**. Silica gel chromatography (CH₂Cl₂/MeOH 80:20) yielded pure phosphonothioic acid **12** (192 mg, 56%) as a white powder. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.92 - 7.82$ (m, 2H), 7.49 - 7.41 (m, 3H), 3.72 (hept, ³*J*(H,H) = 6.5 Hz, 2H), 3.35 (t, ³*J*(H,H) = 6.5 Hz, 12H); ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 139.7$ (d, ¹*J*(H,H) = 6.5 Hz, 21H), 2.8.4 (dt, ³*J*(P,C) = 10 Hz, 2 C), 129.2 (d, ³*J*(P,C) = 12 Hz, 2 C), 56.0 (2 C), 50.6, 27.3 , 19.2, 17.6 (4 C); ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 31.3$; MS (I.C./NH₃): m/z (%): 302 [M+H]⁺.

Phenylphosphonothioic O-ethyl ester *S*-(2-(isopropyl-propionylamino)ethyl) ester (13): Pale yellow oil; ¹H and ³¹P NMR analysis revealed an equilibrium between two rotamers at room temperature, with heating at 60 °C resulting in the merging of the two signals. ¹H NMR (300 MHz, CDCl₃): δ = 7.88 – 7.83 (m, 2H), 7.49 – 7.45 (m, 3H), 4.24 (m, 2H), 3.95 (hept, ³*J*(H,H) = 6.5 Hz, 1H), 3.33 (m, 2H), 2.79 – 2.71 (m, 2H), 2.29 (q, ³*J*(H,H) = 7.0 Hz, 2H), 1.38 (t, ³*J*(H,H) = 7 Hz, 3H; first rotamer), 1.37 (t, ³*J*(H,H) = 7 Hz, 3H; second rotamer), 1.13 (d, ³*J*(H,H) = 6.5 Hz, 6H), 1.08 (t, ³*J*(H,H) = 7 Hz, 3H; first rotamer), 1.07 (t, ³*J*(H,H) = 7 Hz, 3H; second rotamer); ¹³C NMR (75.4 MHz, CDCl₃): δ = 173.5, 134.0 (d, ¹*J*(P,C) = 150 Hz), 132.6, 131.2 (d, ²*J*(P,C) = 11 Hz, 2C), 128.6 (d, ²*J*(P,C) = 14 Hz, 2C), 62.4 (d, ²*J*(P,C) = 6 Hz), 48.1, 42.0, 27.9, 26.8, 21.1 (2C), 16.4 (d, ³*J*(P,C) = 5.5 Hz), 9.5; ³¹P NMR (121.5 MHz, CDCl₃): δ = 45.4 (first rotamer), 44.5 (second rotamer); IR (neat): $\bar{\nu} = 2977$, 1640, 1420, 1291, 1225, 1119, 1070, 1022, 953 cm⁻¹; MS (I.C./NH₃): *m*/*z* (%): 344 [*M*+H]⁺.

Acknowledgements

Financial support by the Délégation Générale pour l'Armement is gratefully acknowledged.

a) J. Cieslak, J. Jankowska, J. Stawinski, A Kraszewski, J. Org. Chem.
 2000, 65, 7049-7054; b) C. B. Reese, Q. L. Song, J. Chem. Soc. Perkin Trans. 1 1999, 1477-1486; c) R. L. Rose, E. Hodgson, R. M. Roe, Toxicology 1999, 663-697; d) W. S. Marshall, M. H. Caruthers, Science 1993, 259, 1564-1590; e) S. Agrawal, Trends Biotechnol.

FULL PAPER

1996, *14*, 376–387; f) Z. H. Zhao, *Biochem. Biophys. Res. Commun.* **1996**, *218*, 480–484; g) S. Morris-Natschke, J. R. Surles, L. W. Daniel, M. E. Berens, E. J. Modest, C. Piantadosi *J. Med. Chem.* **1986**, *29*, 2114–2117; h) S. Torii, H. Tanaka, N. Sayo, *J. Org. Chem.* **1979**, *44*, 2938–2941; i) J. W. Cox, W. R. Snyder, L. A. Horrocks Chem. Phys. Lipids **1979**, *25*, 369–380.

- [2] T. Gura, Science 1995, 270, 575-577.
- [3] C. A. Bunton, Chemical Warfare, in *Macmillan Encyclopedia of Chemistry, Vol. 1* (Ed.: J. J. Lagowski), Macmillan Reference USA, Simon & Schuster Macmillan, New York, **1997**, pp. 343–346.
- [4] a) P. Vayron, P. Y. Renard, F. Taran, C. Créminon, Y. Frobert, J. Grassi, C. Mioskowski, *Proc. Natl. Acad. Sci. USA* 2000, *97*, 7058–7063; b) P. Vayron, P. Y. Renard, A. Valleix, C. Mioskowski, *Chem. Eur. J.* 2000, *6*, 1050–1063; c) P. Y. Renard, P. Vayron, F. Taran, C. Mioskowski, *Tetrahedron Lett.* 1999, *40*, 281–284.
- [5] For a general review on formation of P–S compounds: P. C. Bulman Page, R. D. Wilkes, D. Reynolds in *Comprehensive Organic Functional Group Transformation*, Vol. 2 (Eds.: A. R. Katrizky, O. Meth-Cohn, C. W. Rees), Elsevier, Oxford, **1995**, pp. 252–259.
- [6] a) D. C. Morrison, J. Am. Chem. Soc. 1955, 77, 171-182; b) B. Mlotkowska, A. Markowska, Liebigs Ann. Chem. 1988, 191-193; c) E. de Vroom, C. E. Dreef, H. van den Elst, G. A. van den Marel, J. H. van Boom, Recl. Trav. Chim. Pays-Bas 1988, 107, 592-594; d) N. M. Yousif, K. N. Gadalla, S. M. Yassin, Phosphorus, Sulfur Silicon Relat. Elem. 1991, 60, 261-263; e) K. A. Petrova, G. V. Rudnev, V. D. Sorokin, Zh. Obshch. Khim. 1991, 61, 1115.
- [7] C. E. Müller, H. J. Roth, Tetrahedron Lett. 1990, 31, 501-502.
- [8] D. Cooper, S. Trippet, C. J. White, Chem. Res. 1983, 234-235.
- [9] C. E. Dreef, C. M. Dreef-Tromp, G. A. van den Marel, J. van Boom, *Synlett* **1990**, 481–483.
- [10] a) X. H. Liu, C. B. Reese, J. Chem. Soc. Perkin Trans. 1 2000, 2227–2236; b) X. Li, R. Cosstick, J. Chem. Soc. Perkin Trans. 1 1993, 1031; c) J. S. Vyle, X. Li, R. Cosstick, Tetrahedron Lett. 1992, 21, 3017–3020; d) W. G. Bentrude, T. Kawashima, B. A. Keys, M. Garraussiam, W. Heide, D. A. Wedegaertner, J. Am. Chem. Soc. 1987, 109, 1227.

- [11] R. M. Kamalov, G. S. Stepanov, M. A. Pudovik, A. N. Pudovik, Zh. Obshch. Khim. 1990, 60, 476-7.
- [12] a) Y. Tamura, T. Kawasaki, M. Adachi, M. Tanio, Y. Kita, *Tetrahedron Lett.* **1977**, *18*, 4417; b) J. Burski, J. Kiesowski, J. Michalski, M. Pakulski, A. Skowronska, *Tetrahedron* **1983**, *39*, 4175.
- [13] a) M. Benn, *Pure Appl. Chem.* 1977, 49, 197; b) A. T. Pham, T. Ichida,
 W. Y. Yoshida, P. J. Scheuer, T. Uchida, J. Tanaka, T. Higa, *Tetrahedron Lett.* 1991, 32, 4843.
- [14] a) R. G. R. Bacon in Organic Sulfur Compounds, Vol. 1 (Ed.: N. Kharasch), Pergamon, New York, 1961, Chapter 27, p. 304; b) R. G. Guy in The Chemistry of Cyanates and Their Thio Derivatives (Ed.: S. Patai), Wiley, New York, 1977, p. 819; c) J. B. Metzer in Comprehensive Heterocyclic Chemistry, Vol. 6 (Ed.: A. Katrizky), Pergamon, Oxford, 1984, p. 235.
- [15] R. G. R. Bacon, R. G. Guy, J. Chem. Soc. 1961, 2428; R. G. R. Bacon, R. G. Guy, J. Chem. Soc. 1961, 2436; R. G. R. Bacon, R. G. Guy, J. Chem. Soc. 1961, 2447.
- [16] N. Iranpoor, H. Firouzabadi, H. Shaterian, Synlett 2000, 10, 65.
- [17] P. Molina, M. Alajarin, A. Ferao, M. J. Lindon, P. M. Fresneda, M. J. Vilaplana, *Synthesis* **1982**, 472–475.
- [18] T. Sasaki, A. Nakanishi, M. Ohno, J. Org. Chem. 1981, 46, 5445-5447.
- [19] K. Nishiyama, M. Oba, *Bull. Chem. Soc. Jpn.* **1987**, *60*, 2692–2694.
 [20] P.Y. Renard, H. Schwebel, P. Vayron, E. Leclerc, S. Dias, C.
- Mioskowski, Tetrahedron Lett. 2001, 42, 8479-8481.
 [21] a) A. N. Pudovik, I. V. Konovalova, Synthesis 1979, 81-96; b) R. A. Cherkasov, V. I. Galkin, A. B. Khabibulina, K. Al Kurdi, Phosphorus Sulfur Silicon Relat. Elem. 1990, 49-50, 61-64; c) H. I. Hansen, J. Kehler, Synthesis 1999, 1925-1930.
- [22] R. Schwesinger, H. Schlemper, Angew.Chem. 1987, 99, 1212–1214; Angew.Chem. Int. Ed. Engl. 1987, 26, 1167–1169.
- [23] Y. C. Yang, L. L. Szafraniec, W. T. Beaudry, D. K. Rohrbaugh, L. R. Procell, J. B. Samuel, *J. Org. Chem.* **1996**, *61*, 8407–8413.

Received: December 7, 2001 [F3731]