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Eunicellin diterpenes are a family of marine metabolites 
obtained from gorgonian and soft corals. Eunicellin (l), the 
first member of this family to be described,' was isolated in 
1968 by Djerassi, Kennard, and co-workers from the coral 
Eunicella strictu. Over 50 other related structures have been 
reported including (-)-7-deacetoxyalcyonin acetate (2), which 
was obtained from a Cladiella species of soft coral? Biological 
activity in this series has not been extensively ~tudied,~ although 
evidence suggests that the natural role of some of these 
metabolites is to deter mollusk predat i~n.~ The eunicellin 
diterpenes are characterized by a unique tricyclic ring system 
containing hydroisobenzofuran and oxonane subunits. Herein 
we disclose the frst total synthesis of a member of the eunicellin 
diterpene family.5 This enantioselective total synthesis conf i i s  
the relative and absolute stereochemistry of (-)-7-deacetoxy- 
alcyonin acetate (2) proposed by Uchio and co-workers2 and 
outlines a practical method for access to substantial quantities 
of 2 and related eunicellin diterpenes. 
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eunicellin (1) (-)-7deacetoxyalcyonln acetate (2) 

The defining reaction of our total synthesis strategy is the 
stereoselective Prins-pinacol condensation-rearrangement6 of 
a dienyl diol 3 with an aldehyde to assemble the 2-oxabicyclo- 
[4.3.0]non-4-ene 4 (Figure 1). This reaction comprehensively 
deals with all the stereochemical and structural issues posed by 
the bicyclic core of the eunicellin diterpenes. The stereochem- 
ical outcome of this condensation-rearrangement can be 
anticipated from the analysis depicted in Figure 1. Prins 
cyclization of the more stable (E)-oxocarbenium ion intermedi- 
ate' should occur preferentially in a chair topography from the 
diene face opposite the isopropyl substituent; this transition 
structure moreover places the Rl substituent in a favored 
equatorial orientation.6 
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Figure 1. Stereochemical analysis of the Prins-pinacol reaction. 
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Synthesis of the bicyclic core of 2 is summarized in Scheme 
1. The (R)-dienyl iodide 6* was first accessed in 78% overall 
yield by conversion of (5')-dihydrocarvone 5 (available in one 
step from (S)-~arvone)~ to the kinetic enol triflate derivative,'O 
followed by palladium-catalyzed coupling with hexameth- 
ylditin,' and subsequent in situ iodination with N-iodosuccin- 
imide (NIS).'* Regioselective openingI3 of (5')-glycidyl pivalate 
(7)14 with lithium (trimethylsily1)acetylide in the presence of 
BFyEt20 furnished alcohol 8, which upon exposure to 2-meth- 
oxypropene and PPTS provided the 2-methoxypropyl (MOP) 
ether 9. Removal of the pivalate moiety of 9 with excess i-Bu2- 
AlH, followed by oxidation with tetra-n-propylammonium 
permthenate-N-methylmorpholine N-oxide (TPAP-NMO)'5 af- 
forded aldehyde 10 in 47% overall yield from 7.8b Treatment 
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of 10 with the dienyllithium species generated from 6 (t-BuLi, 
THF, -78 "C), followed by mild acidic cleavage of the MOP 
group, furnished the Prins-pinacol rearrangement substrate 11 
in 64% yield as a 9: 1 mixture of anti and syn  stereoisomer^.^^,'^ 
The key Prins-pinacol reorganization was then triggered by 
exposure of diol 11 and an excess of enal 1218 to BFyEt20 at 
-55 - -20 "C in CH2C12 to give hexahydroisobenzofuran 13, 
a single stereoisomer, in 79% yield. Cleavage of the TIPS ether 
of 13 under acidic conditions, followed by stereoselective 
photolytic deformylation, then provided 14 in 72% yield.20 
This intermediate, which is available in seven steps and 28% 
overall yield from (S)-carvone and nine steps and 17% overall 
yield from epoxide 7, contains the full bicyclic core of (-)-7- 
deacetoxyalcyonin acetate (2). 

Allylic alcohol 14 was next elaborated by Sharpless epoxi- 
dation2' [(+)-diethyl tartrate, Ti(O-i-Pr)4, tert-butyl hydroper- 
oxide, CH2C12, -20 "C], reduction22 of the derived epoxy 
alcohol with sodium bis(2-methoxyethoxy)aluminum hydride 
(Red-Al) in THF at -15 "C, and concomitant cleavage of the 
trimethylsilyl group with aqueous NaOH (generated in situ by 
adding H20) to provide 1,3-diol 15 in 79% yield (Scheme 2). 
Preparation for closure of the final nine-membered ring began 
with sequential protection of 15 with pivaloyl chloride (PvCl) 
and tert-butyldimethylsilyl triflate to furnish bis-protected diol 
16. Selective iodoboration of the alkyne moiety of 16 with 
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Figure 2. Possible transition structure for forming 19. Carbonyl 
addition is modeled as a four-centered transition state, and the chromium 
ligands and the TBDMS group are excluded for clarity. 

B-iodo-9-borabicyclo[3.3. llnonane (B-I-9-BBN),23 followed by 
cleavage of the pivaloyl group with i-Bu2AlH, and TPAP-NMO 
oxidationI5 of the resulting primary alcohol provided aldehyde 
17. This intermediate was then homologated by sequential 
treatment with (methoxymethy1ene)triphenylphosphorane and 
triflic acid (i-PrOH-CH2C12) to afford 18 in 48% overall yield 
from 14. The oxonane ring was then fashioned by treating 18 
with NiC12-CrC12 in DMSO, following procedures pioneered 
by Nozaki and K i ~ h i , ~ ~  to provide tricyclic ether 19 in 65% 
yield. Stereoselection in this cyclization was notably high ('20: 
1) and in accord with the cyclization topography shown in 
Figure 2.25 Acetylation of 19 followed by cleavage of the silyl 
ether with n-Bu4NF then gave (-)-7-deacetoxyalcyonin acetate 
(2) in 88% yield: mp 140- 142 "C, [ a ] ~  -35.6" (c  1 .O, CHC13). 
Synthetic 2 showed 'H and I3C NMR and IR spectra that were 
indistinguishable from those of the coral extract.26 

In summary, the first total synthesis of (-)-7-deacetoxyal- 
cyonin acetate (2) was accomplished in a concise fashion from 
(8-glycidyl pivalate and (9-carvone. This synthesis establishes 
a general approach to eunicellin diterpenes and further highlights 
the power of pinacol-terminated cationic cyclizations for 
constructing complex tetrahydrofurans. 
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