

Phytochemistry, Vol. 36, No. 1, pp. 159-161, 1994 Copyright © 1994 Elsevier Science Ltd Printed in Great Britain All rights reserved 0031-9422/94 \$6.00 + 0.00

STRUCTURE REVISION OF CUCURBITACIN Q₁

HOSNY ABD EL-FATTAH

Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt

(Received in revised form 13 August 1993)

Key Word Index—Cucumis; Cucurbitaceae; cucurbitacin Q₁; cucurbitacin F 25-O-acetate.

Abstract—Structure revision of curcurbitacin Q_1 is discussed on the basis of spectroscopic data. The stereochemistry of ring A is evaluated and the compound is corrected to be cucurbitacin F 25-O-acetate.

INTRODUCTION

Cucurbitacins are a special group of triterpenoids having a cucurbitane skeleton [1]. Most of the cucurbitacins are tetracyclic, but some representatives have an extra ring due to formal cyclization between C-16 and C-24 (cucurbitacins S and T) [2, 3]. Certain cucurbitacins have been discovered in the form of glycosides and some of them lack C-11 carbonyl function [4]. Biologically, they exhibit a wide range of activities including cytotoxicity and antitumour effects [5-11]. Chemically, cucurbitacins are classified according to the functionalities in ring A and C, side chain modifications, as well as stereochemical considerations.

Cucurbitacin Q₁ was formerly isolated by Atta-Ur-Rahman et al. [12] and later by Abd El-Fattah et al. [13] from some Cucumis species. Chemotaxonomically, the genus Cucumis is characterized by the presence of cucurbitacins A-F, dihydro-F-I and K in addition to Q₁ [1, 14]. Atta-Ur-Rahman et al. [12] elucidated the structure of cucurbitacin Q1 to have the trans-configuration at the C-23/C-24 double bond on the basis of direct comparison with the reported data of cucurbitacin Q (1) which was originally isolated by Kupchan et al. [15] from Brandegea bigeloii. The stereochemistry of ring A is still confused and the ¹³C NMR data are not available. The present study describes the structure revision of cucurbitacin Q1 to cucurbitacin F 25-O-acetate (2).

RESULTS AND DISCUSSION

The high resolution ¹H NMR (Table 1) revealed three oxymethine protons at $\delta 5.05$ (dd, J = 7.49, 7.49 Hz), 4.03 (m) and 3.42 (d, J = 8.99 Hz). ${}^{1}H - {}^{1}H$ COSY and a series of spin-spin decoupling experiments indicated that the signals at δ 4.03 and 3.42 were mutually coupled and they were assigned to H-2 and H-3, respectively, showing a CH(OH)_{eq}-CH(OH)_{eq} system. The magnitude of the coupling constants observed for H-2 and H-3 (J_{zz}) = 8.99 Hz) required that the hydroxyl groups be placed as a 2β , 3α -diol confirming a diaxial coupling [16–18]. The

remaining oxymethine at $\delta 5.05$ was assigned to H-16 [16]. The ¹H NMR spectrum also showed signals attributed to eight methyls attached to quaternary carbons $(\delta 1.20-1.69)$, a pair of doublets at $\delta 2.84$ and 3.31 (J = 14.43 Hz) indicative for H-12, an upfield singlet at δ 1.89 assigned to the 25-O-acetate group and a pair of doublets in the olefinic region at δ 7.40 and 7.33 which comprised an AB system (J = 15.78 Hz) characteristic of a trans-double bond (23-24 α,β -unsaturated ketone) [12,

H. ABD EL-FATTAH

Table 1. ¹H NMR data of cucurbitacin Q_1 (δ values in pyridined₃ and TMS as internal standard)

Proton no.	$\delta(ppm)$
H-1a(eq)	2.41 (ddd, $J = 12.34_{(1\alpha, 1\beta)}, 3.08_{(1\alpha, 2\alpha)}, 3.8_{(1\alpha, 10)}$ Hz)
$H-1\beta(ax)$	s.o.*
$H-2\alpha(ax)$	4.07 (m)
$H-3\beta(ax)$	$3.42 (d, J = 8.99_{(2\alpha, 3\beta)} Hz)$
H-6	$5.73 (d, J = 5.49_{(6,78)} Hz)$
Η-7α	2.35(m)
Η-7β	s.o.*
H-8	1.93 $(d, J = 7.81_{(7a,8)} \text{ Hz})$
H-10	2.72 (br d, $J = 12.73_{(1\beta, 10)}$ Hz)
H-12α	3.31 (d, J = 14.43 Hz)
Η-12β	2.84 (d, J = 14.43 Hz)
H-15a	s.o.*
Η-15β	1.73 (d, J = 12.83 Hz)
H-16	5.05 (dd, $J = 7.49_{(15\alpha, 16)}$, 7.49 _(16,17) Hz)
H-17	$3.02 (d, J = 7.49_{(16,17)} Hz)$
H-23	7.40 (d, $J = 15.78_{(23,24)}$ Hz)
H-24	$7.33 (d, J = 15.78_{(23,24)} Hz)$
2-OHβ(eq)	6.08 (d, J = 4.74 Hz)
3-OHα(eq)	6.32 (d, J = 4.74 Hz)
16-OH	6.23 (s)
Methyls	
•	1.20 (s)
	1.24 (s)
	1.29 (s)
	1.47 (s)
	1.52 (s)
	1.56 (s)
	1.57 (s)
	1.69 (s)
25-OAc	1.89 (s)

^{*}s.o.; Signals totally obscured by other signals.

13, 16]. The shift values and coupling pattern of other protons fit with that reported in the literature for cucurbitacin F [16, 19]. All assignments and spin-spin coupling interactions were confirmed through 2D ¹H-¹H COSY measurements and selective decoupling experiments. The ¹³C NMR data (Table 2) supported assignments of an unsaturated, tetracyclic, triterpene nucleus.

The polarization transfer experiments (DEPT) confirmed the cucurbitacin nucleus and indicated the presence of nine (CH), four (CH₂), eight (Me), seven quaternary carbons, two ketonics and one acetate function (Table 2). The signals at δ 70.8, 79.8 and 71.0 were assigned to three secondary oxygenated functionalities attributable to C-2, C-3 and C-16, respectively. A final confirmation of the structure was obtained by hydrogenation of cucurbitacin Q₁ over 10% Pd/C which yielded, after TLC purification, 23,24-dihydrocucurbitacin F 25-O-acetate 3 (identified by mp, IR, ¹HNMR, ¹³CNMR) [16, 19]. In accordance with the previous evidence, cucurbitacin Q₁ must now be corrected to cucurbitacin F 25-O-acetate.

Cucurbitacin F 25-O-acetate was previously isolated in the form of its 2-O- β -D-glucoside from Cigarrilla mexicana [20], but no physical or spectroscopic data were available.

Table 2. ¹³C NMR and DEPT data of cucurbitacin Q_1 (δ values in pyridine- d_5 and TMS as internal standard)

Carbon no.	δ (ppm)	DEPT
1	34.6	CH ₂
2	70.8	CH
3	79.8	CH
4	42.8	C
5	142.5	C
6	118.8	CH
7	24.2	CH ₂
8	34.5	CH
9	48.6	C
10	43.3	CH
11	213.2	C=O
12	49.1	CH ₂
13	48.9	C
14	51.1	С
15	46.4	CH_2
16	71.0	CH
17	59.6	CH
18	19.2*	Me
19	20.5*	Me
20	79.8	C
21	25.4*	Me
22	204.3	C=O
23	122.5	CH
24	150.1	CH
25	79.7	C
26	24.2*	Me
27	26.2*	Me
28	26.6*	Me
29	25.4*	Me
30	20.4*	Me
O <u>CO</u> Me	169.8	C=O
OCO <u>Me</u>	22.4	Me
-		

^{*}Assignments may be interchanged in vertical column.

EXPERIMENTAL

¹H NMR and ¹H-¹H COSY data were recorded at 400 MHz in pyridine-d₅ using TMS as int. standard. ¹³C NMR and DEPT spectra were recorded at 100 MHz on a Bruker NMR spectrometer in pyridine-d₅ using TMS as int. standard. Cucurbitacin Q₁ was isolated from Cucumis callosus (Rottl) Cong [13] and compared with standard authentic sample from Cucumis prophetarum L.

Catalytic hydrogenation of cucurbitacin Q_1 [20]. To a soln of 15 mg of cucurbitacin Q_1 in 5 ml EtOH was added 5 mg of 10% Pd/C. The mixt. was stirred under H_2 for 45 min. The resulting product was filtered and purified by prep. TLC on silica gel GF_{254} using $CHCl_3$ -MeOH (95:5) solvent system which afforded 10 mg of 23,24-dihydrocucurbitacin F 25-O-acetate.

REFERENCES

1. Lavie, D. and Glotter, E. (1971) Fortschr. Chem. Org. Naturstoffe, 29, 307.

- Hylands, P. J. and Mansour, E. S. (1982) Phytochemistry 21, 2703.
- Gamlath, C. B., Leslie Gunatilaka, A. A., Alvi, K. A., Ur-Rahman, A. and Balasubramaniam, S. (1988) Phytochemistry 27, 3225.
- Stuppner, H., Muller, E. P. and Wagner, H. (1991) Phytochemistry 30, 305.
- Cassady, J. M. and Suffness, M. (1980) in Anticancer Agents Based on Natural Products Models (Cassady, J. M. and Douros, J. D., eds), pp. 201-269. Academic Press, New York.
- Naik, V. R., Agshikar, N. N. and Abraham, G. S. S. (1980) Pharmacology 20, 52, 56.
- Yesilada, E., Tamaka, S., Sezik, E. and Tabata, M. (1988) J. Nat. Prod. 51, 504.
- 8. Shohat, B., Beecher, A. M., Gitter, S. and Lavie, D. (1972) Experientia 28, 1203.
- Hu, R., Peng, Y., Chen, B. and Hou, X. (1982) Zhongcaoyao 13, 445.
- Metcalf, R. L., Metcalf, R. A. and Rhoades, A. M. (1980) Proc. Natl Acad. Sci. U.S.A. 77, 3769.
- Nielsen, J. K., Larsen, L. M. and Sorensen, H. (1977) Phytochemistry 16, 1519.

- 12. Atta-Ur-Rahman, Ahmed, V. U., Khan, M. A. and Zehra, F. (1973) Phytochemistry 12, 2741.
- Abd El-Fattah, H., Zaghloul, A. M., Halim, A. F. and Waight, E. S. (1989) Acta Pharm. Jugosl. 39, 137.
- Rizk, A. M. (1986) in The Phytochemistry of The Flora of Qatar, p. 115. Scientific and Applied Research Center, University of Qatar, Qatar.
- Kupchan, S. M., Smith, R. M., Aynehchi, Y. and Maruyama, M. (1970) J. Org. Chem. 35, 2891.
- Che, C. T., Fang, X., Phoebe, C. H., Kinghorn, A. D., Farnsworth, N. R., Yellin, B. and Hecht, S. M. (1985) J. Nat. Prod. 48, 429.
- Provan, G. J. and Waterman, P. G. (1988) Phytochemistry 27, 3841.
- Hattori, M., Kuo, K., Shu, Y., Tezuka, Y., Kikuchi, T. and Namba, T. (1988) Phytochemistry 27, 3975.
- Fang, X., Phoebe, C. H., Jr, Pezzuto, J. M., Fong, H. H. S., Farnsworth, N. R., Yellin, B. and Hecht, S. M. (1984) J. Nat. Prod. 47, 988.
- Mata, R., Castaneda, P., Camacho, M. and Delgado,
 G. (1988) J. Nat. Prod. 51, 839.