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ABSTRACT. Transglycosidases are enzymes that have the potential to catalyze the synthesis of a wide 

range of high-value compounds starting from biomass-derived feedstocks. Improving their activity and 

broadening the substrate range are important goals to enable the widespread application of this family of 

biocatalysts. In this work, we engineered 20 mutants of the rice transglycosidase Os9BGlu31 and evaluated 

their catalysis in 462 reactions over 18 different substrates. This allowed us to identify mutants that expanded 

their substrate range and showed high activity, including W243L and W243N. We also developed double 

mutants that show very high activity on certain substrates and exceptional specificity towards hydrolysis, 

like L241D/W243N. In order to guide a more general use of Os9BGlu31 variants as transglycosylation 

catalysts, we built cheminformatics models based on topological descriptors of the substrates. These models 

showed useful predictive potential on the external validation set and are allowing the identification of 

efficient catalytic routes to novel phytohormone and antibiotic glucoconjugates of interest.

Keywords: Catalysis; Transglycosylation; Protein Engineering; Biocatalysis; Regioselectivity; Machine 

Learning; Neural Networks; Docking.
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1. INTRODUCTION

Glycosylation is an essential mechanism for building structural and bioactive components of cells and their 

matrix and for providing blocking groups that restrain reactive and bioactive molecules from disrupting the 

metabolism of the cells in which they are synthesized.1 Understanding the roles of the various glycosides in 

nature requires their synthesis or purification from natural sources, where they are often found in minute 

quantities. Moreover, the glycosylation of some bioactive compounds may modulate their uptake and 

bioactivity, which holds interest for the fine chemical and pharmaceutical industries. The large-scale 

synthesis of these glucoconjugates may require complicated strategies or expensive starting materials, while 

their extraction and purification may require large amounts of solvents. Therefore a simple and efficient 

system to produce such compounds in aqueous solvents is highly desirable.

Generally, glycosylation begins with the activation of a sugar by its attachment to a nucleotide, yielding 

nucleotide sugars, such as UDP-glucose (uridine diphosphate-α-D-glucopyranoside). The sugar can then be 

transferred by a Leloir-type glycosyltransferase (GT) to a carbohydrate or noncarbohydrate molecule to make 

a glycoside.2 Glycosides and carbohydrates are broken down by cleavage of the glycosidic bond created by 

the GTs by glycoside hydrolases (GHs), usually by hydrolysis. However, many GHs are able to catalyze 

transglycosylation, that is, the transfer of the glycosyl moiety to another carbohydrate or aglycon moiety 

(Figure 1). Some enzymes related to retaining GH act as transglycosidases (TGs, also referred to as non-

Leloir-type GTs), which preferentially catalyze transglycosylation rather than hydrolysis. 

The transglycosidases that have been studied to date belong to families of retaining GHs and are believed to 

catalyze transglycosylation by the same mechanism used by the related GHs, shown in Figure 1. The 

retaining mechanism of GH (and GT) starts with a nucleophilic residue in the active site attacking the 

anomeric carbon. At the same time, the departure of the aglycon moiety is facilitated by a general acid in the 

active site. Since the glucosyl moiety becomes covalently bound to the nucleophilic residue, this first step is 

called glycosylation.3-4 In the second step (deglycosylation), a nucleophilic acceptor molecule can attack 

from the same side as the aglycon departed. This is a ping-pong bi-bi mechanism, in which two SN2 reactions, 

with inversion of stereochemistry at each step, return the anomeric carbon to its original stereochemical 

configuration. In the case of hydrolysis, water acts as the nucleophile in the deglycosylation step, whereas in 

transglycosylation another molecule acts as the nucleophile. 
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Figure 1. Mechanism of transglycosylation and hydrolysis reactions in retaining GH and GT. The enzyme 

complexes are labeled with the symbols used in the general nomenclature for a ping-pong bi-bi mechanism. 

The glycosyl intermediate is labeled E*. The second substrate is water in the case of hydrolysis or a hydroxyl 

group (R2OH) in the case of transglycosylation. The glycon moiety shown is glucose, in line with the 

transglucosidase activity described in the current paper. 

As noted above, TGs are related to GHs and have been included in the GH families grouped by amino acid 

sequence similarity at the carbohydrate active enzyme database (www.cazy.org). Most of the 

transglycosidases that have been described catalyze synthesis and remodeling of oligo- and polysaccharides. 

For instance, xyloglucan endotransferases (XET) belong to the family GH16, which also contains xyloglucan 

endohydrolases. Differences in a surface loop in the XET and the xyloglucan endohydrolases have been 

shown to contribute to the transferase versus hydrolase specificity5, but this principle cannot be readily 

transferred to other families. Several attempts have been made to engineer GH to make TG, including the 

production of a β-transglucosidase from a bacterial GH1 β-glycosidase6, a trans-α-L-arabinofuranosidase 

from GH517, as well as α-glucosyl transferases for the production of oligosaccharide antigens8,9. In each of 

these cases, the target products were oligosaccharides, whereas relatively little work has been done on the 

use of TG to synthesize glycosides. 

The use of directed evolution approaches allowed the identification of changes that led to higher 

transglycosylation to hydrolysis ratios in the GH that were converted to TG.6,7 While it was anticipated that 

decreasing the binding of water and increasing sugar binding could increase transglycosylation, it was 
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surmised that several of the mutations actually worked by decreasing the function of the catalytic nucleophile 

or acid/base. This was hypothesized to prolong the lifetime of the intermediate by destabilizing the transition 

states of the two reaction steps (Figure 1) and by decreasing the ability of water, a weaker nucleophile that 

requires deprotonation, to compete with sugars as the acceptor in the deglycosylation step. This strategy 

resembles the action of glycosynthase and thioglycoligase mutations of retaining GH, in which the 

nucleophile and acid/base, respectively, are mutated to non-nucleophilic, non-ionizable residues, thereby 

allowing the transfer of the glycon from activated donor glycosides to suitable sugar acceptors without 

hydrolysis10,11.

In the last several years, some GH1 enzymes that catalyze the transglycosylation of lipids, anthocyanins, and 

other noncarbohydrate small molecules have been described12-16. The sensitive to freezing 2 (SFR2) gene in 

Arabidopsis thaliana was found to encode a galactolipid/galactolipid galactosyltransferase. Several 

anthocyanin glucosyltransferases were found to actually be GH1 TG13,15,16, whereas rice (Oryza sativa) 

Os9BGlu31 was found to be a general TG that can transfer glucose between phenolic acids, phytohormones, 

and flavonoids and it also appears to deglycosylate fatty acids and other substrates in the plant14,17. Little 

engineering of these types of enzymes has been reported, although we recently demonstrated that mutation 

of the active site cleft residue Trp243 (W243) to Asn (W243N) increased the activity and broadened the 

specificity of Os9BGlu3118. 

Promiscuous GT have been used to glycosylate several medicinal compounds to modulate their solubility 

and bioactivity19. For instance, several microbial antibiotics are glycosides and these promiscuous GTs have 

allowed the transfer of unusual sugars in glycodiversification to develop new or more robust activities20,21. 

From an industrial point of view, the development of transglycosidase (bio)catalysts would be desirable 

because they do not require a nucleotide sugar substrate or intermediate in the transfer of sugars to 

compounds of interest. Ideally, the sugars could be obtained from biomass22,23. Recently, cyclodextrin 

glucosyltransferases from Thermoanaerobacterium sp. were reported to transfer glucose onto aryl 

glucopyranosides and furanosides, achieving an unusual substrate specificity toward alkyl furanosides24.

Although most of the transglycosidases studied to date show a high specificity for the transfer of the glucosyl 

moiety to certain sugars or aglycon groups, the promiscuity of Os9BGlu31 makes it especially promising to 

aid in the synthesis of a wide range of compounds14,18. Nonetheless, wild-type Os9BGlu31 cannot efficiently 

transfer glucosyl groups to all acceptors, so new variants with broader or different specificity are of interest 

to increase its potential as a biosynthetic tool. The development of catalysts that work under mild conditions 
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with environmentally friendly reagents would greatly facilitate the production of compounds for studies of 

phytohormone metabolism1 and antibiotic glycosides with modified pharmacokinetic properties19.

In this work, we have explored the potential of rice Os9BGlu31 active site cleft mutations to broaden its 

acceptor potential by engineering and evaluating 14 different amino acids at residue position 243. Moreover, 

we combined the mutation W243N with hydrophilic mutations of residues in positions that could interact 

with water during hydrolysis and evaluated their effect on the hydrolysis and transglycosylation specificity. 

Since the structure for Os9BGlu31 has not been solved yet, homology models of the covalent glycosyl-

enzyme intermediate were made to evaluate the interaction of acceptor substrates with the active site. 

Although docking into such models provides insight into possible modes of binding, it could not 

quantitatively predict activity differences, due to the low resolution of the models. Therefore, we have 

applied cheminformatics tools to obtain further insights and anticipate the behavior of the different 

transglycosidases when presented new substrates. 

There are two main possible approaches to build a cheminformatics model on experimental results. In the 

absence of a mechanistic hypothesis, it is possible to compute many molecular descriptors and then select 

statistically a phenomenological route that may be possible to interpret a posteriori.25,26 Alternatively, one 

can hypothesize a mechanistic route that selects a reduced number of physicochemical descriptors 

beforehand to build a model with them.27,28 In this work, we explored both approaches and built artificial 

neural network (ANN) models on a subset of physicochemical descriptors that can predict the activity of 

multiple enzymes against new substrates of interest.

2. MATERIALS AND METHODS

2.1 Construction of pET32a/DEST/TEV/Os9BGlu31

The wild-type pET32a/DEST/TEV/Os9BGlu31 expression vector was constructed as follows. The cDNA 

fragment encoding the mature Os9BGlu31 gene was amplified with the AK121679F and AK121679R 

primers indicated in Table S1 by Pfu DNA polymerase with the AK121679 clone plasmid as the template. 

The PCR product (~1.5 kb) was purified from the agarose gel and cloned into pENTR/TEV/D-TOPO 

Gateway entry vector (Invitrogen) and incubated at 22 °C for 18 h. The entry clone size was checked by SacI 

restriction endonuclease digestion. Then, the pENTR/TEV/D-TOPO/Os9BGlu31 was recombined into the 

pET32a/DEST destination vector29 by Gateway LR Clonase (Invitrogen) reaction and cloned in Escherichia 
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coli strain DH5α, selected on 50 μg ml-1 ampicillin LB agar. The recombinant expression vector clone was 

verified to contain the inserted gene by digestion with EcoRI restriction endonuclease and DNA sequencing 

(Macrogen Corp.).

2.2 Site-directed mutagenesis of Os9BGlu31

The tryptophan residue W243 in wild-type Os9BGlu31 was changed to 14 different residues by QuikChange 

site-directed mutagenesis (Agilent) with the pET32DEST/TEV/Os9BGlu31 vector as the template and the 

primers shown in Table S1. These mutants comprise cysteine (C), glutamic acid (E), glycine (G), histidine 

(H), isoleucine (I), lysine (K), leucine (L), asparagine (N), proline (P), glutamine (Q), arginine (R), serine 

(S), threonine (T) and valine (V). Furthermore, double mutants I172T/W243N, L183Q/W243N and 

L241D/W243N were prepared by introducing one of the mutations I172T, L183Q or L241D in the vector, 

in addition to W243N. The sequences of all mutant clones were confirmed by DNA sequencing (Macrogen 

Corp.).

2.3 Expression and purification of Os9BGlu31 and its mutants

The pET32a/DEST/TEV/Os9BGlu31 wild-type plasmid and all the mutants were transformed into Origami 

B(DE3) and the proteins expressed, extracted, and purified by an initial immobilized metal ion affinity 

chromatography (IMAC) step as previously described for the pET32a/DEST/Os9BGlu31 expression 

vector14,18. All of the purified fractions were assayed in 150 μl total volume with 2 mM 4-nitrophenyl β-D-

glucopyranoside (4NPGlc) in 50 mM acetate buffer, pH 4.5, at 30 °C for 30 min. The reactions were stopped 

by adding 75 μl of 2 M Na2CO3 and the absorbance at 405 nm was then measured. The fractions showing 

activity with 4NPGlc were pooled and the imidazole was removed by buffer exchange with equilibration 

buffer (150 mM NaCl in 20 mM Tris HCl, pH 8.0) in 30 kDa molecular weight cutoff (MWCO) centrifugal 

filters. The N-terminal fusion tag was removed by cleavage with 1 mg TEV protease per 50 mg of the fusion 

protein at 4 °C for 16 h. Then, the digested proteins were loaded onto a second IMAC column in equilibration 

buffer, and the flow-through fractions showing activity to cleave 4NPGlc were pooled and concentrated with 

30 kDa MWCO centrifugal filters.

2.4 Relative activities of Os9BGlu31 wild type and mutants

The activities of Os9BGlu31 and its mutants were compared upon a range of acceptor substrates for 

transglycosylation and water as the acceptor for hydrolysis in 50 mM citrate buffer (pH 4.5). Unless stated 

otherwise, the enzymatic assays were set up with 0.25 mM acceptor, 2.5 vol.% dimethyl sulfoxide 
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(DMSO), 5 mM 4NPGlc as the donor, and varying amounts of wild-type Os9BGlu31 and its mutants so 

that conversion of the limiting substrate was below 10% (Supporting Information files SI01.xlsx and 

SI02.xlsx). The reactions were conducted at 30 °C for 15 min, during which the concentration of products 

evolved linearly with time, and they were stopped by the addition of 1% formic acid. The reaction mixtures 

were centrifuged at 10,000 g for 10 min to remove the enzymes, and the supernatants were evaluated by 

reverse-phase UPLC, as previously described18. Briefly, 2 μL of the reaction mixtures were injected into a 

ZORBAX SB-C18 (1.8 µm, 2.1 x 150 mm) column equilibrated in 95% solvent A (0.2% formic acid in 

water) and 5% solvent B (0.2% formic acid in acetonitrile) in an Agilent 1290 UPLC with a diode-array 

detector (DAD). The compounds were eluted by a linear gradient from 5% to 50% B (v/v) for 13 min, 

50% to 70% B (v/v) for 1 min, and 70% to 5% B (v/v) for 2 min, at a flow rate of 0.3 ml min-1. Relative 

activities were evaluated from the absorbance at 360 nm of the 4-nitrophenol (4NP) released, which eluted 

at 10.5 min.

2.5 Transglycosylation of substrates to multiple glucoconjugates by Os9BGlu31 variants

To identify differences in glycosylation on one acceptor that has multiple nucleophilic groups, the products 

of transglycosylation by Os9BGlu31 wild type and W243 mutants (C, I, L, N, T, V) were determined in the 

reaction with 5 mM 4NPGlc as the donor, 0.5 mM acceptor, and 5 µg of proteins in 50 mM citrate buffer 

(pH 4.5). The reactions were conducted at 30 °C for 1 hour and then stopped with 1% formic acid. The 

mixtures were injected into the UPLC-DAD as described in section 2.4. Absorbance was measured at 

wavelengths between 190 and 500 nm to detect the glucoconjugate compounds.

2.6 Linear cheminformatics model. The glucosyl acceptors were characterized by 1D, 2D, and 3D 

molecular descriptors of different classes (constitutional, molecular format, autocorrelation, Basak, burden, 

connectivity, topological, charge descriptors, etc.). 1132 descriptors were computed using the software 

ChemDes30, which integrates multiple state-of-the-art packages (Pybel, CDK, RDKit, Chemopy, etc.). 1824 

additional molecular descriptors were computed with the newly released software Mordred31, which 

computes 3D conformers by MM optimization and implements fully revised algorithms for popular indices 

found in Dragon and PaDEL.

To select the descriptors that will participate in the model, we first removed any index with zero variance 

across the range of substrates studied. We then reduced the set of descriptors under consideration by looking 

at the pairwise correlation between all of them. The correlation coefficient matrix was processed by the 

findCorrelation function in the caret R package32. We established the cutoff that no pair of descriptors had 
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a correlation coefficient > 0.8. When a pair of descriptors has a correlation above the cutoff, findCorrelation 

computes the mean absolute correlation of each descriptor in the pair to all others and removes the one with 

the largest mean absolute correlation. This step reduces the redundancy and the number of descriptors under 

consideration. In a second step, we ranked the descriptors using as the criterion the information gain as 

defined in the FSelector package33 and the Pearson correlation of each individual descriptor to the average 

enzymatic activity measured in triplicate experiments. The top descriptors were then considered by a forward 

stepwise selection algorithm (StepAIC, MASS package) to build the multiple linear regression model34. A 

scheme of the pipeline devised is shown in Figure S1.

2.7 Nonlinear ANN models. The molecular descriptors used in the nonlinear models are D1 = ALOGP (an 

estimate of logP), D2 = MR (molar refractivity), and D3 = TPSA (topological polar surface area), which can 

be found in file SI03.xslx. STATISTICA 10 was used to implement Artificial Neural Networks (ANN) as 

nonlinear ML models. The ANNs tested are Multi-Layer Perceptrons (MLP) with one dense hidden layer. 

The MLPs models have up to 7 hidden neurons in the hidden layer. Different activation functions were 

evaluated for the hidden and output layers. The models were trained within 200 cycles of the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) backpropagation algorithm. 

2.8 Docking study. The Os9BGlu31 model was calculated in MODELLER 9.1935 based on the structure of 

Os3BGlu6 in covalent complex with 2-fluoroglucoside (PDB ID: 3GNR)36. To understand the structure of 

Os9BGlu31 in complex with glucose, the structure of Os3BGlu6 in complex with 2-fluoroglucoside structure 

was modified by replacing the fluorine at the C2 with oxygen. Five models each of Os9BGlu31 and 

Os9BGlu31/glucose complexes were generated from the Os3BGlu6 covalent complex with 2-

fluoroglucoside. The models with the lowest scores of the MODELLER Objective Function (MOF)37 were 

selected. Os9BGlu31 mutants with and without glucose were generated from the Os9BGlu31 wild type 

models using FoldX38 after insertion of the covalently linked α-D-glucoside coordinates into the models with 

glucose. The final models were evaluated for quality using ProSa200339 and PROCHECK software40.

The acceptor substrate 3D structures were created with the drawing and manipulation tools in the Scigress 

3.3.2 software suite. The homology models were protonated. The acceptor substrate structures and the newly 

added protons, glucoside, and mutated residues were then subjected to energy minimization using the MM2 

force-field. Genetic Optimization for Ligand Docking (GOLD) software version 5.6.2 was used for the 

docking calculations. The center of binding was defined at coordinates (x = -0.581, y = -6.381, z = -21.102) 

with a 10 Å radius. Thirty docking runs were allowed for each ligand with default search efficiency (100%). 
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Lysine and arginine were defined as protonated; aspartic and glutamic acid were considered deprotonated. 

The GoldScore scoring function was used to evaluate the predicted binding modes41.

3. RESULTS AND DISCUSSION

3.1 Activity of wild-type Os9BGlu31 and mutants 

Previously, we showed that wild-type Os9BGlu31 and a several mutants are able to catalyze 

transglycosylation, transferring a glucosyl moiety from a donor substrate such as 4NPGlc to an acceptor14,18. 

In this study, we studied the effect of amino acid substitutions in the position W243 that complete the set of 

20 natural amino acids at this position, when combined with our previous work18. These included the W243N 

mutant that had highest activity in our previous study and 13 new mutations (W243C, E, G, H, I, K, L, P, Q, 

R, S, T, and V). We also introduced the second point mutations I172T, L183Q, and L241D in the W243N 

mutant with the goal to test whether multiple hydrophilic substitutions increase the hydrolysis to 

transglycosylation ratio and broaden the substrate/product specificity to offer novel biosynthetic possibilities.

The Os9BGlu31 wild type and its mutants were evaluated in the glycosylation of 22 acceptors, including 

water (for hydrolysis). The relative activities of Os9BGlu31 wild type and its mutants are measured by 

quantifying the release of 4NP from the reaction of 4NPGlc with the different acceptors. The activity results 

are represented in Figure 2. Details on the activities are provided in the Supporting Information file SI01.xlsx.

Among the compounds tested, the preferred acceptor for the wild-type Os9BGlu31 is ferulic acid, while 

caffeic acid and 1-naphthaleneacetic acid are the substrates preferred by other Os9BGlu31 variants (Figure 

2). Most of the Os9BGlu31 variants generated yield higher rates of 4NP release with phenolic acceptors than 

with buffer alone, which results in hydrolysis by water. Among the single mutants, W243L is arguably the 

most active overall. W243N also displays an increased activity with most of the substrates, although none is 

particularly favored, which agrees with previous results18. These mutations increase the activity of the 

enzyme and its potential use for the glycosylation of substrates of interest.

The mutants I172T, L183Q, and L241D show lower activity and stability than the wild type or W243N. The 

less soluble L241D mutant, in particular, shows the lowest performance over multiple acceptors (Figure 2). 

Remarkably, the introduction of L241D in the Os9BGlu31 W243N variant caused a significant activity 

increase for most substrates but the flavonoids (Table 1). Epistasis is the non-linear interaction between 
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mutations such that their effects over function, in this case transglycosidation activity, are significantly higher 

or lower than expected by simple addition of their inidividual effects. In Table 1, we observe several 

examples of positive epistasis42-44 (higher improvements in function than expected) against several 

substrates. Notice that the double mutant L241D/W243N also exhibits the highest transglycosylation rate 

observed in this work using syringic acid as the acceptor. This is an example of sign epistasis42-44 (the point 

mutation L241D has an adverse effect on the activity of the single mutant, but it has a positive effect on the 

double mutant L241D/W243N). 

Another second mutation was introduced to generate the mutant L183Q/W243N. Although the second 

mutation barely affected the transglycosylation rate of phenolic compounds over W342N, it increased the 

activity with other acceptors and positive epistasis was observed in several cases (Table 1). Very prominent 

sign epistasis was also observed in this double mutant against the substrate 1-naphthol. Lastly, the 

introduction of the second mutation W243N in the mutant I172T could barely restore any of the activity lost 

upon the first mutation, suggesting that conservation of the amino acid I172 is important to catalyze the 

transglycosylation reaction. The entries in Table 1 with no annotation on epistasis indicate that those 

mutations may be purely additive or that the epistasis was not strong given the expected uncertainty in the 

data. Details on how the thresholds for the epistatic interactions were defined are provided in the Supporting 

Information file SI01.xlsx.
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Figure 2. Heatmap of the 4NP release (in nmol min-1 mg-1) catalyzed by 21 Os9BGlu31 variants when 

glycosylating 22 different acceptors (462 reactions). The dendrograms were constructed using the average 

Euclidian distance between clusters as the linkage method. For reaction conditions see SI01.xlsx.

Table 1. Reaction rates (in nmol min-1 mg-1) and types of epistatic interactions observed for the double 

mutants in this work. For reaction conditions see SI01.xlsx.

Acceptor Wild 
type L183Q L241D I172T W243N L183Q/W243N  

/ Epistasis
L241D/W243N   

/ Epistasis
I172T/W243N  

/ Epistasis

1-Naphthaleneacetic 
acid 185 40 16 68 3300 1344 / - 2750 108

1-Naphthol 84 12 4 33 1186 2104  / + (sign) 1316 88

4-Coumaric acid 275 26 15 82 3108 1482 / - 3515 85

4-Hydroxybenzoic acid 324 29 15 82 2592 1066 / - 2869 85

6-Hydroxyflavone 286 14 14 43 1703 1996 1877 134
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Abscisic acid 60 17 15 45 861 911 1208 / + (sign) 78

Apigenin 165 12 0 33 603 1004 / + (sign) 407 83

Caffeic acid 252 29 15 114 2544 1081 / - 3957 / + (sign) 94

Chloramphenicol 55 10 0 61 1005 1401 / + (sign) 993 156

Chrysin 67 18 14 43 1655 1996 1877 134

Ferulic acid 550 37 24 99 3759 1088 / - 4674 / + 115

Gibberellin A4 77 8 15 34 479 591 / + 1029 / + (sign) 110

Hesperetin 92 24 0 34 1521 1167 957 / - 84

Indole-1-acetic acid 295 27 0 89 2152 2092 2977 / + (sign) 135

Kaempferol 210 12 0 25 321 653  / +  (sign) 105 64

Luteolin 141 19 0 53 708 1913 / + (sign) 3348 / + (sign) 225

Salicylic acid 138 17 15 35 1674 1050 / - 1638 78

Sinapic acid 251 32 0 82 2276 1198 / - 4220 / + (sign) 82

Syringic acid 312 28 6 81 3051 897 / - 3933 / + (sign) 62

trans-Cinnamic acid 275 20 6 72 1617 1131 2188 / + (sign) 92

Vanillic acid 318 36 15 92 2812 1482 / - 3515 85

Water 103 11 6 41 727 968 / + (sign) 1316 / + (sign) 75

In addition to the mutants I172T, L183Q, and L241D, five W243 mutants (H, K, P, Q, and R) also showed 

lower transglycosylation and hydrolysis activities than the wild type. The rest of the mutants showed 

intermediate activities on the different substrates (Figure 2). Notably, the function of Os9BGlu31 could be 

affected by both single and double mutants, but none of the mutants studied showed a higher activity on all 

the substrates. Based on the results obtained, we selected the following 8 Os9BGlu31 variants with high 

activity for further study, along with the wild type as the reference: W243C, W243I, W243L, W243N, 

W243T, W243V, L183Q/W243N, and L241D/W243N.

The preceding results were obtained with different concentrations of DMSO, which were adjusted based on 

the substrate solubility (0.25 vol.% for phenolic compounds, 1.25 vol.% for phytohormones and flavonoids, 

0 vol.% for water). We suspected that the DMSO used as co-solvent might have a slight effect on the catalytic 

activity of the enzymes. Therefore, we performed the activity study of the 9 high activity enzymes keeping 

the concentration of DMSO fixed at 2.5% by volume. These reactions were repeated in triplicate (file 

SI02.xlsx). The results are presented in Figure 3 and the activity trends are in agreement with the previous 

discussion.
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Figure 3. Relative rates of 4NP release by Os9BGlu31wild-type enzyme, W243 mutants, and 

L183Q/W243N and L241D/W243N double mutants against 22 different acceptors, including water. For 

reaction conditions, see SI02.xlsx.

It was found that the conversion of several hydrophilic residues did not improve substantially the hydrolysis 

activity of Os9BGlu3118. Remarkably, in the present study we have identified several high activity mutants 

that can hydrolyze 4NPGlc faster than the wild-type (Figure 4). In particular, Os9BGlu31 W243N shows the 

highest hydrolysis activity overall among the single mutant enzymes. This suggested that the mutation could 

be used in combination with additional hydrophilic mutations to further increase the hydrolysis rate of the 
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enzyme. In fact, the double mutants engineered catalyze both reactions, hydrolysis and transglycosylation, 

with the L183Q/W243N variant showing the highest overall ratio of hydrolysis to transglycosylation and 

L241D/W243N showing the second highest. These findings may validate the idea that hydrophobic residues 

near the putative water binding site contribute to transglycosylation activity, which was not apparent in 

previous studies6,7,18. The selectivity to each of the two reactions can be determined by monitoring the 

products being synthesized (section 3.2). 

Figure 4. Rate of release of 4NP with the best substrate and with water for Os9BGlu31 wild type and high-

activity mutants. The line inside the bar indicates the median activity over 18 different substrates. For reaction 

conditions see SI02.xlsx.

3.2 Effect of substrate on product distribution

To further understand the function of Os9BGlu31, we analyzed the different transglycosylation products 

during longer reaction times with a diverse group of substrates and enzyme mutants. Interestingly, several 

acceptors containing more than one hydroxyl group can accept glucose from the W243 mutants in different 

positions to produce multiple glucoconjugate compounds. These acceptors are the phenolic acids 4-

hydroxybenzoic acid, ferulic acid, and vanillic acid and the flavonoids apigenin, luteolin, and kaempferol 

(Figure 5). 
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Figure 5. UPLC chromatograms of products of reactions catalyzed by Os9BGlu31 W243L variant using 

acceptors with multiple -OH groups and 4NPGlc as glucose donor (absorbance at λ=360 nm). The structures 

of the acceptors are shown at the top of the corresponding chromatogram. The reaction mixtures contained 5 

mM 4NPGlc as the donor, 0.5 mM acceptor, and 5 µg of Os9BGlu31 W243L in 50 mM citrate buffer (pH 

4.5), and were incubated at 30 °C for 1 hour and then stopped with 1% formic acid. The components were 

separated over a C18 UPLC column with the solvent and gradient conditions described in the Methods. The 

large peaks of 4NPGlc at 6.7 min and 4NP at 10.6 min were used to assess the total enzymatic activity. Other 
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peaks are marked according to their previous identification18. FA is ferulic acid, FAG is ferulic acid 1-O-

glucose ester, 4NP is 4-nitrophenol, 4NPG is short for 4NPGlc (4NP-beta-D-glucoside), 4HBA is 4-

hydroxybenzoic acid, 4HBA-GE is 4-HBA 1-O-glucose ester, VA is vanillic acid, VA-GE indicates VA 

glucose ester.

Notably, the wild-type enzyme transferred the sugar exclusively to one hydroxyl group position of the 

phenolic acids (Figures S2 to S4) or the flavonoids, which is a good example of regioselectivity. Mutants 

W243 C, I, L, and N produced more than two products when provided with ferulic acid, including the bis-

glucoside at 5.3 min, the glucoside at 6.4 min, and the glucose ester at 7.1 min (based on our previous 

characterization18), while only one more product (ferulic acid glucose ester, FAG) was formed by W243T 

and W243V (Figure S2). The W243 mutants produced different amounts of glucoconjugates, with the 

glucosyl moiety being transferred to different positions to a variable extent. For instance, while the wild type 

and mutants yielded significant amounts of the 4HB-glucose ester, these yields were even higher for the 

mutants W243N and W243L. Since both glucosides and glucose esters of these phenolic acids have been 

reported in nature45, the ability to synthesize them will be useful to study their biological roles.

We measured the product range formed from flavonoid substrates, some of which contain several hydroxyl 

groups (apigenin, luteolin, and kaempferol). Kaempferol and luteolin have similar structures with four 

hydroxyls (positions 3, 5, 7, and 4’ in kaempferol and 5, 7, 3’, and 4’ in luteolin). W243N was shown to 

produce multiple kaempferol glucosides and bis-glucosides by transglycosylation18. In this study, we also 

observed various glycosides with the newly generated mutants (Figure S5) and were able to extend this to 

other flavonoids with different hydroxyl group positions. 

The chromatograms in Figures S6 and S7 show the presence of multiple products in reactions catalyzed by 

Os9BGlu31 mutants. Four additional products were eluted in most of the reactions with apigenin catalyzed 

by Os9BGlu31 mutants. The product eluting at 9.45 min (apigenin 7-O-glucoside)18 was synthesized by both 

wild-type and mutant enzymes but no other products were produced by the wild type, while additional peaks 

at 7.5, 9.55 and 11.3 min were seen in the mutants. The peak at 7.5 min that was particularly prominent in 

the reactions with the W243L and W243N variants is likely to be a bis-glucoside, based on the more 

hydrophilic elution position and previous observations with kaempferol glucosides18. This suggests that 

Os9BGlu31 W243L and W254N are efficient at transglycosylating two positions on apigenin, resulting in 

high bis-glucoside production. Besides, the presence of three products eluting in the range of monoglucosides 

(9-12 min) suggests that the selected mutants can glycosylate all three hydroxyl groups on apigenin. 
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Luteolin could also accept the transfer of glucose by Os9BGlu31 transglucosidase variants. W243L appears 

more active than the other mutants, based on the abundance of new compounds, especially the one eluting at 

7.4 min. As noted for the corresponding apigenin glucoconjugate, this compound is likely to be a bis-

glucoside, based on its relatively early elution, which might result from the high activity of W243L towards 

two hydroxyl positions. W243L also showed a high yield to the product eluting at 9.4 min, in addition to the 

peak at 8.7 min, which was high in most variants. W243T showed a lower yield of the peak at 8.7 min, as it 

is more selective to the compound eluting at 9.4 min. The relatively high peak at 10.6 min in the W243T 

reaction and relatively low hydrolysis rate in Figures 3 and 4 suggest it may be producing another glucoside 

hidden in the p-nitrophenol peak, but we were unable to resolve this putative glucoside. This data suggest 

that most variants could be used to produce the glycoside at 8.7 min, while W243L and W243T could be 

used to produce the bis-glucoside and other luteolin glucosides.

3.3 Structural model of the ternary complex including the acceptor substrate

Previously, we produced a homology model of the Os9BGlu31 wild type structure18, but the apo structure is 

not appropriate to evaluate the reactivity toward acceptor substrates, since they react with the glucosyl-

enzyme intermediate (Figure 1). To obtain a better understanding of the glycosyl transfer mechanism and 

visualize the binding orientations of the acceptor substrates within the Os9BGlu31 active site, we modeled 

the wild type and mutant proteins as their covalent glucosyl intermediates and docked the potential acceptors 

substrates on them. In these models, the glucoside is deeply buried in the active site and the access path is 

narrow, but small molecules can access it. This could be related to the lower activities of larger flavonoid 

substrates which were evident in Figure 3, as the narrow binding site would difficult the access of very large 

substrates. Molecular docking revealed the substrates are oriented on the opposite face of the glucose from 

the catalytic nucleophile, E387. The binding mode of the substrates is exemplified by ferulic acid and 1-

naphthaleneacetic acid in Figure 6. Although ferulic acid was positioned somewhat distant from the anomeric 

carbons in the wild type active site, the models shown are in line with the predicted SN2 mechanism proposed, 

as this requires the nucleophilic substrates to be positioned on the opposite face of the leaving group, E387, 

which ultimately results in the re-inversion of stereochemistry to form the β-anomeric products. Moreover, 

as shown in Table S2, the binding scores for the acceptor substrates on the glycosylated enzyme intermediate 

are generally higher for the W243L mutant compared to the wild type, suggesting that a higher free energy 

of binding of the acceptor may be contributing to lower the activation energy of the deglycosylation step and 

increase the kinetic rate.
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Figure 6. Graphical representations of the binding modes of (A) ferulic acid to wild-type Os9BGlu31 and 

(B) 1-naphthaleneacetic acid to W243L mutant covalent glucosyl intermediates. The blue ribbons depict the 

secondary structure of the proteins. The acceptor substrates are shown in a ball-and-stick representation. 

E387-glucoside, W243, and L243 are shown as sticks only. The solid green lines indicate the distances 

measured between the nucleophilic carboxylate and the electrophilic C1 on the glucoside.
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3.4 Cheminformatics

3.4.1 Linear, phenomenological model

In order to generalize the findings of this work to other possible substrates, we constructed different 

cheminformatics models. To build a proper model we require a set of descriptors that is relevant (i.e., is 

highly related to the enzymatic activity that we want to predict) and at the same time minimizes the 

redundancy of information captured by the different indices under consideration (i.e., the descriptors are not 

totally correlated to each other). 

We considered the results with all 9 high-activity enzymes altogether on all substrates except water. Catalysis 

on water is different from the rest of substrates and its small size prevents the calculation of several molecular 

descriptors. For instance, RotRatio is undefined for molecules that do not have a rotatable bond; HybRatio 

cannot be computed for molecules with no carbon atoms; AATSp, AATSCp, MATSp, and GATSp are 

undefined when p > number of atoms, etc. 

Firstly, we computed a large number of molecular features describing each of the substrates (2956 

descriptors). We then applied a redundancy-reduction filter so that no pair of molecular descriptors had a 

correlation above 0.8. This step reduced the number of descriptors under consideration to 100, which suggests 

that some molecular descriptors that have been proposed in the literature along the years may be more 

correlated to others than one might desire46. In a second step, we ranked the descriptors using as the criterion 

the Pearson correlation of each individual descriptor to the average enzymatic activity. The 12 most relevant 

descriptors according to this criterion are presented in Figure 7a. Their names are indicated in Table S3. We 

also considered another criterion for the ranking: in Figure 7b, the descriptor importance is measured in terms 

of information gain, an entropy-based metric.

In Figure 7, we can observe some interesting results. The descriptor most correlated to the enzymatic activity 

on its own is largestChain. This is a 1D constitutional descriptor from the RDK package and, as its names 

suggests, it quantifies the number of atoms in the largest chain on the molecular graph. MATS3dv is the 

Moran coefficient of lag 3 weighted by valence electrons. This is a 2D centered autocorrelation descriptor 

computed by the Mordred software. This descriptor being selected as important suggests that relatively 

symmetrical acceptors, such as aromatic-containing substrates47, may favor faster transglucosylation rates. 
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ATSC5dv and ATS5c are the centered Moreau-Broto autocorrelation descriptors of lag 5 weighted by 

valence electrons and by charges, respectively.

 If we look at the maximum information gain as the criterion for selecting descriptors, we also find multiple 

autocorrelation descriptors: MATSv5 and MATSp6 are the Moran autocorrelation coefficients of lag 5 

weighted by van der Waals atomic volumes, and of lag 6 weighted by atomic polarizability, respectively. 

GATSp6 and GATS1Z are the Geary autocorrelation coefficients of lag 6 weighted by atomic polarizability 

and of lag 1 weighted by atomic number, respectively. These two descriptors are considered relevant by both 

filtering algorithms. The fact that autocorrelation descriptors with different lags and different weightings are 

considered relevant by the algorithm suggests that the symmetry of the substrate, both in terms of 

connectivity and atomic makeup, would favor higher transglucosylation rates.

It is also interesting to see that, thanks to the pairwise-correlation reduction step, descriptors of diverse nature 

are considered in the ranking. For instance, Mor29 and Mor13 are the unweighted 3D-MoRSE descriptors 

of distance d = 29 and 13, as computed by Mordred. The large value of the scattering parameter d should 

make these descriptors insensitive to atom pairs situated at large distance but highly sensitive to short 

distances (<3 Å)48. This index may thus be capturing the effect of heteroatoms and multiple bonds (and thus 

bond distances) on the ability of the substrates to accept the glucosyl moiety. Mor06m is another 3D-MoRSE 

descriptor that is considered relevant. Notably, the topological charge indices JGI7 and JGI10 are also 

considered important by the information-based criterion. These indices have been shown to capture the 

charge distribution (e.g., the dipolar moment) within a molecule based solely on its topology, thus bypassing 

the complexity of 3D-optimizing the molecular structure49.

A major limitation of most filter methods is the fact that they barely consider the correlation between 

features50. Thanks to our filter strategy, however, this limitation could be greatly reduced. In Table S4, we 

can see that in a few cases the correlation between some of the indices shortlisted using the correlation to 

the enzymatic rate is close to the cutoff of 0.8. On average, however, the correlation between features is 

much lower, around 0.5, thanks to the design of findCorrelation algorithm. Interestingly, the correlation 

among features when using the information gain as the criterion is even lower, but the correlation to the 

enzymatic rate is more diverse, in the range R = 0.05-0.39 vs. R = 0.49-0.61 when using the correlation 

criterion (Table S4).
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Figure 7. Top feature selection results using as criteria the linear correlation and the information gain 

between the descriptors and the average enzymatic activity measured across all enzymes.

With the subset of 21 different molecular descriptors shortlisted in Figure 7, it becomes possible to train a 

variety of models to seek a relationship between the molecular descriptors, the type of enzyme, and the 

enzymatic activity over a given acceptor substrate. One possibility is to build a linear model. The filtering 

algorithm has reduced the dimensionality of the problem by rejecting variables that are not very informative. 

Next, we conduct a variable selection to build a model (notice that we still have 22 variables in our 

consideration set: 21 continuous molecular descriptors and 1 categorical variable or factor representing the 

enzyme type). One way to select variables is to use a stepwise selection method. To this end, we used the 

function stepAIC in the MASS R package. This algorithm adds or removes one variable at a time so that the 

new model leads to the highest reduction in the Akaike Information Criterion (AIC) relative to the previous 
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model considered. AIC is a statistic that allows evaluating the quality of a model: it is closely related to the 

correlation coefficient R, but it introduces a penalty for every degree of freedom consumed upon introduction 

of a new variable34. This way, we selected the following model:

Rate (nmolmin ―1 mg ―1) = Intercept(Enzyme) + 89.44·largestChain + 2.31·ATSC5dv     

n = 153      R2 =  0.68      R2 adj = 0.65      F(10, 142) = 29.5      AIC = 1665.6      p < 0.01

in which the independent term takes the values indicated in Table 2 depending on the query enzyme. 

Not surprisingly, the algorithm has identified the type of enzyme and the largestChain descriptor as the most 

relevant variables, and it has also selected ATSC5dv. One advantage of linear models is their ease of 

interpretability. On the one hand, the molecular descriptors largestChain and ATSC5dv have a positive effect 

on the turnover of a substrate, with largestChain having predominant effect. On the other hand, differences 

between values in Table 2 correspond to the expected differences in activity between enzymes when 

presented a given substrate. It thus becomes clear that mutants W243L and W234N are much more active on 

average than the wild-type enzyme. 

Table 2. Coefficients for the independent term as a function of the enzyme in the linear cheminformatics model.

Level Intercept (nmol min-1 mg-1)
WT 8.69

L183Q/W243N 79.74
W243C 121.46
W243V 216.75
W243I 248.40
W243T 330.22

L241D/W243N 462.87
W243N 519.52
W243L 562.16

The linear model does not overfit the data, as indicated by the close values of R2 and adjusted R2, the 

relatively low value of the AIC, and the model and every variable are considered highly significant by the 

corresponding F-tests. Remarkably, this simple linear model yields a high determination coefficient, R2 = 

0.68. One factor that may contribute to this is that, in our study, most of the enzyme variants considered are 

single mutants at the same position 243. It seems thus conceivable that these mutations have a localized 
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steric effect within the active site cleft of the enzyme. This effect can thus be represented reasonably well 

by a constant factor dependent on the specific residue introduced and a variable related to the substrate chain 

size, which is in agreement with the docking study in the previous section. On the other hand, this model has 

been built and trained considering all the data (except for the hydrolysis reactions). To increase the predictive 

power of the model, in the next section we explore more flexible models and assess their performance against 

validation data.

3.4.2. Nonlinear, mechanistic models

In this section, we report a model based only on the molecular descriptors classically used in Hansch’s 

method. The method has the advantage of using a few pre-selected descriptors to seek the models, making 

unnecessary the exploration of large spaces of chemical descriptors51. Hansch’s model is based on an extra-

thermodynamic linear free energy relationship (LFER). The LFER model decomposes a biological 

mechanism into a series of several steps. Then, it seeks a linear combination or weighted summation 

(additive model) of the free energies of the different steps. It considers as free energy contributions 

parameters like the negative logarithm of the ionization constant (pKi = -logKi) and the logarithm of the 

partition coefficient (logP). These parameters are related to the free energy of the ionization process and to 

the posterior membrane transport (partition) steps of the biological compound, respectively. Specifically, P 

is the partition coefficient of the biological compound in the system n-octanol/water and it measures the 

compound’s lipophilicity. Hansch’s model also considers other steric and electronic properties of the 

compounds, like their polar surface area or molar refractivity, which increases the flexibility of the method 

to describe enzymatic processes like the one investigated. The molecular descriptors used in this work are 

D1 = ALOGP (an estimate of logP), D2 = MR (molar refractivity), and D3 = TPSA (topological polar surface 

area). Moreover, as shown in Table S4, these different parameters show a limited correlation between them.

We evaluated multiple non-linear models using Artificial Neural Network (ANN) algorithms. The models 

use as input variables the type of enzyme and the 3 molecular descriptors calculated for the query compound. 

The networks built are Multi-Layer Perceptrons (MLP) with one hidden layer comprising 3, 6 or 9 neurons. 

Different combinations of identity, logistic, and exponential activation functions were considered. Table 3 

summarizes the results obtained. On the one hand, we can see that the performance of the ANN is satisfactory 

(the coefficient of variation of experimental repeats is around 5-15%), with values of the correlation 

coefficient around R = 0.75-0.86 for the training and validation sets. In this case, 4/17 of the compounds 

were assigned randomly to the validation set across all the enzymes (see SI03.xlsx). Thus, the activity results 

for 1-naphtol, 4-coumaric acid, kaempferol, and trans-cinnamic acid were not used in training the ANNs. 
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Notably, the predictions for these compounds achieved a similar accuracy to those used to train the networks 

(Table 3, validation).

On the other hand, we observe that there is not a great advantage in using a very flexible model over using a 

linear model with appropriate descriptors in our problem. In fact, the ANN that only uses identity functions 

shows a limited performance, which stems from the descriptors specified. Abruzzo et al. also reported that 

variable selection had a greater impact than the selection of the model in a comparative study of 

transcriptomics data classifiers52. Furthermore, we observed that the training of larger dense hidden layers is 

more prone to encounter local optima and it may also increase the chances of undesired overfitting. Taken 

together, these results also suggest that the true relationship between inputs and output is not highly nonlinear. 

Table 3. Performance of 10 different artificial neural networks predicting transglycosylation activity with multiple 

substrates and enzymes (for details, see SI03.xlsx).

Network Training Validation

Topology Hidden 
activation

Output 
activation RSE R RSE R

MLP 12-3-1 Logistic Identity 33438 0.7264 33494 0.7397

MLP 12-5-1 Logistic Identity 24856 0.8063 23629 0.8241

MLP 12-7-1 Logistic Identity 30873 0.7554 27619 0.7786

MLP 12-3-1 Exponential Identity 36041 0.7016 31832 0.7381

MLP 12-5-1 Exponential Identity 20831 0.8403 27899 0.7996

MLP 12-7-1 Exponential Identity 18715 0.8574 30130 0.7978

MLP 12-3-1 Exponential Identity 24504 0.8170 23676 0.8017

MLP 12-5-1 Exponential Identity 17788 0.8665 23239 0.8120

MLP 12-7-1 Exponential Identity 18145 0.8639 25942 0.7997

MLP 12-7-1 Identity Identity 46663 0.5822 32346 0.7488

Importantly, the models built can be used in practice to estimate the enzymatic activity of new acceptors over 

the different enzymes and thus used to screen libraries of potential substrates computationally. Given the 

reasonable performance of the different networks in Table 3, we averaged the individual predictions by all 

of them to reach an ensemble or consensus prediction. In Table S5, we report the results of exploring in silico 

the transglucosylation rates of a new set of putative acceptors by the wild-type Os9BGlu31 and different 

mutants. Although several of these compounds are expected to exhibit low activitiy, the results suggest that 
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3,4-dihydroxybenzoic acid, 6-benzylaminopurine, indole-3-acetic acid, and serotonin may be particularly 

reactive transglucosylation substrates over the enzyme variants W243L, W243N, and L241D/W243N. Aided 

by these predictions, we are already advancing the production of novel antibiotic and phytohormone 

glucoconjugates of interest, such as abscisic acid glucoside (preliminary results shown in Figure S8), on 

which we recently submitted a patent application.

In these results, glucose was transferred from 4NPGlc to a variety of compounds and acceptor positions, 

allowing us to prepare a broad array of valuable glucoconjugates. Other glucose donors have also been 

proposed53. For example, β-glucosyl fluoride was recently shown to be an effective donor for certain Leloir-

type glycosyltransferases in the presence of catalytic amounts of UDP54. With regards to the large-scale 

production of glucoconjugates, more atom-efficient donors could be pursued, which opens up another area 

of potential research. The cheminformatics pipeline proposed in this work could also be extended to new 

combinations of substrates and catalysts, thus enabling increasing possibilities for transglycosidases and 

other enzymes.

4. CONCLUSION

Glucoconjugate molecules have great interest to the fine chemistry and phytochemistry industries, and many 

of these compounds could be synthesized from feedstocks derived from biorefineries. However, the 

production of complex glucoconjugates using conventional synthetic approaches may not be sustainable or 

economical, as multiple synthetic steps of limited yield would be involved. In this work, we studied 16 new 

Os9BGlu31 variants and compared them to the wild-type Os9BGlu31 to identify new high-activity catalysts, 

like W243L, and to correlate their activities with properties of the substrates being converted. Furthermore, 

the combination of the mutations designed to increase the hydrophilicity of the active site, L183Q and 

L241D, with the high-activity W243N mutation led to catalysts with high hydrolytic activity compared to 

their transglycosylation activity. These mutations exhibited positive epistasis on other substrates as well, 

which may be related to their proximity in the protein fold. We went a step further and used computational 

methods to facilitate a greener catalyst selection depending on the target substrate with a pipeline that can 

be used or adapted by other researchers. Cheminformatics models can help minimize the resources consumed 

to investigate new substrates and maximize the throughput of new catalytic processes. Our models suggest 

that steric constraints in the active site have a crucial effect on the activity of a substrate, which agrees with 

the docking simulations. Careful variable selection can afford linear models with reasonable performance, 
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although higher accuracy could be attained with nonlinear artificial neural networks. These models are 

proving useful to identify substrates and efficiently produce new glucoconjugates of interest, such as 

phytohormone glucosides for enzymatic and plant physiology studies or antibiotic glycosides with improved 

solubility and pharmacological properties.

Supporting Information

Figure S1 illustrates the data analysis pipeline used. Chromatograms in Figures S2 to S7 show the transfer 

of glucose to different acceptors by Os9BGlu31 wild type and its mutants. Figures S8 demonstrates the 

synthesis of the phytohormone glucoconjugate abscisic acid glucose ester enabled by this study. Table S1 

presents the sequences of the oligonucleotides used as primers in the site-directed mutagenesis of 

Os9BGlu31. Table S2 indicates the docking scores on the wild type and W243L mutant. Table S3 indicates 

the names of the descriptors shortlisted. Table S4 is the correlation matrix between selected descriptors. 

Table S5 presents ensemble activity predictions for potential new transglucosylation acceptors. File 

SI01.xlsx contains the activity results in the screening of all mutants and the epistasis analysis. File SI02.xlsx 

presents the data from the high activity-mutants used to train the ML models. File SI03.xlsx contains 

cheminformatics data (descriptors and results of the ANNs). 
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