Cite this: Chem. Commun., 2012, 48, 8276-8278

COMMUNICATION

The direct reductive amination of electron-deficient amines with aldehydes: the unique reactivity of the Re_2O_7 catalyst[†]

Braja Gopal Das and Prasanta Ghorai*

Received 3rd May 2012, Accepted 2nd July 2012 DOI: 10.1039/c2cc33185c

An unprecedented direct reductive amination of electrondeficient amines such as Cbz-, Boc-, EtOCO-, Fmoc-, Bz-, $ArSO_2$ -, Ar_2PO -, *etc.* protected amines with aldehydes is achieved using the Re_2O_7 catalyst and silanes as the hydride source. Excellent regioselective mono-alkylation and chemoselective reductive-amination were observed.

The primary amines or their protected analogues are crucial as synthetic tools for the synthesis of various natural products, pharmaceuticals, dyes, agrochemicals, and fine chemicals.¹ Among the primary amines, the terminal primary amines are the most useful, but their selective synthesis is challenging, due to their high reactivity.

The direct reductive amination (DRA) of aldehydes with ammonia or N-protected amines is one of the most attractive strategies for the synthesis of terminal primary amines or their protected analogues, respectively.² In general, the usage of N-protected amines is more successful as the amine counterpart compared to ammonia because of the problem of over-alkylation of terminal primary amines derived from ammonia.^{3–10} Unfortunately, all the existing protocols for such DRA are *limited to the use of electron-rich amines [N-aryl or alkyl amines] only*; in particular, there is *literally no report for the same using useful electron-deficient amines [such as Boc-, Fmoc-, Cbz-, EtOCO-, Bz-, ArSO₂-, Ar₂PO-, etc. protected amines]* (Scheme 1). Even the reduction of preformed imines has been

Scheme 1 Direct reductive amination (DRA) of aldehydes with electron-deficient amines.

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India. E-mail: pghorai@iiserb.ac.in; Fax: +91 7554092329; Tel: +91 7554092325

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c2cc33185c

restricted to N-aryl imines.^{11,12} Nevertheless, the tedious procedure of deprotection of the N-aryl or -alkyl group from the corresponding products limits their synthetic applications.¹³

Electron-deficient groups on nitrogen such as N-Boc, N-Cbz, N-Fmoc, N-CO₂Et, N-Bz, N-SO₂Ar, N-POAr₂, *etc.* are known to be the most useful protecting groups in organic synthesis and many of them can easily be cleaved.¹³ However, the real challenge in the usage of such electron-deficient amines for DRA might be the difficulty in *in situ* imine formation¹⁴ which might cause direct reduction to proceed in preference to reductive amination. Therefore, a milder catalyst aimed towards the reductive amination of the above-mentioned electron-deficient amines with aldehydes would be of major significance.

As part of our ongoing interest in the utilization of oxo-rhenium catalysts for organic transformation,¹⁵ we found the unique reactivity of the Re₂O₇ catalyst for the current reductive amination of synthetically useful electron-deficient amines with excellent regio- and chemo-selectivity (Table 1). Recently, oxo-rhenium complexes in the high oxidation state have emerged as mild, non-toxic, and air/moisture stable catalysts for efficient hydrosilane activation¹⁶ as well as various organic transformations.¹⁷

 Table 1
 Optimization of the reaction conditions

Ar 1a	O NH ₂ -Cbz (2a , 1.2 equiv) Catalyst (3 mol%) CH ₂ Cl ₂ , rt Ar a (1 equiv)	HN Ar N + 3a Ar 4	Cbz + Ar 5	H Ar MeO		y vý
	Catalyst (3 mol%)	"H" source	t/h	3a ^a	4^d	5 ^d
1		NaBH ₄ ^b	1	0		100
2		$NaHB(OAc)_3^b$	1	0	_	100
3	CF_3CO_2H (1.0 equiv.)	PMHS ^e	1	0		
4	Bu ₂ SnCl ₂	PhSiH ₃ ^c	12	0		
5	InCl ₃	PhSiH ₃ ^c	12	0		
6	Ph ₃ PAuCl-AgOTf	H. E. ^{<i>c</i>,<i>e</i>}	12	0		
7	MoO ₂ Cl ₂	Et_3SiH^c	12	15		_
8	$ReIO_2(PPh_3)_2$	Et ₃ SiH ^c	2	0		
9	ReCl ₃ O(PPh ₃) ₂	Et_3SiH^c	2	0		_
10	ReCl ₃ O(SMe ₂)PPh ₃	Et ₃ SiH ^c	2	0		_
11	MeReO ₃ (MTO)	Et_3SiH^c	0.5	10		5
12	$\text{Re}_{2}O_{7}$ (1.5 mol%)	Et ₃ SiH ^c	0.5	96	<1	<1

^{*a*} Yield of the isolated product. ^{*b*} MeOH was used as a solvent; 1.5 equiv. of reagent used. ^{*c*} 1.2 equiv. of silane used. ^{*d*} The % was determined by ¹H NMR of the reaction mixture. ^{*e*} H. E. = Hantzsch Ester. ^{*f*} See ref. 18 and 19.

The various catalysts and/or reagents which have already been successful for DRA of electron-rich amines were screened by treatment of benzyl carbamate (2a) and p-MeO-benzaldehyde (1a) (summarized in Table 1). As shown, after a series of depressing failures using these traditional methods, we found the unique reactivity of the Re₂O₇ catalyst for the same. Interestingly, the reaction was completed within 30 min (96% isolated yield) with chemo- and regio-selective formation of the mono-alkylated product (3a) only (entry 12). Other solvents such as THF (0%), Et₂O (10%), toluene (14%), CH₃CN (86%) under similar conditions gave reduced conversion. With these optimized conditions in hand, we explored the scope of the reaction with different aldehydes 1b-w (Table 2).

In general, different substituted aromatic aldehydes, except for acid, amine, and hydroxyl substitutions, provided the corresponding protected amines 3b-h in very good to excellent yields (entries 1–9, Table 2). Heteroaromatic and α , β -unsaturated aldehydes also worked equally well (entries 10-13). Even the most challenging substrates such as straight chain aliphatic aldehydes 10-t, wherein over alkylation is generally a crucial problem, gave the corresponding mono-alkylated amines only (3m-r) (entries 14–19). The structurally sensitive aldehydes, such as cyclopropyl (1u) and ferrocenyl (1v) aldehyde, worked well (entries 20 and 21). Finally, the dimethyl acetal of benzaldehyde (1w) was tested and provided the corresponding amine with high yield (entry 22). Notably, in all cases almost complete regioselectivity to the monoalkylated amine 3 was observed.

Subsequently, we turned our attention toward the elaboration of the amines counterpart (Table 3). Amazingly, highly acid sensitive Boc- (2b), EtOCO- (2d), base sensitive Fmoc- (2c), and other electron-deficient functionalities including pTs- (2e),

Et₃SiH (1.2 equiv)

 Table 2
 Reductive amination of various aldehydes

	0 +	NH ₂ -Cbz	Et ₃ SiH (1.2 equiv) Re ₂ O ₇ (1.5 mol %)		R N ^{Cbz}
F	^{۲´} 1	2a (1.2 equiv)	CH ₂ Cl ₂ , rt	R 3	R 4
		R (1)		t/h	$3^{a,b}$ (%)
1		Ph- (1b)		1	3b , 90
2		p-MeC ₆ H ₅ .	- (1c)	2	3c , 87
3		p-Br-C ₆ H ₅ -	· (1d)	1	3d , 88
4		<i>p</i> -F-C ₆ H ₅ -	(1e)	0.5	3e , 88
5		p-NO ₂ -C ₆ H	H ₅ - (1f)	24	3f , 79
6		p-CN-C ₆ H	5- (1g)	4	3g , 64
7		p-HO ₂ C-C	₅ H ₅ - (1h)	24	_
8		p-NH ₂ -C ₆ H	H ₅ - (1i)	24	_
9		o-HO-C ₆ H	5- (1j)	24	3h , 18
10		2-Thiopher	nyl- (1k)	0.5	3i , 99
11		α-Napĥthy	l- (11)	2	3 j, 95
12		Cinnamyl-	(1m)	1	3k , 97
13		Ph-C≡C-	(1n)	12	31 , 73
14		Cyclohexyl	- (10)	1	3m , 98
15		Octyl- (1p)		2	3n , 98
16		n-Butyl- (1	q)	0.5	30 , 94
17		Ethyl- (1r)		0.5	3p , 94
18		Bn- (1s)		1	3q , 97
19		PhCH ₂ CH	2- (1t)	1.5	3r , 99
20		Cycloprop	yl- (1u)	1	3s , 98
21		Ferrocenyl	- (1v)	24	3t , 69
22		PhCH(OM	$(1\mathbf{w})_2$ $(1\mathbf{w})$	3	3b , 85

^a Yield of the isolated product. ^b No trace of **4** was detected on TLC and the ratio was confirmed by ¹H NMR of the reaction mixture.

 Table 3
 Reductive amination of various amines

Et ₃ SiH (1.2 equiv) Re ₂ O ₇ (1.5 mol %) CH ₂ Cl ₂ , rt	R EWG	3
t/\mathbf{h}	R	6 ^{<i>a</i>} (%)
12	Н	6a ,76
6	Н	6b , 92
1	Н	6c, 95
12	Н	6d , 74
12	Н	6e , 50
) 12^{b}	Н	6f , 68
12	Н	6g , 71
24	_	6h , 60
12^{c}		6i , 65
1^b	Н	6j , 81
(21) 20^{b}	Н	6k , 67
12 ^b		61. 93
24^b		6m . 83
24	—	
	$\begin{array}{c} \begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	$\begin{array}{c c} E_{t_3}SiH (1.2 \text{ equiv}) \\ \hline Re_2O_7 (1.5 \text{ mol } \%) \\ \hline CH_2Cl_2, \text{ rt} \\ \hline Ar \\ \end{array} \\ \hline \begin{array}{c} t/h \\ R \\ \hline R \\ \hline CH_2Cl_2, \text{ rt} \\ \hline Ar \\ \end{array} \\ \hline \begin{array}{c} t/h \\ R \\ \hline R \\ \hline CH_2Cl_2, \text{ rt} \\ \hline Ar \\ \hline R \\ \hline CH_2Cl_2, \text{ rt} \\ \hline Ar \\ \hline R \\ \hline$

^a Yield of the isolated product after column chromatography. ^b PhSiH₃ was used in THF under reflux. ^c PhCHO (1b) used as the aldehyde.

PhSO₂-(2f), Ph₂PO- (2g), PhCO- (2h) protected amines participate in DRA without any complication (entries 1-7, respectively). The electron-deficient secondary amines such as oxazolidone (2i) and isatin (2j) provided a high yield of corresponding N-benzylated-analogues 6h and 6i respectively (entries 8 and 9). However, the aromatic primary amines (2k-l) and electron rich amines such as indane (2m) and morpholine (2n) also worked equally well (entries 10–13). Unfortunately, the Cbz-protected hydrazine (20) remained unreactive under the standard reaction conditions.

Next, the DRA of ortho electron-deficient vinyl substituted arylaldehydes with amines (2a and 2d) was demonstrated (see Scheme 2). Interestingly, in the case of *o*-formylcinnamate (7), only the reductive amination products 9a-b were obtained, keeping the cinnamate functionality unaffected. Further, on treatment of 9a-b with catalytic LiHMDS, the substituted isoindoline 10a-b were obtained in excellent yields via the conjugate addition reaction. On the other hand, the o-formylchalcone (8) proceeded to produce the functionalized isoindoline 11 directly via a cascade reductive amination and conjugate addition pathway. Thus, a new stereocenter was generated via a sequential reductive amination-conjugate addition strategy.

Scheme 2 Reductive amination-conjugate addition reactions.

Surprisingly, the treatment of ketones such as cyclohexanone, adamantanone and 5-nonanone under these conditions with amine (2a) did not provide the corresponding amine via DRA.

	MeO	3 or 6	ons → MeO	MeO 12		
	3 or 6	Conditions	t/h	12 (conversions) ^a		
1 2 3	3a 6a 6b	A B C	6 1 2	Quantitative Quantitative Quantitative		

Conditions (i): Re₂O₇ (1.5 mol%), CH₂Cl₂, rt, 12h

Scheme 3 Reduction followed by substitution vs. DRA.

Finally, the easy de-protection of synthesized protected amines was carried out to provide free primary amines (see Table 4).

To gain further insight into the mechanism of this Re_2O_7 catalysis, we performed the following reactions. As shown in Scheme 3, under these conditions, the current reaction proceeded through the reductive-amination pathway (*e.g.*, formation of imine, followed by reduction using *in situ* formed [H-Re] species^{12,16}) only, not *via* reduction followed by the substitution process.

In conclusion, we have reported that the Re_2O_7 -catalyst is capable of promoting the reductive amination of electrondeficient amines with aldehydes. The reaction proceeded in an excellent chemo- and regio-selective manner. The sequential and cascade reductive amination–conjugate addition to provide derivatives of isoindoline, containing a chiral center, has also been exemplified. Finally, the easy deprotection of the corresponding products to free terminal primary amines has also been carried out. Further utilization of oxo-rhenium complexes for reductive amination of ketones is in progress.

P.G. thanks the DST, India, for a research grant and Dr Deepak Chopra for useful discussions. B.G.D. thanks the CSIR, New Delhi, for a fellowship. We are thankful to SID, IISc Bangalore, for providing us an opportunity to perform ICP-OES experiments. We are also thankful to Shubhadip Chakraborty, IISc Banglore for his help.

Notes and references

- (a) S. A. Lawrence, Amines: Synthesis, Properties and Applications, Cambridge University Press, Cambridge, 2004; (b) K. M. Patil, R. J. Naik, Rajpal, M. Fernandes, M. Ganguli and V. A. Kumar, J. Am. Chem. Soc., 2012, 134, 7196.
- 2 (a) For review: R. P. Tripathi, S. S. Verma, J. Pandey and V. K. Tiwari, *Curr. Org. Chem.*, 2008, **12**, 1093; (b) S. Gomez, J. A. Peters and T. Maschmeyer, *Adv. Synth. Catal.*, 2002, **344**, 1037.

- 3 DRA of ammonia with aldehydes: only example available to give free terminal primary amines: T. Gross, A. M. Seayad, M. Ahmad and M. Beller, Org. Lett., 2002, 4, 2055.
- 4 Reductive amination of ammonia with aldehydes gave only secondary amines: B. Miriyala, S. Bhattacharyya and J. S. Williamson, *Tetrahedron*, 2004, **60**, 1463.
- 5 For recent examples of DRA using catalytic hydrogenation: S. Fleischer, S. Zhou, K. Junge and M. Beller, *Chem.–Asian J.*, 2011, 6, 2240.
- 6 For recent examples of DRA using active borane based reducing agents: (a) M. Taibakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, A. Heydari and S. Khaksar, *Synthesis*, 2011, 490; (b) M. Tokizane, K. Sato, Y. Sakami, Y. Imori, C. Matsuo, T. Ohta and Y. Ito, *Synthesis*, 2010, 36.
- 7 For recent examples of DRA using transfer hydrogenation from Hantzsch ester: (a) R. I. Storer, D. E. Carrera, Y. Ni and D. W. C. MacMillan, J. Am. Chem. Soc., 2006, **128**, 84; (b) M. Zhang, H. Yang, Y. Zhang, C. Zhu, W. Li, Y. Cheng and H. Hua, Chem. Commun., 2011, **47**, 6605.
- 8 For recent examples of DRA using transfer hydrogenation from formates: (a) D. O'Connor, A. Lauria, S. P. Bondi and S. Sabaet, *Tetrahedron Lett.*, 2011, **52**, 129; (b) C. Wang, A. Pettman, J. Basca and J. Xiao, *Angew. Chem., Int. Ed.*, 2010, **49**, 7548.
- 9 For recent examples of DRA using transfer hydrogenation from alcohols: (a) D. Gnanamgari, A. Moores, E. Rajaseelan and R. H. Crabtree, *Organometallics*, 2007, 26, 1226; (b) F. Alonso, P. Riente and M. Yus, *Synlett*, 2008, 1289.
- 10 DRA using transfer hydrogenation using organosilanes: using trifluoroacetic acid (TFA)-polymethylhydrosiloxane (PMHS): (a) J. P. Patel, A.-H. Li, H. Dong, V. L. Korlipara and M. J. Mulvihill, *Tetrahedron Lett.*, 2009, **50**, 5975; using Ti(OiPr)₄-Et₃SiH: (b) S. Chandrasekhar, C. R. Reddy and M. Ahmed, *Synlett*, 2000, 1655; (c) D. Menche, F. Arikan, J. Li and S. Rudolph, *Org. Lett.*, 2007, **9**, 267; using Bu₂SnCl₂-PhSiH₃: (d) J. J. Kangasmetsa and T. Johnson, *Org. Lett.*, 2005, **7**, 5653; using InCl₃-PhSiH₃: (e) O.-Y. Lee, K.-L. Law and D. Yang, *Org. Lett.*, 2009, **11**, 3302; using MoO₂Cl₂-PhSi₃: (f) C. A. Smith, L. E. Cross, K. Hughes, R. E. Davis, D. B. Judd and A. T. Merritt, *Tetrahedron Lett.*, 2009, **50**, 4906; using Ga(OTf)₃-Et₃SiH: (g) G. K. S. Prakash, C. Do, T. Mathew and G. A. Olah, *Cattal. Lett.*, 2010, **137**, 111; using oxo-rhenium(v)-Et₃SiH: (h) S. C. A. Sousaa and A. C. Fernandesa, *Adv. Synth. Catal.*, 2010, **352**, 2218.
- 11 (a) G. Li, Y. Liang and J. C. Antilla, J. Am. Chem. Soc., 2007, 129, 5830; (b) C. Li, C. Wang, B. Villa-Marcos and J. Xiao, J. Am. Chem. Soc., 2008, 130, 14450; (c) L. C. Misal Castro, J.-B. Sortais and C. Darcel, Chem. Commun., 2012, 48, 151.
- 12 Only examples dealing with reductions of preformed imines with electron-deficient protecting groups: (a) K. A. Nolin, R. W. Ahn and F. D. Toste, J. Am. Chem. Soc., 2005, **127**, 12462; (b) K. A. Nolin, R. W. Ahn, Y. Kobayashi, J. J. Kennedy-Smith and F. D. Toste, Chem.-Eur. J., 2010, **16**, 9555.
- 13 T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, Wiley, New York, 3rd edn, 1999.
- 14 Usually involves multistep protocols, for details see: (a) M. Yus, J. C. González-Gómez and F. Foubelo, *Chem. Rev.*, 2011, 111, 7774; (b) W. Yan, D. Wang, J. Feng, P. Li, D. Zhao and R. Wang, *Org. Lett.*, 2012, 14, 2512.
- 15 (a) S. Pramanik and P. Ghorai, *Chem. Commun.*, 2012, **48**, 1820; (b) B. G. Das, R. Nallagonda and P. Ghorai, *J. Org. Chem.*, 2012, **77**, 5577.
- 16 (a) M. R. Luzung and F. D. Toste, J. Am. Chem. Soc., 2003, 125, 15760; (b) E. A. Ison, E. R. Trivedi, R. A. Corbin and M. M. Abu-Omar, J. Am. Chem. Soc., 2005, 127, 15374.
- (a) R. Hua and J.-L. Jiang, *Curr. Org. Synth.*, 2007, 4, 151;
 (b) P. Ghorai and P. H. Dussault, *Org. Lett.*, 2009, 11, 213;
 (c) S. Bellemin-Laponnaz, *ChemCatChem*, 2009, 1, 357; (d) A. T. Herrmann, T. Saito, C. E. Stivala, J. Tom and A. Zakarian, *J. Am. Chem. Soc.*, 2010, 132, 5962; (e) I. Volchkov, S. Park and D. Lee, *Org. Lett.*, 2011, 13, 3530.
- 18 Different sources of Re_2O_7 as well as different purity levels provided the similar reactivity (see ESI†).
- 19 The trace analysis of Re₂O₇ using the ICP-OES technique, the major contaminants detected [ppm]: Co (0.14), Cu (0.72), Fe (3.7). But, the current DRA using ppm level of these catalysts (such as CoCl₂, CuBr₂, and FeCl₃) in the absence of Re₂O₇ was not positive. This ruled out the possibility of current catalysis by trace impurities in Re₂O₇.