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ABSTRACT: JAK2 kinase inhibitors are a promising new class of agents for the
treatment of myeloproliferative neoplasms and have potential for the treatment of other
diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME
guided refinement of C-4 heterocycles to address metabolic liability present in
dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with
excellent kinome selectivity, in vivo PD activity, and safety profile.
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Myeloproliferative neoplasms (MPNs) are a subset of
myeloid malignancies that are characterized by the

expansion of a hematopoietic progenitor stem cell. MPNs
encompass polycythemia vera (PV), essential thrombocytope-
nia (ET), and primary myelofibrosis (PMF).1 In the majority of
cases, this cluster of diseases has been shown to be associated
with the somatic mutation JAK2-V617F that constitutively
activates the Janus kinase 2 (JAK2) enzyme, a member of the
JAK family of nonreceptor tyrosine kinases.2 In MPNs the
acquisition of the JAK2-V617F and other JAK2-STAT pathway
mutations result in cytokine-independent activation of the
pathway and the uncontrolled growth of hematopoietic cells
with erythrocytes, platelets, and granulocyte/monocytes being
the predominant lineages expanded in ET, PV, and PMF,
respectively.3 The uncontrolled growth of these cell lineages in
MPNs results in severe patient complications including
splenomegaly, hemorrhage, thrombosis, bone marrow fibrosis,
and transformation to acute myeloid leukemia. The overall
survival rate for patients afflicted with advanced myelofibrosis is
estimated to be 3−5 years.4

The causal role of JAK2 in MPNs is supported by significant
genetic and pharmacological data. Transgenic reconstitution of
JAK2 mutations into rodent bone marrow stem cells results in a
phenotype mirroring the main features of human MPNs
including splenomegaly, bone marrow fibrosis, and elevated
levels of certain hematopoietic lineages (e.g., erythrocytes,
leukocytes).5 Administration of small molecule JAK2 kinase
inhibitors reverses the pathophysiological features of the

transgenic phenotype.6 Moreover, clinical testing of two small
molecule JAK2 inhibitors (e.g., ruxolitinib, fedratinib, pacriti-
nib) showed effects on splenomegaly and normalization of
blood counts (Figure 1).7−9 Based upon the late stage clinical
efficacy and tolerability profile, ruxolitinib was approved to treat
myelofibrosis (MF). Several other JAK2 inhibitors with varying
degrees of JAK family as well as overall kinome selectivity
profiles are in mid to late-stage clinical trials for MF.10

However, it is important to note that most of these compounds
also inhibit other JAK family members that could be associated
with immunosuppression, an undesired side effect for this
indication. Additionally, other off-target kinome activities (e.g.,
FLT3) could further compromise the anticipated high safety
window needed for long-term treatment in MPNs.
We have recently disclosed the identification of a potent and

highly selective JAK2 inhibitor 1.11 X-ray crystallographic
studies of 1 bound to the JAK2 kinase domain indicated that it
engages the Tyr931 residue through hydrogen bonding with
the thiazole nitrogen atom. In addition, unfavorable interactions
of the 4,5-dimethylthiazole fragment with nonconserved
residues in the extended hinge region of other JAK family
members provided high selectivity. Further ADME profiling
indicated that 1 was rapidly metabolized across species and was

Received: June 9, 2015
Accepted: July 12, 2015

Letter

pubs.acs.org/acsmedchemlett

© XXXX American Chemical Society A DOI: 10.1021/acsmedchemlett.5b00226
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX

pubs.acs.org/acsmedchemlett
http://dx.doi.org/10.1021/acsmedchemlett.5b00226


susceptible to generation of reactive metabolites (vide inf ra),
which prevented its further progression. Herein we report
ADMET and structure-guided optimization of heterocycles at
the C-4 position of the imidazopyrrolopyridine core leading to
the discovery of a highly selective JAK2 inhibitor, BMS-911543
(11), as a clinical candidate for the treatment of MPNs. Earlier
we have reported biological characterization of BMS-911543.12

In vitro biotransformation studies with compound 1 using
human liver microsomes revealed the formation of a thiourea
metabolite in significant amounts (15%). This metabolic
process presumably involves cytochrome P450-mediated
oxidation of the thiazole ring to an epoxide and subsequent
opening to form a diol intermediate. Decomposition of the diol
intermediate leads directly to a thiourea and diketo species
(Figure 2). Thioureas have the potential to form an active
metabolite in vivo, which could disrupt thyroid function and
could also have adverse effects in lung, liver, and bone
marrow.13

Literature reports indicated that the introduction of either
electron withdrawing groups on the thiazole or increasing
sterics may reduce initial complexation with CYP enzymes,
which could suppress oxidative ring opening.13,14 Accordingly,
analogues 4−8 were prepared using the approach outlined in
Scheme 1, starting from aminopyridine 2.15,16

As anticipated, adding substitution on the 4-methyl group
(4) maintained the JAK family selectivity profile of the parent
compound (Table 1). However, this change still resulted in
formation of thiourea in significant amounts in in vitro
biotransformation studies. Introduction of electron withdraw-

ing groups led to identification of potent JAK2 inhibitors
(compounds 5−7) , which were significantly less susceptible to
generation of the thiourea metabolite. However, such
substitutions caused considerable erosion of selectivity versus
other JAK family kinases. With respect to the selectivity of the
amide-containing thiazoles, differences in the JAK family
members around JAK2 Gln 853 may provide a rationale for
the loss in selectivity observed. The smaller serine present in
JAK3 would likely be able to accommodate the larger polar
amide-containing analogues. However, the arginine present in
JAK1 could be positioned such that a favorable hydrogen bond
to the amide at the 4- or 5-position on the thiazole may also
contribute to loss of selectivity (Figure 3 for JAK1 model with
compound 6). Further steric bulk on the amide (8) failed to

Figure 1. JAK2 inhibitors.

Figure 2. Metabolism of 1.

Scheme 1a

aReagents and conditions: (a) benzoylisothiocyanate, acetone; then 1
N NaOH, ethanol, 60 °C, 72%; (b) 3-bromopentan-2-one, 60 °C,
44%; (c) methyl 2-bromo-3-oxobutanoate, ethanol, 65 °C, 84%; (d) 1
N NaOH, methanol, 65 °C, 93%; (e) methylamine, HATU, 2,6-
lutidine, DMF, 75%; (f) methyl 3-bromo-2-oxobutanoate, ethanol, 65
°C, 70%; (g) 1-bromo-1-(methylsulfonyl)propan-2-one ethanol, 65
°C, 62%; (h), 1,1-dioxo-1-thiomorpholine, HATU, 2,6-lutidine, DMF,
62%.

Table 1. Biotransformation and Thiazole Substitution
SARa,b,c

aAssay protocols are provided in the Supporting Information. bAssay
results are the average of at least two replicates. cPercent thiourea
determined in human liver microsomes. dOnly trace levels detected by
mass spectrometry. eNo data was generated.
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improve JAK family selectivity (compared to 1) and reduced
cellular potency.

We next turned our attention to explore other closely related
five-membered isosteric dialkylthiazole ring isosteres that would
dispose alkyl groups in the extended hinge region similar to 1
(Table 2). Accordingly, triazole analogue 10 was prepared
(Scheme 2).17

Triazole 10 displayed modest JAK2 potency and high JAK
family selectivity. We postulated the loss of potency may be due
to a disfavored interaction of the triazole ring nitrogen with the
pyridyl nitrogen forcing the rings to adopt a less planar
conformation than compound 1. Removal of a nitrogen from

the triazole ring re-established the planarity (vide inf ra) and led
to the discovery of 1,5-dimethyl pyrazole analogue 11.
Compound 11, henceforth referred to as BMS-911543,
displayed an IC50 of 1.1 nM against JAK2 and was
approximately 350-, 75-, and 65-fold selective vs JAK1, JAK3,
and TYK2, respectively. Assessment of dissociation constants of
BMS-911543 for JAK1, JAK2, and JAK3 indicated greater
selectivity with Ki values of 110, 0.48, and 360 nM, respectively.
BMS-911543 was also evaluated in the KinomeScan (formerly
Ambit) panel (consisting of 451 kinases) as well as the internal
kinase panel to assess overall kinome selectivity. It displayed a
high level of selectivity across the kinome (see Supporting
Information for complete data set).18

The X-ray structure of BMS-911543 bound to the JAK2
kinase domain displayed a similar binding mode as 1. One of
the nitrogens of the pyrazole ring formed a hydrogen bond with
Tyr931 while maintaining coplanarity with the pyrrolopyridine
scaffold. The 1,5-dimethyl pyrazole occupied the extended
hinge region where key residue differences such as JAK2-
Gln853, JAK3-Ser826, JAK1-Arg868, and TYK2-Arg901
resulted in high selectivity within the JAK family (see Figure
4 for location of other nonconserved residues that may affect
selectivity).19

As expected the introduction of bulkier substitution on the
pyrazole nitrogen resulted in further enhancement of selectivity
within the JAK family (>140-fold) as observed for the analogue
12 while retaining the positive attributes found in BMS-911543.

Figure 3. Model of 6 bound to the kinase catalytic domain of JAK1.
The carbons of 6 are colored in pink, and the carbons for JAK1 are
colored in green except for the residues near the C-4 group, which
differ in the JAK family (carbons are colored cyan). Oxygen atoms are
colored red, nitrogens blue, and sulfurs yellow. Hydrogen bonds are
indicated with dashed lines.

Table 2. C-4 Heterocycle SARa,b

aAssay protocols are provided in the Supporting Information. bAssay
results are the average of at least two replicates.

Scheme 2. a

aReagents and conditions: (a) acetyl isocyanate, acetone, 35 °C, 44%;
(b) methyl hydrazine, AcOH, 80 °C, 31%.

Figure 4. Crystal structure of BMS-911543 bound to the kinase
catalytic domain of JAK2. The carbons of BMS-911543 are colored in
pink and the carbons for JAK2 are colored in green except for the
residues near the C-4 group, which differ in the JAK family (carbons
are colored cyan). Oxygens are colored red, nitrogens blue, and sulfurs
yellow. Hydrogen bonds are indicated with dashed lines.

ACS Medicinal Chemistry Letters Letter

DOI: 10.1021/acsmedchemlett.5b00226
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acsmedchemlett.5b00226


In contrast, 1,3-dimethylpyrazole substitution (13) was found
to be detrimental to JAK2 potency and selectivity, probably due
to lack of the hydrogen bonding interaction with Tyr931 and
suboptimal hydrophobic interaction with the extended hinge
region. Consistent with our model, removal of the methyl
group from the pyrazole nitrogen (14) led to significant loss of
JAK family selectivity.
Although compound 12 displayed superior JAK family

selectivity, it demonstrated higher potential for QT prolonga-
tion in the patch clamp hERG channel assay (75% and 20%
inhibition for 12 and BMS-911543 at 30 μM, respectively). In
addition, 12 also showed an inferior pharmacokinetic profile
compared to BMS-911543 and hence was not progressed
further for additional studies.
BMS-911543 and related pyrazoles were synthesized using

the reaction sequence depicted in Scheme 3. Condensation of 2

with 4,4-bis(methylthio)but-3-en-2-one gave intermediate 15.
Initially, 14 was directly combined with methyl hydrazine
furnishing a 1:9 mixture of desired 1,5- and undesired 1,3-
dimethylpyrazole regioisomers (BMS-911543 and 13, respec-
tively).20 By subjecting 15 to condensation with tert-butyl 1-
methylhydrazinecarboxylate followed by subsequent treatment
with formic acid, BMS-911543 was formed exclusively.21 The
reaction sequence proceeds through the kinetically formed
intermediate 16, which undergoes cyclization after Boc-
deprotection to yield the desired regioisomer. Pyrazoles 12
and 14 were prepared from 15 in analogous manner as BMS-
911543.
In cellular assays, BMS-911543 showed potent antiprolifer-

ative activity in the SET-2 as well as BaF3-V617F engineered
cell lines (both dependent upon JAK2 pathway), with IC50
values of 60 and 70 nM, respectively. The antiproliferative
activity of BMS-911543 in SET-2 and BaF3-V617F cells
correlated with similar activity on constitutively active pSTAT5
(IC50 80 and 65 nM, respectively). In contrast, non-JAK2-

dependent cell lines (A549, MDA-MB-231, MiaPaCa-2) were
significantly less sensitive to the inhibitor treatment. The
excellent biochemical selectivity versus JAK1/3 translated to
good cellular and functional selectivity in an IL-2 mediated T-
cell proliferation assay (IC50 990 nM).12 Also, cell lines that rely
on other JAK family members, including CTLL2 and parental
BaF3 cells stimulated with IL-3, showed weak antiproliferative
activity for BMS-911543 (IC50 2.9 and 3.5 μM, respectively)
(Figure 5).12

BMS-911543 suppressed the pSTAT5 levels (mediated by
wild type JAK2) relative to vehicle control when stimulated
with thrombopoetin (TPO) in a mouse pharmacodynamic
model.12 The responses were dose dependent and resulted in
nearly complete normalization of pSTAT5 levels for 18 h at the
highest oral dose of 30 mg/kg. At an intermediate 10 mg/kg
oral dose, ∼65% reduction was observed up to 18 h, whereas at
the 5 mg/kg dose, approximately 50% reduction in pSTAT5 for
8 h was achieved. Observed pSTAT5 reductions correlated with
exposures of BMS-911543, with AUC0−8h values of 23, 41, and
109 μM·h, respectively, for dose levels of 5, 10, and 30 mg/kg.
In addition, BMS-911543 demonstrated a potent and sustained
(2 mg/kg up to 7 h) PD effect in blocking pSTAT5 formation
in mice grafted with human SET-2 cells harboring JAK2-V617F
mutation.
In in vitro ADMET profiling assays, BMS-911543 showed

good metabolic stability, excellent intrinsic permeability, and
moderate drug−drug interaction potential based upon CYP
inhibition of the CYP3A4 and CYP1A2 isoforms. In an in vitro
safety panel consisting of 45 targets, BMS-911543 showed IC50
> 25 μM for all targets except PDE4 (IC50 5.6 μM). BMS-
911543 was not mutagenic or clastogenic in exploratory Ames
and in vitro micronucleus assays, respectively. In addition to
weak activity in the patch clamp hERG assay, BMS-911543 also
showed similar trends in in vitro Na+ and Ca2+ binding assays,
indicating a low potential to cause cardiovascular effects (Table
3). In in vitro biotransformation studies with human liver
microsomes, BMS-911543 formed small amounts (∼4%) of 1-
demethylated metabolite (compound 14) as the major
metabolite.
The pharmacokinetics of BMS-911543 was investigated in

mice, rats, dogs, and monkeys (Table 4 and Supporting
Informatoin). The absolute oral bioavailability in solution was

Scheme 3a

aReagents and conditions: (a) NaH, 4,4-bis(methylthio)but-3-en-2-
one, DMF, RT, 75%; (b) methyl hydrazine, EtOH, 85 °C, 30%; (c)
tert-butyl 1-methylhydrazinecarboxylate, AcOH, 50 °C; (d) formic
acid, 60 °C, 65%.

Figure 5. Biochemical and cellular data summary of BMS-911543.
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>50% in all the species tested. In addition, the absorption of
BMS-911543 was not significantly impacted by particle
dissolution (suspension formulation), with a relative bioavail-
ability (vs solution) of ∼60% in rats and ∼100% in dogs.
In single-dose toxicological studies, BMS-911543 was well

tolerated up to 100 mg/kg in rats (mean AUC0−72h 11300 μM·
h) and dogs (AUC0−24 610 μM·h). In two-week repeat dose
studies in rats, a 15 mg/kg/day dose (Day 14 AUC0−24 3200
μM·h) was well tolerated. The most sensitive effects observed
were decreases in reticulocytes and subsequent reductions in
red blood cell mass. These effects, and observed decreases in
platelets, are consistent with JAK2 inhibition.
In summary, ADMET and X-ray structure-guided refinement

of the C-4 heterocycle to address metabolic liability present in
4,5-dimethylthiazole 1 led to the discovery of BMS-911543
(11), with excellent kinome selectivity, in vivo pharmacody-
namic activity, and safety profile. BMS-911543 is currently in
clinical trials for the treatment of MF.22
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