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Lithium Triethylborohydride as Catalyst for Solvent-Free 
Hydroboration of Aldehydes and Ketones
Krzysztof Kuciński* and Grzegorz Hreczycho 

Commercially available and inexpensive lithium 
triethylborohydride (LiHBEt3) acts as efficient catalyst for the 
solvent-free hydroboration of a wide range of aldehydes and 
ketones, which were subsequently transformed to corresponding 
1o and 2o alcohols in one-pot procedure at room temperature (rt). 

Introduction
The hydroboration of unsaturated compounds has become 
increasingly trendy in the past 5 years and is currently 
intensively explored by many scientists.1–4 A wide variety of 
transition metal complexes,5–19 as well as s-,20–33 p-34–41 and f-
block42–45 element species have already been documented as 
efficient catalysts for the hydroboration of carbonyls, nitriles 
and imines. The Okuda group has described pioneering work 
about well-defined series of light alkali metal hydridotriphenyl-
borates with coordinated tetradentate ligand L (L = tris{2-
(dimethylamino)ethyl}amine), that act as highly efficient 
catalysts for the hydroboration of a wide range of aldehydes 
and ketones.27 Unfortunately, this unique efficiency directly 
translates into a significantly reduced applicative potential 
(due to the preparation of such complexes and the need for 
specific ligand). On the other hand, Wu et al., have reported 
that commercially available NaOH powder can be utilized in 
hydroboration. However, all reactions were performed in 
highly toxic deuterated benzene.20 Lastly, the An group has 
described efficient addition of hydroboranes to carbonyls,22,25 
although required highly sensitive catalysts (sodium hydride 
and n-butyllithium). Currently, there is a very clear focus on 
the development of hydroelementation processes in 
accordance with green chemistry principles.46–52 More 
recently, our studies concerning the use of hydroboranes53,54 
have shown, that addition of B-H bond into C=O bonds in 

aldehydes can be efficiently performed under catalyst-free and 
solvent-free conditions (Fig. 1).55 

Figure 1. Selected examples of alkali metal catalysts utilized in 
hydroboration of carbonyls.

However, this green methodology required a higher 
temperature to ensure complete conversion of most 
aldehydes in a short time. What is more, this was completely 
ineffective for ketones and gave only trace amounts of the 
desired boronic esters, even at elevated temperature. 
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CH3

O

BpinH H

O

H

Bpin

+
solvent-free

rt, air

LiHBEt3 (0.001 equiv.)

(99%)

+ pinB-O-Bpin

(approx. 8%)

Therefore, in view of mentioned reports, the aim of this work 
was to check the possibility of utilizing inexpensive and easily 
accessible main group species in addition of hydroboranes to 
carbonyls. In this paper, we present an efficient method for 
the hydroboration of ketones and aldehydes (Fig. 1) at 
ambient temperature and air atmosphere, mediated by 
catalytic amounts of commercially available and inexpensive 
lithium triethylborohydride (LiHBEt3).

Results and Discussion
We began our studies by exploring reaction conditions for the 
envisioned hydroboration of acetophenone 1a with 
pinacolborane 2 under solvent-free conditions using 
commercially accessible alkali metal triethylborohydrides (M = 
Li, Na, K) as the catalysts (Table 1).

Table 1 Optimization of the reaction conditions.a

Entry Equiv. of MHBEt3 Time (min.) Conversion (%)b

LiHBEt3

1 0.1 5 99
2 0.01 5 99
3 0.001 5 99
4c 0.001 60 90
5d 0.001 5 99
6 0.0001 60 65

NaHBEt3

7 0.1 5 99
8 0.01 30 96
9 0.001 5 10

KHBEt3

10 0.1 5 99
11 0.01 30 98
12 0.001 5 10

aReaction conditions: rt, 1a (1.0 equiv.), 2 (1.15 equiv.), solvent-free. bDetermined by 

GC.c1.0 equiv. of 2. dTHF as the solvent.

It turned out that lithium triethylborohydride (Table 1, entry 3) 
is the most active catalyst. Other triethylborohydrides were 
less active in this process (see and compare the conversion of 
acetophenone, when the amount of the catalyst was 
decreased to 0.1 mol% - Table 1, entries 3, 9 and 12). Next, a 
control experiment confirmed that reaction can also be carried 
out in THF (Table 1, entry 5), as an alternative to solvent-free 
conditions, what can be particularly useful in case of solid 
substrates. On the other hand, the amount of pinacolborane 
was also examined. After few testing attempts, we decided to 
use 1.15 equiv. of HBpin in our further tests, due to the fact of 
slightly lower conversion of acetophenone to its boronic ester, 
when 1.0 equiv. of HBPin was utilized (Table 1, entry 4). Such 
result was surprising, in particular since GC analysis suggested 
the formation of desired boronic ester as a single product. 
However, the NMR spectroscopic analysis clearly confirmed 
the formation of symmetrical diboraxane (pinB-O-Bpin) as the 
by-product (approx. 8% of diboraxane, 1H NMR signal at 1.30; 

see Scheme 1 and 1H NMR spectra illustrated on Figure 1 in 
ESI).

Scheme 1. The hydroboration of acetophenone catalyzed by 
LiHBEt3.

In overall, the formation of diboraxane was observed in all 
tests (approx. 5-8%), but it was hardly detected by GC analysis 
(due to similar retention time of both compounds). As the 
result, the separation process via distillation could be very 
difficult, and only use of ketones with higher boiling points 
allowed to observe a single, clean GC peak derived from pinB-
O-Bpin. Inherently, alcohols (not boronic esters) were indeed 
envisioned to be the final products of each reaction. 
Therefore, as it was scheduled, we transformed all of afforded 
boronic esters (despite their isolation) directly to 
corresponding alcohols via one-pot hydrolysis. Of course, the 
complete removal of oxygen and water would cause an overall 
decrease in the formation of unwanted by-products. However, 
this would require an additional inert atmosphere, and 
preferably glove-box system, in order to obtain satisfactory 
results from the test. And that in turn could significantly 
reduce an applicative potential of our approach.

With the optimized reaction conditions in hand, we evaluated 
the versatility of LiHBEt3-catalyzed hydroboration of carbonyls, 
followed by one-pot hydrolysis (Table 2). In each case, after 
the hydroboration step, 1M solution of NaOH was added to 
get corresponding alcohols. Thus, the reaction smoothly 
proceeded with various ketones and aldehydes 1a-z bearing 
electron-donating or electron-withdrawing groups. In case of 
solid substrates, we used THF as the solvent. We were 
particularly delighted that derivatives possessing other 
potentially reactive functional groups (1g, 1h, 1y) could be 
chemoselectively converted only to desired alcohols (3g, 3h, 
3y).

Table 2 Hydroboration of various carbonyl derivatives with HBpin.a

R R'

O

BpinH R R'

O

H

Bpin

+
solvent-free

(or THF)
1a-z 2 rt, air

LiHBEt3
(0.001-0.003 eq.)

1 mL Et2O
rt, 30 min.

1 mL 1M NaOH
R R'

OH

H

3a-z

R' = H, CH3, CH2CH3, CH2Br, Ph;

CH3

OH

H
3a (94%)b

td = 5 min.

CH3

OH

H
3b (95%)
t = 20 min.

F

CH3

OH

H
3c (90%)
t = 15 min.

Br

CH3

OH

H
3d (91%)
t = 5 min.

H3C

CH3

OH

H
3e (93%)
t = 20 min.

H3CO

CH3

OH

H
3f (82%)
t = 15 min.

F3C

CH3

O

BpinH CH3

O

H

Bpin

+

MHBEt3
(M = Li, Na, K)

1a 2 3a

solvent-free
rt, air
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H

O

BpinH+

1z 2

1) LiHBEt3 (0.001 eq.)

1 mL Et2O
rt, 30 min.

2) 1 mL 1M NaOHH3C

O

rt, air, THF, 10 min.
H

OH

3z (95%)
H3C

O

H

[Li][HBEt3]

R R'

O

H

BEt3

Li

R R'

O

HBPin

R R'

O

H

BPin
NaOH(aq)

R R'

OH

H

aReaction conditions: 1 (1.0 equiv.), 2a (1.15 equiv.), 5 - 60 minutes. bIsolated yields of 

all products. c0.003 equiv. of LiHBEt3. dTime of hydroboration step for all products.

Finally, the reaction of acetophenone 1a with pinacolborane 2 
also proceeded well on a gram scale, providing 1-
phenylethanol (3a, 1.46 g) in 97% yield (see the ESI).

Next, intramolecular competition experiment was conducted 
(Scheme 2). 4-acetylbenzaldehyde (1z) underwent 
hydroboration selectively at the aldehyde, while preserving 
the ketone functionality. This finding indicates that our 
catalytic system allows the chemoselective conversion of 
aldehyde to boronic ester (and subsequently to alcohol (3z)), 
even in the presence of ketone group.

Scheme 2. Intramolecular competition experiment.

Based on our findings and the previously published 
literature,27,33,55,56 we assume the plausible mechanism (Figure 
2). LiHBEt3 acts as the catalyst and addition of carbonyl 
derivative is proposed in the first step. This was confirmed by 
11B NMR analysis (see ESI). Subsequently, obtained 
intermediate reacts with pinacolborane to form the 
corresponding boryl ether. 

Figure 2. Proposed catalytic cycle for the carbonyl 
hydroboration.

Conclusions
In summary, we have disclosed the accessibility of lithium 
triethylborohydride (LiHBEt3) as an efficient and simple 
catalyst for hydroboration of numerous ketones and 
aldehydes, bearing a wide array of electron-withdrawing and 
electron-donating groups. The key advantages of this process 
are its exclusive aldehyde selectivity over ketone, wide 
reducible functional group tolerance, mild reaction conditions 
(air atmosphere, rt), one-pot hydrolysis to desired alcohols, 
and very low loading of the catalyst, as well as its wide 
availability. Most of these transformations were additionally 
performed under solvent-free conditions. This simple LiHBEt3-
catalyzed hydroboration system will therefore be attractive to 
chemists and non-chemists alike, highlighting great potential 
for future applications to chemical synthesis. Further studies 
on the hydroboration of functional groups are currently 
underway.
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Lithium triethylborohydride as an efficient and easily accessible catalyst for hydroboration of 
numerous carbonyls under solvent-free conditions at room temperature.
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