ORGANOMETALLICS

Reactions of a Ruthenium(VI) Nitride with Rhodium(III) and Iridium(III) Aryl Complexes. Insertion of the Ru=N Group into the Rh–C Bonds of Trimesitylrhodium(III)

Enrique Kwan Huang, Wai-Man Cheung, Herman H. Y. Sung, Ian D. Williams, and Wa-Hung Leung*

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China

Supporting Information

ABSTRACT: The reaction of the Ru^{VI} nitride $L_{OEt}Ru^{VI}(N)Cl_2$ (1; L_{OEt} = $[Co(\eta^5 - C_5H_5){P(O)(OEt)_2}_3]^-)$ with Rh^{III}(mes)₃ (mes = mesityl) results in insertion of the Ru \equiv N group into the Rh–C bonds and formation of trinuclear (L_{OEt})ClRu^{IV}(μ -Cl)(μ -2-CH₂-4,6-Me₂C₆H₂N)-Rh^{III}(μ -Nmes)(μ -Cl)₂Ru^{IV}(L_{OEt}) (2), containing a cyclometalated μ mesitylimido ligand, whereas that with $Ir^{III}(dtbpy)R_3$ gives the μ -nitrido complexes $(dtbpy)R_3Ir^{III}(\mu-N)Ru^{IV}Cl_2(L_{OEt})$ (dtbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; R = 2,5-dimethylphenyl (3), 4-methoxy-2-methylphenyl (4)). The crystal structures of 2 and 4 have been determined.

0.5 Rh(mes) lr(dtbpy)R₃

ransition-metal nitrido complexes have attracted much attention because of their involvement as reactive intermediates in metal-catalyzed nitrogen fixation and their applications in nitrogen atom transfer.^{1–3} Of special interest are nitrido complexes of late transition metals that have been shown to exhibit electrophilic behavior.⁴ In particular, reactions of Os^{VI} nitrido complexes with nucleophiles resulting in N-X (X = C, N, O, S, P, etc.) bond formation have been studied extensively.⁵ Lau and co-workers reported that, in the presence of pyridine, [Ru^{VI}(N)(salen)(MeOH)]⁺ is capable of aziridination of alkenes and amination of alkanes.^{2a,c} This prompted us to explore the C–N bond forming reactions of Ru^{VI} nitrido complexes with facially coordinating ligands. Recently, we found that the Ru^{VI} nitride $L_{OEt}Ru^{VI}(N)Cl_2$

(1)⁶ containing Kläui's tripodal ligand L_{OEt}^{-} ([Co(η^{5} -C₅H₅)- $\{P(O)(OEt)_2\}_3^{-}$ (Chart 1) underwent migratory insertion with the Ru^{II} hydride $L_{OEt}Ru^{II}(H)(CO)(PPh_3)$ to afford a μ imido complex, L_{OEt}Cl₂Ru^{IV}(µ-NH)Ru^{II}(CO)(PPh₃)L_{OEt}.

The insertion of Ru≡N into the Ru−H bond is reminiscent of migratory insertion of metal hydrides with CO, lending support to Mayer's suggestion that late-transition-metal nitrides

can act as π acid ligands like CO due to the presence of lowlying M–N π^* orbitals.⁸ This led to us explore the possibility of insertion of 1 into metal-carbon σ bonds. In this work, we studied the reactions of 1 with the Rh^{III} and Ir^{III} triaryl complexes $Rh^{III}(mes)_3$ (mes = mesityl)⁹ and $Ir^{III}(dtbpy)R_3$ (dtbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; R = 2,5-dimethylphenyl (R^1) ,¹⁰ 4-methoxy-2-methylphenyl $(R^2)^{11}$). The former led to insertion of Ru≡N into the Rh-C bonds to give a trinuclear Ru^{IV}–Rh^{III}–Ru^{IV} μ -imido complex, whereas the latter yielded dinuclear Ru^{VI}–Ir^{III} μ -nitrido complexes. The characterization and crystal structures of the heterometallic imido and nitrido complexes will be presented.

Reactions of 1 with the homoleptic aryl complexes M^{IV}(o $tol)_4$ (M = Ru, Os; o-tol = 2-methylphenyl)¹² and Rh^{III}(mes)₃ have been examined. Whereas no reactions were found between 1 and $M^{IV}(o-tol)_4$, the reaction of 1 with 1 equiv of $Rh^{III}(mes)_3$ at room temperature led to the isolation of orange crystals characterized as the μ -imido complex (L_{OEt})ClRu(μ -Cl)(μ -2- $CH_2-4,6-Me_2CH_2C_6H_2N)Rh(\mu-Nmes)(\mu-Cl)_2RuL_{OEt}$ (2) in low yield (<10%) (Scheme 1) along with unreacted $Rh^{III}(mes)_3$. 2 could be obtained in better yield (38%) from the reaction of $Rh^{III}(mes)_3$ with 2 equiv of 1.¹³

To our knowledge, this is the first report of insertion of the nitrido ligand into a transition-metal-carbon σ bond, although the insertion of Os≡N into B−C bonds of organoboranes has been observed previously.¹⁴ The ¹H NMR spectrum of 2 (Figure S2, Supporting Information) displayed sharp signals

Received: November 23, 2012 Published: January 24, 2013

Scheme 1. Reactions of 1 with Rh^{III} and Ir^{III} Triaryl Complexes

assignable to the L_{OEt}^{-} and mesityl ligands in the normal regions, indicative of the diamagnetic nature of the complex. **2** is tentatively formulated as a Ru^{IV}-Rh^{III}-Ru^{IV} complex. It should be noted that the related Ru^{IV}-Ru^{II} μ -imido complex (L_{OEt})Cl₂Ru^{IV}(μ -NH)Ru^{II}(CO)(PPh₃)(L_{OEt}) is also diamagnetic.⁸ Figure 1 shows the molecular structure of **2**. The Ru^{IV}-N bond distances (1.821(5) and 1.859(5) Å) are short and comparable to that in (L_{OEt})Cl₂Ru^{IV}(μ -NH)Ru^{II}(CO)(PPh₃)-(L_{OEt}) (1.818(4) Å),⁸ whereas the Rh^{III}-N distances (1.966(6) and 1.963(5) Å) are quite long (cf. 1.8946(18) and 1.8969(19) Å in (η^{5} -C₅Me₅)₂Rh₂(μ -NAr), where Ar = 2,6-diisopropylphenyl¹⁵), suggesting that the bonding in **2** is best described as Ru^{IV}=N(R)-Rh^{III}-N(R)=Ru^{IV} featuring unsymmetrical imido bridges. The Rh-Ru separations are 2.9026(6) and 3.1228(6) Å, and the Ru^{IV}-N-Rh^{III} angles are 101.5(3) and 109.7(3)°.

Reactions of **1** with dtbpy-stabilized Ir^{III} and Rh^{III} triaryl complexes have also been studied. NMR spectroscopy indicated

that 1 reacted rapidly with $Rh^{III}(dtbpy)(R^1)_3$ in C_6D_6 to give a mixture of products. Recrystallization from hexane led to isolation of $Rh^{III}(dtbpy)(R^{i})_{3}$ along with a minor unknown species. On the other hand, treatment of 1 with Ir^{III}(dtbpy)- $(R^1)_3$ afforded the μ -nitrido complex $(dtbpy)(R^1)_3 Ir^{III}(\mu$ -N)Ru^{VI}Cl₂(L_{OEt}) (3) (Scheme 1). Complex 3 is remarkably stable and could be purified by silica column chromatography in air without decomposition. The ¹H NMR spectrum of 3 (Figure S4, Supporting Information) showed sharp signals assignable to the $Ir^{III}(dtbpy)(R^1)_3$ and $L_{OEt}Ru$ moieties in the normal regions, indicative of the diamagnetic nature of the complex. Similarly, 1 reacted with $Ir^{III}(dtbpy)(R^2)_3$ to give $(dtbpy)(R^2)_3 Ir^{III}(\mu-N)Ru^{VI}Cl_2(L_{OEt})$ (4), which has been characterized by X-ray crystallography (Figure 2). The Ir-C distances (2.070(6)-2.167(6) Å) are slightly longer than those in Ir^{III}(dtbpy)(R¹)₃ (1.988(6)-2.041(5) Å).¹⁰ The Ru-N and Ir-N(nitride) distances are 1.679(5) and 1.872(5) Å, respectively, and the Ru-N-Ir linkage is slightly bent with an angle of $163.7(3)^\circ$. The Ru–N distance in 4 is intermediate between those of Ru-N triple (e.g., 1.573(6) Å in 1⁶) and double bonds (e.g., 1.718(3) Å in $[Ru_2(\mu-N)Cl_{10}]^{3-16})$ bonds, whereas the Ir^{III}-N distance is significantly shorter than a typical Ir-N single bond as a result of a $d_{\pi}(Ir) - \pi^*(Ru-N)$ interaction. Therefore, the bonding in 4 can be described by two resonance forms, $Ru^{VI} \equiv N - Ir^{III} \leftrightarrow Ru^{IV} = N = Ir^{V}$. The latter is isoelectronic with the antiferromagnetically coupled Ru^{IV}=N=Ru^{IV} system, e.g. $[{L_{OEt}RuCl_2}_2(\mu - N)]^{-,17}$ which is diamagnetic. Unlike $Ir^{III}(dtbpy)(R^1)_3$, which exhibits a reversible $Ir^{IV}-Ir^{III}$ couple of +0.18 V versus $Cp_2Fe^{+/0,10}$ no oxidation events were found in the cyclic voltammogram of 3 in CH_2Cl_2 (up to +1.5 V). This result can be explained by the fact that the Ir center in 3 is strongly stabilized by the π -accepting Ru^{VI} nitride, rendering the Ir^{III}–Ir^{IV} oxidation unfavorable.

A plausible mechanism for the formation of **2** is shown in Scheme 2. It seems reasonable to assume that the first step involves the coordination of the Ru \equiv N group to Rh, because similar μ -nitrido complexes were formed from **1** and

Figure 1. Molecular structure of 2. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å): Rh(2)-N(3) = 1.966(6), Rh(2)-N(4) = 1.963(5), Rh(2)-C(137) = 2.038(7), Ru(3)-N(3) = 1.821(5), Ru(4)-N(4) = 1.859(5), Rh(1)-Ru(1) = 2.9026(6), Rh(1)-Ru(2) = 3.1228(6).

Figure 2. Molecular structure of 4. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angles (deg): Ir(1)-N(1) = 1.872(5), Ir(1)-N(2) = 2.154(5), Ir(1)-N(3) = 2.194(5), Ir(1)-C(51) = 2.167(6), Ir(1)-C(61) = 2.070(6), Ir(1)-C(71) = 2.100(7), Ru(1)-Cl(1) = 2.3445(16), Ru(1)-Cl(2) = 2.3582(17), Ru(1)-N(1) = 1.679(5); Ru(1)-N(1)-Ir(1) = 163.7(3).

Scheme 2. Plausible Mechanism for Formation of 2

Ir^{III}(dtbpy)R₃. Insertion of the Ru \equiv N group into a Rh–C bond affords a μ -imido intermediate, **A**. It may be noted that the migratory insertion of Rh^{III}(mes)₃ with CO has been reported previously.⁹ Addition of a second Ru^{VI} nitride followed by migratory insertion gives a di- μ -imido species, **B**. Finally, intramolecular C–H activation of a mesitylimido ligand in **B** and reductive elimination of mesitylene yields the cyclometalated product **2**.

In summary, we have demonstrated that, analogous to CO, the Ru^{VI} nitride 1 can insert into the Rh–C bonds in Rh(mes)₃ to give a heterometallic μ -imido complex. This is a new reaction for transition-metal nitrides that may provide a new strategy for the synthesis of dinuclear imido complexes. On the other hand, reaction of 1 with Ir^{III}(dtbpy)R₃ afforded dinuclear Ru^{VI}–Ir^{III} nitrido complexes that show Ir–N multiple-bond character. No migratory insertion was found between $Ir^{III}(dtbpy)R_3$ and 1, possibly due to the high metal–carbon bond strength and/or the chelate effect of dtbpy. Additional work is needed to elucidate the mechanism of the insertion of nitride into the metal–carbon bond.

ASSOCIATED CONTENT

Supporting Information

Text, tables, figures, and CIF files giving experimental details and characterization data of the complexes reported and crystallographic data for **2** and **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chleung@ust.hk.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Hong Kong Research Grants Council (projects 603111 and 602310) and the Hong Kong University of Science and Technology for support.

REFERENCES

(1) (a) Askevold, B.; Nieto, J. T.; Tussupbayev, S.; Diefenbach, M.; Herdtweck, E.; Holthausen, M. C.; Schneider, S. Nat. Chem. 2011, 3, 532–537. (b) Scepaniak, J. J.; Vogel, C. S.; Khusniyarov, M. M.; Heinemann, F. W.; Meyer, K.; Smith, J. M. Science 2011, 331, 1049– 1052. (c) Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120–125. (d) Schöffel, J.; Rogachev, A. Y.; George, S. D.; Burger, P. Angew. Chem., Int. Ed. 2009, 48, 4743–4738. (e) Schrock, R. R. Acc. Chem. Res. 2005, 38, 955–962.

(2) (a) Man, W.-L.; Lam, W. W. Y.; Kwong, H.-K.; Yiu, S.-M.; Lau, T.-C. Angew. Chem., Int. Ed. 2012, 51, 9101–9104. (b) Scepaniak, J. J.; Bontchev, R. P.; Johnson, D. L.; Smith, J. M. Angew. Chem., Int. Ed.

2011, 50, 6630-6633. (c) Man, W.-L.; Lam, W. W. Y.; Yiu, S.-M.; Lau, T. -C.; Peng, S.-M. J. Am. Chem. Soc. 2004, 126, 15336-15337.
(d) Silvia, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 446-

447. (3) (a) Leung, S. K.-Y.; Huang, J.-S.; Liang, J.-L.; Che, C.-M.; Zhou,

(3) (4) Leting, S. K.-T.; Huang, J.-S.; Liang, J.-L.; Che, C.-M.; Zhou, Z.-Y. Angew. Chem., Int. Ed. **2003**, 42, 340–343. (b) Bois, J. D.; Tomooka, C. S.; Hong, J.; Carreira, E. M. Acc. Chem. Res. **1997**, 30, 364–372.

(4) Berry, J. F. Comments Inorg. Chem 2009, 30, 28-66.

(5) Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003, 42, 8140-8160.

(6) Yi, X.-Y.; Lam, T. C. H.; Sau, Y. -K.; Zhang, Q. -F.; Williams, I. D.; Leung, W.-H. Inorg. Chem. 2007, 46, 7193-7198.

(7) Yi, X.-Y.; Ng, H.-Y.; Williams, I. D.; Leung, W.-H. Inorg. Chem. 2011, 50, 1161–1163.

(8) Crevier, T. J.; Lovell, S.; Mayer, J. M. Chem. Commun. 1998, 2371–2372.

(9) Hay-Motherwell, R. S.; Koschmieder, S. U.; Wilkinson, G.; Hussan-Bates, B.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. **1991**, 2821–2830.

(10) Sau, Y.-K.; Chan, K.-W.; Zhang, Q.-F.; Williams, I. D.; Leung, W.-H. Organometallics 2007, 26, 6338–6345.

(11) $\operatorname{Ir}^{\operatorname{III}}(\operatorname{dtbpy})(\mathbb{R}^2)_3$ was prepared similarly as for $\operatorname{Ir}^{\operatorname{III}}(\operatorname{dtbpy})(\mathbb{R}^1)_3^{10}$ by alkylation of $\operatorname{Ir}(\operatorname{dbpy})\operatorname{Cl}_3(\operatorname{DMF})$ (DMF = N,N'-dimethylformamide) with $\mathbb{R}^2\operatorname{MgBr}$ in tetrahydrofuran.

(12) Savage, P. D.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1988, 669–673.

(13) NMR spectroscopy indicated that **2** was formed in over 70% yield from the reaction of **1** with $Rh(mes)_3$. However, it was difficult to isolate **2** in crystalline form from the reaction mixture due to its lipophilicity.

(14) Crevier, T. J.; Mayer, J. M. Angew. Chem., Int. Ed. 1998, 37, 1891–1893. (b) Crevier, T. J.; Bennett, B. K.; Soper, J. D.; Bowman, J. A.; Dehestani, A.; Hrovat, D. A.; Lovell, S.; Kaminsky, W.; Mayer, J. M. J. Am. Chem. Soc. 2001, 123, 1059–1071. (c) Brown, S. N. J. Am. Chem. Soc. 1999, 121, 9752–9753.

(15) Takemoto, S.; Otsuki, S.; Hashimoto, Y.; Kamikawa, K.; Matsuzaka, H. J. Am. Chem. Soc. 2008, 130, 8904–8905.

(16) Griffith, W. P.; McManus, N. T.; Skapski, A. C. J. Chem. Soc., Chem. Commun. **1984**, 434–435.

(17) Yi, X.-Y.; Ng, H.-Y.; Cheung, W.-M.; Sung, H. H. Y.; Williams, I. D.; Leung, W.-H. Inorg. Chem. **2012**, *51*, 10529–10535.

Communication