Preliminary communication

Stereospecific synthesis of ethyl (2-acetamido-2-deoxy- α -D-glucopyranosyl)-acetate

FRANCESCO NICOTRA, GIOVANNI RUSSO*, FIAMMA RONCHETTI, and LUCIO TOMA

Istituto di Chimica Organica della Facoltà di Scienze, Università di Milano, Centro per lo Studio delle Sostanze Organiche Naturali del CNR, Via Venezian 21, 20133 Milano (Italy)

(Received June 3rd, 1983; accepted for publication, October 6th, 1983)

C-Glucopyranosides are a class of compounds that are of interest as chiral intermediates and enzyme inhibitors¹⁻³. The synthesis of the β derivatives of C-glucopyranosides may be effected easily with a high degree of stereospecificity³⁻⁶, whereas few examples of stereospecific synthesis of α derivatives have been reported^{7,8}. No synthesis of C-glycosyl derivatives of 2-acetamido-2-deoxy-D-glucose has been reported hitherto, although such compounds could be useful as enzyme inhibitors.

We now report the first example of stereospecific synthesis of an α -C-glycosyl derivative of 2-acetamido-2-deoxy-D-glucose, namely ethyl (2-acetamido-4,6-O-benzyl-idene-2-deoxy- α -D-glucopyranosyl)acetate (2).

The synthesis was based on the finding⁹ that 2-O-acetyl-D-glucopyranoses reacted with (ethoxycarbonylmethylene)triphenylphosphorane to afford an α_{β} -mixture of C-D-glucopyranosyl derivatives. A solution of 2-acetamido-4,6-O-benzylidene-2-deoxy-D-glucopyranose¹⁰ (1) in acetonitrile containing 2 equiv. of (ethoxycarbonylmethylene)triphenylphosphorane was boiled for 30 h. Flash chromatography of the crude product gave a C-glycosidic fraction (50%) which was shown to be ethyl (2-acetamido-4,6-O-benzylidene-2-deoxy- α -D-glucopyranosyl)acetate (2), m.p. 213--214° (from methanol), $[\alpha]_D$ +33° (c 0.7 methanol) (Calc. for C₁₉H₂₅NO₇: C, 60.77; H, 6.64; N, 3.69. Found: C, 60.50; H, 6.48; N, 3.82). N.m.r. data: ¹H (200 MHz, CDCl₃), δ 1.23 (t, 3 H, J 7 Hz, Me), 1.95 (s, 3 H, NAc), 2.48 (dd, 1 H, $J_{1'a,1'b}$ 15, $J_{1'a,1}$ 6 Hz, H-1'a), 2.66 (dd, 1 H, $J_{1'b,1'a}$ 15, $J_{1'b,1}$ 10 Hz, H-1'b), 3.3-4.3 (m, 9 H), 4.73 (dt, 1 H, $J_{1,1'b}$ 10, $J_{1,1'a}$ 6, $J_{1,2}$ 6 Hz, H-1), 5.43 (s, 1 H, OCHO), 6.68 (d, J 7 Hz, NH), 7.2-7.5 (m, 5 H, Ph); ¹³C (25.2 MHz, C₅D₅N), 14.3 (q, CH₃CH₂O), 22.9 (q, COCH₃), 33.8 (t, C-1'), 54.9 (d), 60.7 (t, C-6), 65.1 (d), 68.2 (d), 69.4 (t, OCH₂CH₃), 73.4 (d), 84.2 (d), 102.1 (d, OCHO), 127.0, 128.3, 129.1 and 138.4 (Ar), 171.1 and 171.2 p.p.m. (s, C=O).

Comparison of the values of $J_{1,2}$, δ H-1', δ H-1, and δ C-1' with those for compounds of similar structure (see Table I) clearly indicates the α configuration of 2. The chemical shifts of the signals for C-1' are at higher field (33-34 p.p.m.) in the α isomers and at lower field (37-38 p.p.m.) in the β isomers. This difference is useful for assigning the configuration of C-glucopyranosides.

0008-6215/83/\$03.00 © 1983 Elsevier Science Publishers B.V.

TABLE I

N.M.R. DATA FOR SOME C-D-GL	UCOPYRANOSIDES
-----------------------------	-----------------------

Compound	Config.	J _{1,2} b (Hz)	δ H-1'	δ H-1	C·1' (p.p.m.)
2	α	6	2.48, 2.66	4.73	33.84
3°	α	6	2.58, 2.72	4.64	33.20
4 ^{<i>a</i>}	α	6	2.56, 2.72	4.64	33.74
5°	β	10	2.47	3.90	37.27
6 ^{<i>a</i>}	β	10	2.44, 2.56	3.83	37.61

^{*a*} Compounds 4 and 6 were obtained¹¹ by reaction of 2-O-acetyl-3,4,6-tri-O-benzyl-D-glucopyranose with (ethoxycarbonylmethylene)triphenylphosphorane and isolated by preparative t.l.c. Compound 4 was an oil, $[\alpha]_D + 36.2^\circ$ (c 1.4, chloroform). Compound 6 was an oil, $[\alpha]_D + 10.8^\circ$ (c 1.4, chloroform). ^{*b*} Values of 5.8 and 9.6 Hz, respectively, have been reported⁸ for α - and β -allyl derivatives.

These results give further support to the hypothesis⁹ that the presence of a participating group at C-2 in the starting sugar facilitates the cyclisation of the Wittig products. Also, the reaction employed has previously led to α,β -mixtures⁹ or to the thermo-dynamically more-favored β isomer⁶.

Catalytic hydrogenolysis of 2 (H₂-Pd/C) afforded pure ethyl (2-acetamido-2-deoxy- α -D-glucopyranosyl)acetate (7), m.p. 163–165° (from methanol-ethyl ether), $[\alpha]_{D}$ +61.2° (c 1, methanol) (Calc. for C₁₂H₂₁NO₇: C, 49.48; H, 7.27; N, 4.81. Found C, 49.24; H, 7.09; N, 4.33). ¹H-N.m.r. data (200 MHz, CD₃OD): δ 1.25 (t, 3 H, J 7 Hz, Me), 1.97 (s, 3 H, NAc), 2.51 (dd, 1 H, $J_{1'a,1'b}$ 15, $J_{1'a,1}$ 5 Hz, H-1'a), 2.71 (dd, 1 H, $J_{1'b,1'a}$ 15, $J_{1'b,1}$ 10 Hz, H-1'b), 3.3–3.8 (5 H), 3.97 (dd, 1 H, $J_{1,2}$ 5, $J_{2,3}$ 10 Hz, H-2), 4.14 (q, 2 H, J 7 Hz, OCH₂CH₃), and 4.56 (dt, 1 H, $J_{1,1'a}$ 5, $J_{1,1'b}$ 10, $J_{1,2}$ 5 Hz, H-1).

ACKNOWLEDGMENT

This contribution is part of the "Programma finalizzato Chimica Fine e Secondaria", C.N.R., Italy.

REFERENCES

- 1 F. Nicotra, F. Ronchetti, and G. Russo, J. Org. Chem., 47 (1982) 4459-4462.
- 2 M. Chmielewski, J. N. BeMiller, and D. P. Cerretti, Carbohydr. Res., 97 (1981) C1-C4.
- 3 S. Hanessian, T. J. Liak, and D. M. Dixit, Carbohydr. Res., 88 (1981) C14-C16.
- 4 S. Hanessian and A. G. Pernet, Can. J. Chem., 52 (1974) 1266-1279.
- 5 E. F. Fuchs and J. Lehmann, Chem. Ber., 108 (1975) 2254-2260.
- 6 B. Fraser-Reid, R. David-Dawe, and D. B. Tulshian, Can. J. Chem., 57 (1979) 1746-1749.
- 7 J. R. Pougny, M. A. M. Nassr, and P. Sinaÿ, J. Chem. Soc., Chem. Commun., (1981) 375-376.
- 8 M. D. Lewis, J. Kun Cha, and Y. Kishi, J. Am. Chem. Soc., 104 (1982) 4976-4978.
- 9 F. Nicotra, F. Ronchetti, and G. Russo, J. Org. Chem., 47 (1982) 5381-5382.
- 10 L. Holmquist, Acta Chem. Scand., 24 (1970) 173-178.
- 11 F. Nicotra and G. Russo, unpublished results.