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The development of efficient methods to access privileged 
structural motifs is one of the most important tasks in 
contemporary organic chemistry.1-2 As a prime instance, 3-
hydroxy 2,6-disubstituted piperidines/3-hydroxy 2,5-
disubstituted pyrrole exist as subunits for many natural products3 

and biologically active molecules in life-science industry.4  Some 
representative pyrrolidine and piperidine alkaloids are shown in 
Figure 1,  which include hyacinthacine B5 (1),5 (-)-morusimic 
acid D (2),6 (-)-sedacryptine (3),7 (-)-azimine (4)8 and (-)-
carpaine (5).9 Due to the divergent activities and attractive 
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Figure 1. Representative 2,6-disubstituted piperidine/2,5-
disubstituted pyrrole alkaloids.

structures, asymmetrically synthetic approaches to these natural 
products and their analogies have attracted wide attention and a 
number of powerful approaches have been reported.5-9,13 
Particularly, it is very difficult to selectively introduce the 
substituents to C-6/C-5 position for piperidine or pyrrole 
skeleton.3,6c,10-13 Although a number of powerful approaches 
including one-pot successive addition- reduction process of imide 
(Figure 2, eq.1)11, or nucleophilic substitution of silyl enol 
ether12a or organoboron reagent12b with N,O-acetal (Figure 2, eq.2) 

have been achieved in past decade, the direct method to introduce 
the substituents at C-6/C-5 position of piperidine or pyrrole 
skeleton is still a challenging work. For examples, the former 
needs a harsh reaction condition, the latter has limited substrate 
scope. Recently, our group have established approach to 3-
hydroxy-2,6-disubstituted piperidine scaffold through one–pot 
Mannich process of N,O-acetal with ketone (Figure 2, eq.3)13. To 
our best knowledge, there is no direct way to introduce benzyl 
substituents in C-6/C-5 position for piperidine or pyrrole. In the 
past decade, functionalized organozinc reagents, which are 
generally prepared through insertion reaction of zinc metal into 
various substituted organic halides, have demonstrated 
advantages for many transformations in modern organic 
synthesis.14 For example, functionalized organozinc reagents 
were successfully applied in single-step reactions with N,O-
acetals by Konakahara and our group,15 carbonyl,16 nitrones,17 as 
well as in cascade process like addition-elimination18 or addition-
migration.19 Encouraged by our previous work on N,O-acetals 
(Fig. 2, eq. 1-2),12,13,15b we envisioned that the chiral 3-tert-butyl-
dimethylsiloxy-2-substituted 6-benzyl piperidine scaffold 7 could 
be prepared through the nucleophilic substitution process of N,O-
acetal 6 with functionalized organozinc reagents (Fig.2, eq. 4).
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An efficient approach to access chiral 3-tert-butyl-dimethylsiloxy 2,6-disubstituted 6-benzyl 
piperidines was developed through nucleophilic addition of N,O-acetals with organozinc 
reagents. A number of substituted benzyl zinc reagents could react with N,O-acetals 6a-6e, 
affording the desired products 7a-7j and 9a-9q in good to excellent yields and with high 
diastereoselectivities.

2009 Elsevier Ltd. All rights reserved.

mailto:sicm@fudan.edu.cn
https://pubs.acs.org/doi/10.1021/jo4007656#fig1


Tetrahedron Letters2

TiCl4
-78oC

6a-6e 7a-7j, 9a-9q

N

OTBS

RHO
Boc

N

OTBS

R
BocFG = Substituted Aryl, alkyl

X = Br, I

FGCH2ZnX

One-pot addition- reduction process of imide11

(1)
N
Boc Ph

O

OBn

+ RCH2MgBr
BF3 Et2O

.

N
Boc Ph

OBn

R-78 ~-40 oC

N R'

OTBS

Boc
HO Lewis Acid

N R'

OTBS

Boc
Ar

O

n AllylSi or AllylB
N R'

OTBS

Boc

n
(2)

Nucleophilic substitution process of N,O-acetal12

N

OTBS

RHO
Boc

Ar

O
+ Lewis Acid (3)

One-pot Mannich process of N,O-acetal13

FG
+

(4)

This Work

Et3SiH

Figure 2. Our strategy to access chiral 3-tert-butyl-dimethylsiloxy-2-
substituted 6-benzyl piperidine scaffold.

The substrate, chiral N,O-acetal (5R,6S)-6a, was readily 
prepared according to our previous intramolecular tandem 
sequence of the α-chiral aldimine with Grignard reagents20 and 
the known reduction procedure.21 When 6a was treated with 
benzylzinc bromide in the presence of BF3

.OEt2 at -78 °C for 12 
h, the desired product 7a was obtained in 44% yield, albeit with 

Table 1. Optimization of reaction conditions.
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Bn
Boc

HO
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7a 8

PhCH2ZnBr

6a

LA, THF N

OTBS

Bn
Boc

Bn N

OTBS

Bn
Boc

Entriesa LA (equiv.) Y% (7a)b Y% (8)b dr (7a)c

1 BF3·Et2O (2.0) 44 - 64:36

2 SnCl4 (2.0) - - -

3 AlCl3 (2.0) 34 - 94:6

4 TMSOTf (2.0) 84 - >99:1

5 TMSCl (2.0) 96 - >99:1

6 TiCl4 (2.0) 99 - >99:1

7 TiCl4 (1.0) 76 - >99:1

8 Tm(OTf)3 (0.2) - 75% -

9 Pr(OTf)3 (0.2) - 70% -

10 Nd(OTf)3 (0.2) - 60% -

11 Ce(OTf)3 (0.2) - 78% -
a The reactions were performed with 6a (100 mg), PhCH2ZnBr (4 eq.)  and 
LA in THF (1 mL) at -78 °C for 12 h. The reaction was quenched with 
saturated NaHCO3 solution and diluted with EtOAc.
b Isolated yield. 
c dr was determined by 1H NMR.

low diastereoselectivity (Table 1, entry 1). To improve the 
reaction yield and diastereoselectivity, various Lewis acids were 

screened, and the results were summarized in Table 1. Several 
Lewis acids except SnCl4 could afford the desired product (Table 
1, entries 2-6), and TiCl4 turned out to be the best one, producing 
7a not only in extremely high yield (up to 99%), but also with 
excellent diastereoselectivity (Table 1, entry 6). Decreasing the 
use of TiCl4 to 1 eq. resulted in significant drop for the reaction 
yield although high diastereoselectivity of 7a was maintained 
(Table 1, entry 7). Lanthanide salts like Tm(OTf)3, Pr(OTf)3, 
Nd(OTf)3 and Ce(OTf)3 proved to be ineffective for this 
transformation, instead an olefin by-product 8 was generated 
(Table 1, entries 8-11).

Next, we turned to investigate the scope and limitation of the 
nucleophilic addition of N,O-acetal 6a by organozinc reagents 
(Table 2). Different substituted (methyl, fluoro, trifluoromethyl 
and chloro) benzylzinc bromides were surveyed under the 
optimal conditions, as summarized in Scheme 1. In general, the 
reactions of N,O-acetal 6a with ortho-, meta- and para- 
substituted benzylzinc reagents underwent smoothly, affording 
the desired 3-tert-butyl-dimethylsiloxy-2,6-disubstituted 
piperidines 7b-7j in moderate to excellent yields and with high 
diastereoselectivities. It is worth mentioning that cyano 
substitution was tolerated and the corresponding product 7h was 
obtained in 72% yield (dr > 99:1). When chloro substituted zinc 
reagent was used, the desired product 7g was also produced in 
excellent yield and with high diastereoselectivity. Notably, allyl 
zinc bromide and α-naphthalene methyl zinc bromide also 
showed good reactivities in this transformation,  though affording 
the desired products 7i and 7j with slightly lower 
diastereoselectivities. 

Table 2. The scope of this method to 3-tert-butyl-dimethylsiloxy-
2,6-disubstituted piperidines 7a-7ja-c.
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7e, R = 4-CF3, 80%, dr > 99:1
7f, R = 3-Me, 69%, dr > 99:1
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aThe reactions were performed with 6a (100 mg), FGCH2ZnX (4 eq.) and 
TiCl4 (2 eq.) in THF (1 mL) at -78 °C for 12 h. The reaction was quenched 
with saturated NaHCO3 solution and diluted with EtOAc. 
b Isolated yield. 
c dr was determined by 1H NMR.

Then, the scope and limitation of different N,O-acetals 6b-6e 
were explored and the results are summarized in Table 3. 
Different N,O-acetals 6b-6e were surveyed under the optimal 
conditions, all of them reacted smoothly with various benzyl zinc 
reagents, affording the desired 3-tert-butyl-dimethylsiloxy-2,6-
disubstituted piperidines 9a-9p in moderate to excellent yields 
and with high diastereoselectivities. Consistent with previous 
research, when allyl zinc reagent was used, the desired product 
9q was also produced with lower diastereoselectivities (dr = 
65:35).
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Table 3. The scope of this method to 3-tert-butyl-dimethylsiloxy-
2,6-disubstituted piperidines 9a-9qa-c.
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TiCl4 (2 eq.) in THF (1 mL) at -78 °C for 12 h. The reaction was quenched 
with saturated NaHCO3 solution and diluted with EtOAc. 
b Isolated yield. 
c dr was determined by 1H NMR.

The attempts to obtain single crystal for 9p were unsuccessful, 
fortunately the oxalic acid salt of deprotected compound 10 could 
afford good co-crystal (Scheme 1), from which the 
stereochemistry of 9p was unambiguously assigned as 2,6-cis-
form based on its X-ray crystallography22 (see Supporting 
Information).
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Scheme 1. Synthesis of 10.

A possible mechanism for this nucleophilic addition was 
illustrated in Figure 3. When N,O-acetal 6a reacted with organic 
zinc, imide onium was first generated under Lewis acid 
conditions. Conformation a is more stable than b due to the 
smaller steric hindrance between OTBS and Bn. Then, the 
organic zinc would take place from the less steric side of form c 
to generate cis-product 7a.
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Figure 3. Proposed mechanism of the nucleophilic addition.

In summary, we have established a novel and practical 
approach for the synthesis of chiral 3-tert-butyl-dimethylsiloxy-
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2-substituted 6-benzyl piperidines 7a-7j, 9a-9q through 

nucleophilic addition of N,O-acetals 6a-6e with organozinc 
reagents. TiCl4 was found to be the most effective lewis acid for 
this transformation, and a variety of chiral 3-tert-butyl-
dimethylsiloxy-2-substituted 6-benzyl piperidines were 
successfully synthesized in moderate to excellent yields and with 
high diastereoselectivities. To the best of our knowledge, the 
present process is the first direct method for the preparation of 
chiral 3-tert-butyl-dimethylsiloxy-2-substituted 6-benzyl 
piperidines.
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