Dalton Transactions

An international journal of inorganic chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: T. Chatterjee, E. Boutin and M. Robert, *Dalton Trans.*, 2020, DOI: 10.1039/C9DT04749B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/dalton

View Article Online

View Journal

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Manifesto for the routine use of NMR for the liquid product analysis of aqueous CO₂ reduction: from comprehensive chemical shift data to formaldehyde quantification in water

Tamal Chatterjee^{a,#}, Etienne Boutin^{a,#} and Marc Robert^{*,a}

 CO_2 reduction research is at a critical turnaround since it has the potential to partially or even substantially fulfil future clean energy needs. CO_2 -to-CO electrochemical conversion is getting closer from industrial implementation requirements. Efforts are now more and more directed to obtain highly reduced products such as methanol, methane, ethylene, ethanol, etc., most of them being liquids. Gas-phase products (e.g., CO, CH₄) are typically detected and quantified by well-defined gas chromatography (GC and GC/MS) protocols. On the other hand, NMR, GC-MS, HPLC have been used for the liquid phase characterization, but no routine technique has yet been established, mainly due to lack of versatility of a single technique. Additionally, except NMR and GC-MS, classical techniques cannot distinguish ¹³C from ¹²C products, although it is a mandatory step to assess products origin. Herein, we show the efficiency and applicability of ¹H NMR as routine technique for liquid phase products analysis and we address two previous shortcomings. We first established a comprehensive ¹H and ¹³C NMR chemical shifts list for all ¹²CO₂ and ¹³CO₂ reduction products in water ranging from C₁ to C₃. Then we overcame the difficulty of identifying aqueous formaldehyde intermediate by ¹H NMR through an efficient chemical trapping step, along with isotopic signature study. Formaldehyde can be reliably quantified in water with a concentration as low as 50 μ M.

Introduction

Published on 25 February 2020. Downloaded by LA TROBE UNIVERSITY on 2/25/2020 10:36:53 AM

Through the concept of 'Artificial Photosynthesis,' electroor photo-electro- reduction of CO_2 to fuels or useful chemicals has emerged as one of the most popular approaches for future carbonneutral energy production.^{1, 2} CO_2 reduction reaction (CO_2RR) requires catalysts, and a range of gas (e.g., CO, CH_4) or liquid products (e.g., methanol, ethanol, etc.) can be generated.³ Currently, CO_2RR is an extremely active field with communities of scientists, engineers, and entrepreneurs set together to reach the target of commercialized technologies.^{4, 5} Significant progress has been achieved for the 2 e⁻ and 2 H⁺ reduction of CO_2 to CO,⁶⁻⁸ with key parameters such as current density, selectivity and cell voltage, now complying (or being close) with industrial requirement.⁹ Attention is more and more given to the development of new catalytic processes for more reduced products. Some of these products are of immense importance from the fuel and chemical industry perspective. As an example, methanol market size is expected to grow to ca. 190 million metric tons by 2030, with a promising compound annual growth rate (CAGR) between 7 and 9 %.¹⁰ Upon considering C_{≥2} reduction products, the list of possible compounds expands and most of them are also generated in liquid state. As the CO₂RR field is evolving at a rapid pace, it is important to develop and adopt a standard method for product analysis and further evaluation of CO₂RR catalysts. Gas chromatography is established as the routine technique for gasphase product analysis and along with MS detector, it allows for assessing product origin (from CO₂ or not) via labelled experiments. Contrasting with gas-phase products, reports on the liquid phase products remain rare and not comprehensive since there is no adequate single technique for the identification of all possible products. Classical methods include Ionic Chromatography (IC)¹¹ which does not allow for alcohol, aldehyde, ether or ester detection ; ¹H NMR^{12, 13} that does not permit formaldehyde and oxalate detection in water; High precision liquid chromatography (HPLC) coupled with UV-Vis, VWD or RID detector but depending on the

a. Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75013 Paris, France.[#] contributed equally

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

on 2/25/2020 10:36:53 AM

Published on 25 February 2020. Downloaded by LA TROBE UNIVERSITY

detector, some compounds may be missed due to absence of signal or limited detector sensitivity.^{11, 14} Product analysis with *in-situ* mass spectrometry (OLEMS and DEMS) may become intricate when multiple products are formed.^{15, 16} LC-MS and GC-MS techniques are suitable but the former is affected by the signal of the mobile phase while the latter is subject to lifetime shortening when liquid sample containing electrolyte are injected.¹⁷ Also, NMR and MS techniques provide a decisive advantage as each analyte shows a unique signal, allowing for unusual products detection. It could then be very useful when some minor signals are overlooked and simply attribute to impurities or catalyst degradation product.

NMR is obviously a ubiquitous and versatile tool for the detection, identification, and quantification of various molecules and is used routinely for product analysis in research labs, industry, clinics, etc.¹⁸ In connection to aqueous CO₂RR liquid phase product analysis, we provide a comprehensive table of chemical shifts for CO₂ reduction products in water along with their distinct coupling constant values (J_{C-H}). We restricted the analysis to C_1 , C_2 and C_3 products having as general formula C_xO_yH_z. Water was chosen as solvent since CO₂RR technological devices need to be developed in this media. An absolute requirement for CO₂RR process is to distinguish between ¹²C and ¹³C compounds, so as to demonstrate that reduction products are (or are not) issued from CO₂. ¹H NMR is one of the convenient techniques to perform such labeled experiments. Moreover, experimental parameters such as pH of the solution, pre-saturation of solvent signal or delay time play important roles for product quantification, which is highlighted with the help of adequate examples.

As a particular case, formaldehyde (HCHO) formation remains largely unrevealed in CO₂RR. One reason could also be the unavailability of a convenient method for direct identification in water medium.¹¹ The ¹H NMR chemical shift of monomeric HCHO (9.66 ppm) is hardly distinguishable in water,¹⁹ due to complete hydrolysis into methanediol, which has a ¹H NMR signal at 4.91 ppm, merging with the broad water peak (4.79 ppm).²⁰ Herein, we establish a simple method for ¹H NMR method allowing identification and quantification of HCHO in water that could be used during the practical course of CO₂RR process. We anticipate that this contribution will be useful as a *'finger-print catalogue'* for hassle-free product analysis and possible exploration of new CO₂RR catalysts.

Results and Discussions

Parameters for ¹H NMR studies

To get accurate information, we have taken care of various parameters, such as correct shimming, pre-saturation, delay time, and pH of the solution during the NMR measurement. These parameters have marked effect on the obtained results, as briefly described below. As previously mentioned, water medium was chosen, thus the following results are discussed on the basis of ¹H NMR data recorded in water (H₂O:D₂O, 90:10, w/w, using D₂O as lock solvent). Resulting conclusions may entirely or partially differ from data recorded in other common organic solvents such as CD₃CN, CDCl₃ or d^{6} -DMSO.

Pre-saturation of solvent signal

After performing CO₂RR in a typical sample, amount of protons from the analytes is far below the amount of protons from water solvent. The ¹H NMR spectrum will be dominated by water proton and water peak suppression is a necessary step before starting any analysis of possible liquid products. The use of D₂O as solvent cannot cope with this problem since it will make CO2 reduction products undetectable in ¹H NMR. Pre-saturation, a wellknown technique in NMR, is employed to get the required solventreduced spectra.²¹ A composite pulse sequence is used to selectively saturate the water frequency range and then to excite the resonances of the analytes under the NMR study. This technique considerably improves the signal to noise ratio of the spectrum and helps for precise quantification. A comparison of the ¹H NMR spectra of nitroethane recorded with and without pre-saturation is shown in figure 1. Needless to mention that a sharp improvement of the ¹H resonances is noted with pre-saturation even when baseline correction is applied to the non-pre-saturated spectra. Apart from the pre-saturation technique, other methods such as WATERGATE or WET can be used for the water peak suppression. Comprehensive details on these methods can be found elsewhere.^{22, 23}

Journal Name

View Article Online DOI: 10.1039/C9DT04749B

Fig. 1 Comparison of the ¹H NMR spectrum of nitroethane recorded in D_2O/H_2O mixture, (a) without pre-saturation, (b) with presaturation.

Delay time (d1)

Published on 25 February 2020. Downloaded by LA TROBE UNIVERSITY on 2/25/2020 10:36:53 AM.

Relaxation time (RT) is another critical parameter for quantitative NMR measurements (Q-NMR) since insufficient longitudinal relaxation affects signals intensities.^{24, 25} All the possible resonances of an analyte should fully relax between the intervals of two pulses (i.e., relaxation delay d1) to get correct quantification data. Roughly, relaxation delay (d1) value should be at least five times larger than T₁ time, corresponding to the slowest relaxing resonances of analytes. The T1 value can be either calculated experimentally²⁶ or found in the literature. Optimum d1 time for accurate quantification of an analyte can also be determined experimentally. An example is illustrated in Fig. 2 where d1 value is progressively increased for a known concentration of an analyte until accurate quantification is reached. In this experiment, we recorded a series of ¹H NMR spectra of known concentrations of CH₃OH with different delay times (d1). CH₃OH concentration was then back calculated from the corresponding ¹H NMR peak area (3.34 ppm) relative to dimethylsulfoxide (DMSO) as internal reference. Depending on the delay time, CH₃OH quantification varies from 80 to 100% of the exact value. Also, the higher the magnet strength, the faster the relaxation²⁶ so that optimal delay time should be set for each experimental conditions. Alternatively, the optimal delay time (d1) can also be minimized by applying a smaller pulse width, but this method would also minimize the analyte signal intensity and that can reciprocate errors in the quantification process.

Fig. 2 Accuracy of ¹H NMR MeOH quantification as a function of delay time (d1). (a) CH₃OH concentration obtained from ¹H NMR related to DMSO reference as a function of exact CH₃OH concentration for increasing delay time, from 1 s (brown), 2 s (red), 5 s (orange), 15 s (green) and 25 s (blue). (b) Percentage of detected CH₃OH for ¹H NMR analysis as a function of delay time. In both graphs, expected 100% methanol value is drawn in gray (dotted line).

pH effect on products bearing acid groups

For the identification of CO_2RR products bearing acid functional groups, one should be careful about the pH of the solution, since the acid and its conjugate base show different ¹H NMR chemical shifts. Figure 3 depicted the effect of pH on the ¹H NMR of formic acid/formate couple (HCOOH/HCOO⁻; pK_a 3.75 in water). In figure 3a, pH is larger than the pK_a of HCOOH/HCOO⁻, so the signal at ~ 8.44 ppm corresponds to formate, while in Figure 3c (pH below the pKa), the signal of formic acid at ~ 8.22 ppm is observed. In the pH range

Journal Name

ARTICLE

[pK_a-1; pK_a+1], the peak position will vary between these two values (Fig. 3b). Important to mention, CO_2RR has been reported along all the pH range,^{3c,12} so it is important that operators remain careful to the exact pH value.

Fig. 3 pH effect on the ¹H NMR chemical shift of formic acid/formate couple (HCOOH/HCOO⁻). (a) pH = 7, (b) pH= $pK_a = 3.75$, (c) pH = 1.

¹H and ¹³C NMR chemical shift data

¹H and ¹³C NMR shifts for C₁ to C₃ CO₂RR reduction product are provided in Table 1. Unstable or gaseous products are included in the list of possible products (C₁ to C₃) which is given in supporting information (S6). For each product, chemical shift of all detectable protons is provided with multiplicity. In the case of acids, pH range is also provided. When more than one acid group are present in the product, only the fully protonated and fully deprotonated forms are reported. For aldehydes, more number of signals are occasionally observed and their origin is attributed to the hydrolysed form of the corresponding aldehyde product in water. When one form is predominant in water, only that one is reported in the tables. Furthermore, J_{C-H} coupling constant values were obtained using the satellite peaks originated from the 1% of ¹³C naturally presents in the sample:

$$J_{C-H}$$
 (ppm) = $\frac{J_{C-H}$ (Hz)
Spectrometer field strength (MHz)

Due to strong hydrogen bonding interaction in water, none of the O-H protons are distinguishable from the broad water signal at (\sim 4.79 ppm). To provide complementary characterization of the products under labelled conditions, we also provide the ¹³C NMR_{Ar}chemical shift of the reported products.

The hunt for unusual CO₂ reduction product identification is important, since a couple of examples have been reported where the formation of a complex reduction product was favoured without the obtention of more simple intermediates. Among these examples, n-propanol (Table 1) which is issued from a 12e⁻ reduction using CO as substrate, has been produced with relatively high Faradaic selectivity (23% FE) at copper adparticle electrode without forming neither formaldehyde (2e⁻ products) nor methanol (4e⁻ products).²⁷ In another case, CO and methanol (simple CO₂ reduction products) have been reported to be further reduced into the more complex dimethylcarbonate (Table 1) at Au or Pd electrodes.²⁸ Another example is related to the production of formaldehyde along with trace amount of glycolaldehyde (Table 1), enough to start formose reaction where glycolaldehyde, glyceraldehyde or dihydroxyacetone (Table 1) are formed without forming more simpler products.²⁹ Apart from the CO₂RR, the above mentioned valuable products may also be generated from different sources such as biomass or nonrecyclable plastic wastes. Notably, significant research effort is currently underway for the transformation of plastic waste into organics such as acetate, glyoxal, glycolate, formate, etc (Table 1).³⁰ Thus, the following table could also be useful for broadening the scope of various catalytic processes.

To assess the method accuracy, we further performed tests with various CO₂RR products. With our specific set of NMR parameters (see SI for details), we plotted the percentage of detected products using NMR quantification method for various known concentration of analytes, as illustrated in Fig. 4 (concentration of compound being converted into actual concentration of detected protons). Error bars drawn in colours indicate the standard deviation as a function of equivalent proton concentrations, providing an estimation of the error introduced by the NMR quantification method. As an example, standard deviation on quantification accuracy is about 5% for a 15 μ M acetone solution due to the 6 protons borne by the molecule. At the same time, the standard deviation will be almost equivalent for a 150 μ M of formate that contains only one detectable proton. For higher concentration, standard deviation remains in the range of 1 to 2%.

ARTICLE

View Article Online DOI: 10.1039/C9DT04749B

Fig. 4 Percentage of detected product vs. equivalent concentration of protons in compounds: acetone (red), methanol (orange) and formate (green). Black dots represent measured data while coloured traces indicate error bars.

View Article Online DOI: 10.1039/C9DT04749B

ARTICLE

Table 1 ¹H and ¹³C NMR chemical shifts for C_1 , C_2 and C_3 compounds issued from CO_2RR in water as solvent.

			¹ H NMR ,				
compounds	chemical formula	mult ^a	chemical shifts (ppm)	J _{с-н} value (Hz)	pH range	¹³ C NMR chemical shifts (ppm)	<u>ipt</u>
C ₁ compounds							5
methanol	C H ₃OH	s	3.34	142	-	49.5 (C H ₃ OH) ³¹	$\overline{0}$
formaldehyde	НСНО	S	See r	next secti	on	84 (C H ₂ (OH) ₂) ¹⁹	Б
formic acid	нсоон	S	8.22	219	< 2.75	165.6 (H C OOH) ³²	2
formate	HCOO ⁻	S	8.44	195	> 4.75	171.1 (H C OO ⁻) ³²	R
C ₂ compounds							E
ethanol	C H₃ CH₂OH	t	1.17	126	-		\geq
	CH₃C H₂ OH	q	3.64	143	-	$17.47 (-CH_3); 58.05 (-CH_2OH)^{31}$	-
ethylene glycol	CH ₂ (OH)CH ₂ (OH)	S	3.65	143	-	63.17 (- C H ₂ OH) ³¹	K
	C H ₃CHO	d	2.22	128	-		Ľ
acetaldenyde	CH₃C H O	q	9.66	176	-	30.83 (-CH ₃); 207.40 (-CHO) ³³	O
	C H ₃CH(OH) ₂	d	1.31	126	-		D
acetaldehyde ^b	CH ₃ CH(OH) ₂	q	5.24	ND	-	23.92 (- C H ₃); 88.96 (- C H(OH) ₂) ³³	Ö
glyoxal ^{34, 35}	(CHO) ₂	d	4.80	ND	-	91.2 (- C H(OH) ₂)	0
acetic acid	CH ₃ COOH	S	2.08	130	< 3.76	21.03 (- C H ₃); 177.21 (- C OOH) ³¹	
acetate	CH ₃ COO ⁻	s	1.90	127	> 5.76	24.0 (- C H ₃); 181.8 (- C OO ⁻) ³⁵	
oxalic acid	нооссоон	-	-	-	< 0.2	162.9 (- C OOH) ³⁶	S
oxalate	0-0000-	-	-	-	> 5.30	173.4 (- C OO ⁻) ³⁷	
	HCOOCH ₃	S	8.13	229	-		0
methyl formate	HCOOC H ₃	S	3.75	149	-	52.11 (- C H ₃); 165.12 (-H C OO-)	
	C H OCH ₂ OH	s	9.61	178	-		3
glycolaldehyde	CHOC H ₂ OH	s	4.41	142	-	ND	Π
		t	5.04	ND	-		S
glycolaldehyde ^b	СН(ОН) ₂ С Н 2ОН	d	3 50	143	-	65.30 (- C H ₂ OH) ^b ; 90.51 (- C H(OH) ₂)	
glycolic acid		s	4 20	144	< 2.83	60.06 (- C H₂OH): 176.98 (- C OOH)	σ
glycolate		5	3 03	1/2	× 2.05	61 96 (-CH OH):180 45 (-COO-)	-
glycoldte		3	5.55	145	< 2.20	86.03 (CU(OU)): 173.85 (COOU)	
		5	5.34	105	< 2.30		
giyoxylate ^b		S	5.06	ND	> 4.30	93.7 (- C H(OH) ₂); 182.8 (- C OO ⁻) ³⁸	5
methoxymethanol ³⁹	H ₃ COCH ₂ OH	S	3.39	ND	-	56.6 (-O C H ₃); 90.1 (- C H ₂ OH)	ž
	H ₃ COC H₂OH	S	4.69	ND	-		
C ₃ compounds							R
propanol	CH ₃ CH ₂ CH ₂ OH	t	0.89	125			
	CH ₃ CH ₂ CH ₂ OH	m	1.54	125	-	$10.22 (-CH_3); 25.26 (-CH_2-); 64.30 (-CH_2OH)^{+0}$	
		t d	3.50	140			
isopropanol		u	1.10	144	-	24.38 (-CH ₃); 64.88 (-CHOH-) ³¹	
		ടല. പ	4.01 1.10	126			
1,2-propanediol		u	2.07	141			
		(T)	3.8/	141	-	10.70 (-CH3); 07.37 (-CH2OH); 08.08 (-CHOH-)	
	CH ₃ CH(OH)CH ₂ OH	da	3.43, 3.53	141			

Journal Name

1,3-propanediol		t	3.67	143 126	-	View Article Online 34.4 (-CH₂-); 59:3 (-CH₂-); 59:3 (-CH₂-); 59:3
		dd.	254 264	ND		
glycerol	OHCH ₂ CH(OH)CH ₂ OH	m	3.77	ND	-	63.2 (- С Н ₂ ОН); 72.7 (- С НОН-)
dimethoxymethane	CH ₃ OCH ₂ OCH ₃ CH ₃ OCH ₂ OCH ₃	s s	3.37 4.63	143 ND	-	55.55 (-O C H ₃); 97.53 (- C H ₂ -)
propionaldehyde	CH ₃ CH ₂ CHO	t	1.04	127		5.3 (- C H ₃); 37.1 (- C H ₂ -); 209.4 (- C HO) ³⁵
	CH₃CH₂CHO	qd	2.55	126	-	
	CH ₃ CH ₂ CHO	t	9.69	23, 174		
	CH ₃ CH ₂ CH(OH) ₂	t	0.90	127		
Propionaldehyde ^b	CH ₃ CH ₂ CH(OH) ₂	m	1.60	ND	-	8.3 (-CH ₃); 30.2 (-CH ₂ -); 92.6 (CH(OH) ₂) ³⁵
	CH ₃ CH ₂ CH(OH) ₂	t	4.96	ND		
acetone	CH ₃ COCH ₃	S	2.21	128	-	30.89 (- C H ₃); 215.94 (- C O-) ³¹
p_{a}	CH ₃ COCH(OH) ₂	S	2.30	130		
metnyigiyoxai -	CH ₃ COC H (OH) ₂	S	5.25	ND	-	25.4 (-Ch ₃), 90.6 (-Ch(Oh) ₂ , 209.9 (-CO-)
menthedrewel b 42	CH ₃ C(OH) ₂ CH(OH) ₂	S	1.19	ND		
methylglyoxal ^{b, 42}	CH ₃ C(OH) ₂ CH(OH) ₂	S	4.30	ND	-	22.2 (- CH_3); 92.7 (- $CH(OH)_2$); 96.0 (- $C(OH)_2$ -)
	C H OCH₂C H O	d	8.49	ND	< 3.00	
malonaldehyde 43, 44	CHOC H₂ CHO	t	5.69	ND	< 5.00	ND
material	CHOCH ₂ CHO	d	8.64	ND	> 5.00	
	CHOC H₂ CHO	t	5.30	ND		
propionic acid	C H ₃CH₂COOH	t	1.07	129	< 3.88	9 (- C H ₃); 27 (- C H ₂ -); 180 (- C OOH) ⁴⁵
	CH₃C H₂ COOH	q	2.38	129		
propionate	C H ₃CH₂COO ⁻	t	1.04	127	> 5.88	10 (- C H ₃); 31 (- C H ₂ -); 185 (- C OO ⁻) ⁴⁵
p - p	CH₃C H₂ COO ⁻	q	2.16	127		
malonic acid	H00CC H ₂C00H	S	3.51	132	< 1.83	42 (- C H ₂ -); 172 (- C OOH) ⁴⁶
malonate	0 ⁻ 0CC H ₂ COO ⁻	S	3.10	128	> 6.69	49 (- C H ₂ -); 178 (- C OO ⁻) ⁴⁶
	CH2CHCH2OH	qd	5.17, 5.25	ND		
allyl alcohol	CH ₂ CHCH ₂ OH	m	5.99	154	-	62.8 (-CH ₂ OH); 115.5 (=CH ₂); 136.7 (=CH-) ³⁵
	CH₂CHC H₂ OH	td	4.10	143		
	C H ₂CHCHO	dd	6.52, 6.67	ND	- 137 (= C H-); 142 (= C H2); 15	
acrolein	CH₂C H CHO	m	6.40	ND		137 (= C H-); 142 (= C H2); 199 (- C HO) ⁴⁷
	CH₂CHC H O	d	9.47	177		
acrylic acid	C H ₂CHCOOH	dd	5.98, 6.41	ND	< 2 25 128 /2 (-CH_)· 122 28 (-CH_)· 123 (128 /3 (=CH_): 133 38 (=CH_): 171 01 (-COOH)
	CH₂C H COOH	m	6.16	ND	\$ 3.25	120.43 (-en), 155.50 (-en 2), 171.01 (ec on
acrylate	C H₂ CHCOO ⁻	dd	5.64, 6.00	ND	> 5 25	127.19 (= C H-); 134.41 (= C H ₂); 175.97 (- C OO ⁻)
	CH₂C H COO ⁻	m	6.12	ND	> 5.25	
propargyl alcohol	CHCCH ₂ OH	t	2.82	49; 251		50.4 (- C H₂OH); 73.8 (≡ C H); 82.0 (≡ C -) ⁴⁸
	CHCC H ₂OH	d	4.22	149	-	
propiolic acid	СНССООН	S	3.54	259	< 0.89	ND
propiolate	CHCCOO-	S	ND	ND	> 2.89	ND
lactaldehyde ^b	C H ₃CH(OH)CH(OH)₂	d	1.16	127		
	CH₃C H (OH)CH(OH)₂	m	3.66	ND	-	10.5 (-CH3); 09.8 (-CHOH-); 92.6 -CH(OH)2) 45
hydroxyacetone	C H ₃COCH₂OH	S	2.13	129		
	CH₃COC H₂ OH	S	4.36	143	-	25.54 (-UR3); 08.25 (-UR2UR); 213.21 (-UU-)
lactic acid	C H ₃CH(OH)COOH	d	1.41	129	12.00	86 20.01 (- C H ₃); 67.13 (- C HOH-); 179.27 (- C OO ⁻)
	СН₃С Н (ОН)СООН	q	4.38	ND	< 2.86	
lactate	C H ₃CH(OH)COO ⁻	d	1.31	128		
	CH₃C H (OH)COO ⁻	q	4.10	ND	> 4.86	22.7 (-CH ₃); /1.1 (-CHOH-); 184.9 (-COO ⁻) ⁵⁰

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 7

ND

3.95

t

Page 8 of 12

Journal Name

View Article Online

reuterin ⁴⁷	СН ₂ ОНС Н 2СНО СН2ОНСН2С Н О	q t	2.75 9.72	ND ND	-	46 (-CH₂-); 55 (-CH₂OH);0207(2CHO); ^{49B}
reuterin ^{b 47}	CH ₂ OHCH ₂ CH(OH) ₂	t	3.70	ND	-	
	CH ₂ OHC H₂ CH(OH) ₂	q	1.85	ND		40 (-CH ₂ -); 58 (-CH ₂ OH); 89 (-CH(OH) ₂)
	$CH_2OHCH_2CH(OH)_2$	t	5.18	ND		
3-hydroxypropionic		t +	3.85	147	< 3.87	37.08 (- C H ₂ -); 57.66 (- C H ₂ OH); 176.78 (- C OOH)
aciu		ι +	2.01	145		
3-hydroxypropionate		ι +	5.70 2.42	145	> 5.87	40.76 (-CH ₂ -); 59.56 (-CH ₂ OH); 181.11 (-COO ⁻)
DL-glyceraldehyde ^b ⁵¹			2.42		-	63.4 (- С Н ₂ ОН); 75.5 (- С НОН-); 91.2 (- С Н(ОН) ₂)
				142.2		
				145.5		
		d	2 07	102.1		
glyceric acid		u +	5.07	140 ND	< 2.42	64.8 (- C H ₂ OH); 72.8 (- C HOH-); 177.2 (- C OOH) ⁵¹
		ر م	4.57			
glycerate		ч	۶.71, 5.81 ۸ ۵۵		> 4.42	65, 75 (- C H ₂ OH, - C HOH-); 180 (- C OO ⁻) ³⁸
dihydroxyacetone		ч s	4.05	1/13	_	65 (- C H-OH): 212 (- C O) ^{52 53}
dihydroxyacetone ^b		s	3 56	ND 143	_	64 (- C H_OH): 95 (- C (OH)-) ^{52 53}
B-hydroxypyruvic		3	5.50	ND		
acid	HOC H ₂COCOOH	S	3.72	145	< 1.57	ND
β -hydroxypyruvate ⁵⁴	HOC H₂ COCOO⁻	s	4.70	ND	> 3.57	ND
tartronic acid	ноосс н (он)соон	S	4.95	ND	< 1.85	71.82 (- C HOH-); 172.20 (- C OOH)
tartronate	0 ⁻ 0CC H (0H)COO ⁻	s	4.32	ND	> 5.85	75.90 (- C HOH-); 177.15 (- C OO ⁻)
pyruvic acid	C H ₃COCOOH	S	2.45	130	< 1.40	29 (- C H ₃); 200 (- C O-); 166 (- C OOH) ⁵⁵
pyruvic acid ^b	C H ₃C(OH)₂COOH	S	1.57	128	< 1.40	28 (-CH ₃); 96 (-C(OH) ₂ -); 178 (-COOH)
pyruvate	C H ₃COCOO ⁻	S	2.35	130	> 3.40	29 (- C H ₃); 200 (- C O-); 173 (- C OO ⁻)
pyruvate ^b	CH ₃ C(OH) ₂ COO ⁻	S	1.56	ND	> 3.40	28 (-CH ₃); 96 (-C(OH) ₂ -); 181 (-COO ⁻)
mesoxalic acid ^b	HOOCC(OH) ₂ COOH	-	-	-		94.0 (- C (OH) ₂ -); 173.5 (- C OOH) ³⁶
mesoxalate ^b	O ⁻ OCC(OH) ₂ COO ⁻	-	-	-		93.48 (- C (OH) ₂ -); 176.37 (- C OO ⁻)
	CH ₃ OCH ₂ CH ₂ OH	S	3.37	142	-	58.61 (- С Н ₃); 60.91 (- С Н ₂ ОН); 73.77 (-О С Н ₂ -)
2-methoxyethanol	CH ₃ OCH ₂ CH ₂ OH	t	3.55	ND		
	CH₃OCH₂C H₂ OH	t	3.71	140		
	C H ₃CH₂OCHO	t	1.28	127		
ethyl formate	CH₃C H₂ OCHO	q	4.24	ND	-	14.10 (- C H ₃); 62.06 (- C H ₂ O-); 164.97 (-O C HO)
	CH ₃ CH ₂ OCHO	S	8.12	227		
2-methoxyacetic acid	C H ₃OCH₂COOH	S	3.41	144	< 2.83	59.34 (- C H ₃); 69.48 (- C H ₂ -); 175.04 (- C OOH)
,,	CH₃OC H₂ COOH	S	4.13	145		
2-methoxyacetate	CH₃OCH₂COO ⁻ CH₃OCH₂COO ⁻	S	3.35 3.85	143 173	> 4.83	58.83 (- C H ₃); 71.40 (- C H ₂ -); 178.04 (- C OO ⁻)
methyl acetate	CH ₂ COOCH ₂	s	2.07	130		20.83 (- C H ₃); 52.84 (-O C H ₃); 175.72 (- C OO-)
	CH ₃ COOCH ₃	S	3.66	148	-	
dimethyl carbonate	OC(OCH ₃) ₂	S	3.77	149	-	55.85 (- C H ₃); 157.77 (- C O-)
methyl glycolate	HOCH ₂ COOCH ₃	S	4.22	145		
	HOCH ₂ COOCH ₃	S	3.75	149	-	53.02 (-CH ₃); 60.29 (-CH ₂ OH); 175.53 (-COO-)
2-hydroxyethyl formate	HOC H₂ CH₂OCHO	t	3.83	143		
	HOCH ₂ CH ₂ OCHO	t	4.29	ND	-	60.15 (- C H ₂ OH); 66.31 (- C H ₂ O-); 164.61 (-O C HO)
	HOCH ₂ CH ₂ OCHO	s	8.19	230		
1,3,5-trioxane	(OCH ₂) ₃	S	5.21	167	-	94.11 (O C H ₂) ₃

asignal multiplicity; s = singlet; d = doublet; t = triplet; q = quartet; qu. = quintet; se. = septet; dd = double doublet; qd = quartet doublet; m = multiplet; br = broad singlet signal. ^b hydrolized form of carbonyl group. ND = not determined.

8 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

CH₂OHCH₂CHO

Published on 25 February 2020. Downloaded by LA TROBE UNIVERSITY on 2/25/2020 10:36:53 AM

ARTICLE

Formaldehyde detection and quantification in water

In CO₂RR, HCHO is formed upon 4e⁻/4H⁺ reduction. Besides being a valuable commodity chemical, HCHO also serves as a crucial intermediate for the formation of other CO₂RR products.⁵⁶ Hence, a reliable yet simple method for HCHO quantification is mandatory not only for catalytic mechanism understanding but also for improving catalytic process performance. Direct detection of HCHO in water medium is difficult due to the high intrinsic HCHO reactivity. Indirect quantification of HCHO has been performed for CO₂RR, upon reacting it first with 2,4-Dinitrophenylhydrazine (DNPH) through Brady's reaction,⁵⁷ and further using HPLC to quantify the HCHO-DNPH adduct. However, DNPH derivatization method requires organic solvents and the UV-vis detector does not allow distinction between H¹²CHO and H¹³CHO, a severe drawback preventing from carbon source identification.

To circumvent these difficulties, we have established a simple HCHO quantification method using routine ¹H NMR. The method relies on HCHO-bisulfite adduct (A) detection, which is formed by the reaction between sodium bisulfite (NaHSO₃) and HCHO in water (Scheme 1).^{58,59} The reaction is complete due to very favourable thermodynamics and the resulting adduct (A) remains

stable for several days. To the best of our knowledge, it is the first time ¹H NMR is used for both HCHO quantification and H¹³CHO identification. In a typical experiment, 5 mM of a HCHO solution was mixed with a 1 M NaHSO₃ solution (50:50 v/v) and well stirred to form adduct (A), giving a ¹H NMR signal at around ~ 4.39 ppm (Fig. 5a), consistent with previous report.⁶⁰ The NMR peak is well shifted from the water peak (4.79 ppm) as shown in Fig. 5a.

Scheme 1 Reaction between HCHO and NaHSO₃.

Furthermore, two satellite peaks (~4.58 ppm and ~4.20 ppm respectively in 400 MHz spectrometer) are also visible in the spectra, originating from the presence of 55 μ M H¹³CHO, which is naturally present in the 5 mM initial HCHO solution (Fig. 5b). The obtained J_{C-H} value (153 Hz) provides full characterization of HCHO in water.

Fig. 5 ¹H NMR spectrum of the mixture of 5 mM HCHO and 1 M NaHSO₃ solutions (50:50 v/v) versus DMSO₂ reference. (a) Full spectrum; (b) zoom on the peaks corresponding to adduct (A).

Beside HCHO identification, the method turned out as perfectly suited for quantification. It was easily performed upon

comparing NMR peak area of adduct (A) to an internal standard. Note that DMSO is reacting with bisulfite ion, which precludes its use

σ

Accepted

ARTICLE

as standard (see Fig. S1a and S1b in SI). Dimethylsulfone (DMSO₂) was instead employed and it is proved to be stable under our experimental conditions for at least 2 days (see Fig. S1c and S1d in SI). Figure 6 illustrates the accuracy of the current HCHO quantification method. The introduced HCHO and back calculated HCHO from NMR signal area (Fig S2) of adduct are in agreement within a range extending from 50 μ M to 5 mM HCHO, although error remains in the range of 10%. Note that due to the reactivity of bisulfite and adduct A with CO₂ and CO₃²⁻ respectively^{61, 62}, caution need to be taken before performing the analysis. The analyte solution has to be degassed and adjusted to an optimum pH range, as described in the SI.

Fig. 6 Correlation between the introduced HCHO conc. and calculated HCHO conc. from the HCHO-bisulfite adduct (A) peak area in ¹H NMR with respect to $DMSO_2$ reference (red, experimental data; grey line, theoretical correlation)

Conclusion

Sustainable production of liquid CO_2RR products is a high challenge, attracting more and more researchers. At the midst of this quest, we have developed an easy identification and estimation method for the liquid CO_2RR products based on simple and widely available NMR technique. The comprehensive ¹H NMR chemical shift data tables will help guiding the assessment of catalytic performances. Adding a simple chemical trapping step to the procedure led to easy detection and quantification of formaldehyde, an important CO_2RR elusive product and intermediate.

Conflicts of interest

Journal Name

Authors do not have any conflict of interest to declare. DOI: 10.1039/C9DT04749B

Acknowledgements

The authors warmly thank Dr. Christine Cordier (Université de Paris) for her expertise and advices with NMR technique. The work described in this paper was supported by the French National Agency for Research (ANR-16-CE05-0010-01). T.C. is grateful for the "Make Our Planet Great Again" fellowship awarded by the French Government. Partial financial support to M.R. from the Institut Universitaire de France (IUF) is also gratefully acknowledged.

Notes and references

- 1. T. Faunce, Advanced Sustainable Systems, 2018, 2, 1800035.
 - A. Tatin, J. Bonin and M. Robert, *ACS Energy Letters*, 2016, **1**, 1062-1064.
 - W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang and Z. Jin, *Advanced Science*, 2018, **5**, 1700275.
 - M. B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang and E. H. Sargent, *Nature Catalysis*, 2019, **2**, 648-658.
 - J. T. Song, H. Song, B. Kim and J. Oh, *Catalysts*, 2019, **9**, 224.
 - T. Haas, R. Krause, R. Weber, M. Demler and G. Schmid, Nature Catalysis, 2018, 1, 32-39.
 - S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert and C. P. Berlinguette, *Science*, 2019, **365**, 367.
 - M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Işci, C. P. Berlinguette and M. Robert, *Nature Communications*, 2019, **10**, 3602.
 - M. Jouny, W. Luc and F. Jiao, *Industrial & Engineering Chemistry Research*, 2018, **57**, 2165-2177.
- 10. The Global CO₂ initiative, *Global Roadmap for Implementing CO2 Utilization*, 2016.
- 11. J. Hong, W. Zhang, J. Ren and R. Xu, *Analytical Methods*, 2013, **5**, 1086-1097.
- E. Boutin, M. Wang, J. C. Lin, M. Mesnage, D. Mendoza, B. Lassalle-Kaiser, C. Hahn, T. Jaramillo and M. Robert, Angewandte Chemie International Edition, 2019, 58, 16172-16176.
- K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard and T. F. Jaramillo, *Journal of the American Chemical Society*, 2014, **136**, 14107-14113.
- 14. Y. Lum, B. Yue, P. Lobaccaro, A. T. Bell and J. W. Ager, *The Journal of Physical Chemistry C*, 2017, **121**, 14191-14203.
- J. Shen, R. Kortlever, R. Kas, Y. Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K. J. P. Schouten, G. Mul and M. T. M. Koper, *Nature Communications*, 2015, 6, 8177.
- 16. E. L. Clark, M. R. Singh, Y. Kwon and A. T. Bell, *Analytical Chemistry*, 2015, **87**, 8013-8020.
- C. Cometto, L. Chen, D. Mendoza, B. Lassalle-Kaiser, T.-C. Lau and M. Robert, *ChemSusChem*, 2019, **12**, 4500-4505.
- Applications of NMR spectroscopy Volume 2, Elsevier, 2015.
- M. Rivlin, U. Eliav and G. Navon, *The Journal of Physical Chemistry B*, 2015, **119**, 4479-4487.

Published on 25 February 2020. Downloaded by LA TROBE UNIVERSITY on 2/25/2020 10:36:53 AM

This journal is © The Royal Society of Chemistry 20xx

48.

51.

58.

- Journal Name
- 20. J. F. Walker, in *Formaldehyde Monograph series no. 159*, 46. 1964, pp. 52-78.
- 21. D. I. Hoult, *Journal of Magnetic Resonance*, 1976, **21**, 337-347.
- 22. S. H. Smallcombe, S. L. Patt and P. A. Keifer, *Journal of Magnetic Resonance, Series A*, 1995, **117**, 295-303.
- 23. G. S. H. Lee, M. A. Wilson and B. R. Young, *Organic Geochemistry*, 1998, **28**, 549-559.
- 24. J. R. Anderson, Q. Ye, J. J. Neil, J. J. H. Ackerman and J. R. Garbow, *Journal of Magnetic Resonance*, 2011, **211**, 30-36.
- 25. W. Li, K. Grgac, A. Huang, N. Yadav, Q. Qin and P. C. M. van Zijl, *Magnetic Resonance in Medicine*, 2016, **76**, 270-281.
- 26. P. J. Hore, *Nuclear Magnetic Resonance*, Oxford University Press, 2015.
- J. Li, F. Che, Y. Pang, C. Zou, J. Y. Howe, T. Burdyny, J. P. Edwards, Y. Wang, F. Li, Z. Wang, P. De Luna, C.-T. Dinh, T.-T. Zhuang, M. I. Saidaminov, S. Cheng, T. Wu, Y. Z. Finfrock, L. Ma, S.-H. Hsieh, Y.-S. Liu, G. A. Botton, W.-F. Pong, X. Du, J. Guo, T.-K. Sham, E. H. Sargent and D. Sinton, *Nature Communications*, 2018, 9, 4614.
- M. C. Figueiredo, V. Trieu, S. Eiden and M. T. M. Koper, Journal of the American Chemical Society, 2017, 139, 14693-14698.
- 29. R. F. Socha, A. H. Weiss and M. M. Sakharov, *Reaction Kinetics and Catalysis Letters*, 1980, **14**, 119-128.
- 30. T. Uekert, H. Kasap and E. Reisner, *Journal of the American Chemical Society*, 2019, **141**, 15201-15210.
- 31. H. E. Gottlieb, V. Kotlyar and A. Nudelman, *The Journal of Organic Chemistry*, 1997, **62**, 7512-7515.
- 32. S. Moret, P. J. Dyson and G. Laurenczy, *Dalton Transactions*, 2013, **42**, 4353-4356.
- 33. M. L. Ahrens and H. Strehlow, *Discussions of the Faraday Society*, 1965, **39**, 112-120.
- G. Yu, A. R. Bayer, M. M. Galloway, K. J. Korshavn, C. G. Fry and F. N. Keutsch, *Environmental Science & Technology*, 2011, 45, 6336-6342.
- 35. K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, *Energy & Environmental Science*, 2012, **5**, 7050-7059.
- P.-L. Fabre, P. Castan, D. Deguenon and N. Paillous, Canadian Journal of Chemistry, 1995, 73, 1298-1304.
- A. R. Willauer, D. Toniolo, F. Fadaei-Tirani, Y. Yang, M. Laurent and M. Mazzanti, *Dalton Transactions*, 2019, 48, 6100-6110.
- C. Butch, E. D. Cope, P. Pollet, L. Gelbaum, R. Krishnamurthy and C. L. Liotta, *Journal of the American Chemical Society*, 2013, 135, 13440-13445.
- A. K. Eckhardt, M. M. Linden, R. C. Wende, B. Bernhardt and P. R. Schreiner, *Nature Chemistry*, 2018, **10**, 1141-1147.
- Z. Han, R. Kortlever, H.-Y. Chen, J. C. Peters and T. Agapie, ACS Central Science, 2017, 3, 853-859.
- 41. B. Tabah, A. Varvak, I. N. Pulidindi, E. Foran, E. Banin and A. Gedanken, *Green Chemistry*, 2016, **18**, 4657-4666.
- 42. I. Nemet, D. Vikić-Topić and L. Varga-Defterdarović, *Bioorganic Chemistry*, 2004, **32**, 560-570.
- 43. S. H. Bertz and G. Dabbagh, *The Journal of Organic Chemistry*, 1990, **55**, 5161-5165.
- 44. W. George and V. Mansell, *Journal of The Chemical Society B: Physical Organic*, 1968.
- D. Cistola, D. Small and J. Hamilton, Journal of lipid research, 1982, 23, 795-799.

- S. Amirhaeri, M. E. Farago, Gl, J. A. P. uck, MewArder Smith and J. N. Wingfield, *Inorganica Chimica* Acta 1979, **33**7-578-61.
- C. Engels, C. Schwab, J. Zhang, M. J. A. Stevens, C. Bieri, M.-O. Ebert, K. McNeill, S. J. Sturla and C. Lacroix, *Scientific Reports*, 2016, 6, 36246.
 - M. T. W. Hearn, Tetrahedron, 1976, **32**, 115-120.
- 49. M. A. K. Vogel, H. Burger, N. Schläger, R. Meier, B. Schönenberger, T. Bisschops and R. Wohlgemuth, *Reaction Chemistry & Engineering*, 2016, **1**, 156-160.
- A. M. N. Silva, X. Kong and R. C. Hider, *BioMetals*, 2009, 22, 771-778.
 - A. S. Serianni, E. L. Clark and R. Barker, Carbohydrate Research, 1979, 72, 79-91.
- 52. J. Deng, T. Pan, Q. Xu, M.-Y. Chen, Y. Zhang, Q.-X. Guo and Y. Fu, *Scientific Reports*, 2013, **3**, 1244.
- 53. Y. Zhang, N. Zhang, Z.-R. Tang and Y.-J. Xu, *Chemical Science*, 2013, **4**, 1820-1824.
- 54. A. Perera, H. G. Parkes, H. Herz, P. Haycock, D. R. Blake and M. C. Grootveld, *Free Radical Research*, 1997, **26**, 145-157.
- 55. A. Lopalco, J. Douglas, N. Denora and V. J. Stella, *Journal of Pharmaceutical Sciences*, 2016, **105**, 664-672.
- S. Desmons, R. Fauré and S. Bontemps, ACS Catalysis, 2019, 9, 9575-9588.
- 57. O. L. Brady and G. V. Elsmie, *Analyst*, 1926, **51**, 77-78.
 - J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2012.
- G. Lemme, *Chemiker-Zeitung*, 1903, **27**, 896.
- Y. Suzuki, M. Kawakami and K. Akasaka, Environmental Science & Technology, 2001, 35, 2656-2664.
- 61. J. F. Walker, in *Formaldehyde Monograph series no. 159*, 1964, pp. 483-510.
- 62. A. Gardziella, L. A. Pilato and A. Knop, *Phenolc Resins*, 2000.

Manifesto for the routine use of NMR for the liquid product analysis of aqueous CO2 reduction: from comprehensive chemical shift data to formaldehyde quantification in water

Tamal Chatterjee,^{a,#}Etienne Boutin^{a,#} and Marc Robert^{*,a}

Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, Paris, France.

Email: robert@univ-paris-diderot.fr

