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Rhodium-Catalyzed C–H Functionalization with N-Acylsaccharins  

Hongxiang Wu,
ac

 Tingting, Liu,
ac

 Ming Cui,
a
 Yue Li,

a
 Junsheng Jian,

a
 Hui Wang

a
 and Zhuo Zeng*

ab

A rhodium-catalyzed C–H functionalization with activated amides 

by decarbonylation has been developed. Notably, this is the first 

C-H arylation by employing N-acylsaccharins as coupling partners 

to give biaryls in good to excellent yield. The highlight of the work 

is high functional group tolerance such as formyl, ester, vinyl, and 

the use of a removable directing group. 

Carbon–hydrogen bonds are the most common chemical bonds 

in organic compounds and a ubiquitous structural motif in 

organic chemistry. In the past decades, great advances have been 

achieved in transition-metal-catalyzed direct C–H bond 

functionalization reactions.
1
 Site-selective C–H functionalization 

afforded a direct conversion of carbon– hydrogen (C–H) bonds 

into new carbon–carbon (C–C) bonds or carbon–heteroatom (C–

X) bonds.
2
 These C–H activation technologies have been widely 

utilized in the synthesis of biologically important natural 

products and advanced functional materials.
3
 

In this context, a variety of electrophiles such as aryl halides, 

tosylates and even aryl sulfonyl chlorides were selected as cross-

coupling partners in C–H functionalization.
4, 5 

However, the 

majority of these methods have relatively complicated catalytic 

systems, and also have limited substrate scope. To extend the 

substrate scope, organometallic reagents, aryl boronic acids, and 

arenes were employed as arylation sources in oxidative C–H 

functionalization.
6 

These oxidative approaches have advantages, 

but there are some drawbacks such as the requirement of large 

amounts of oxidants (Cu or Ag salt) in these reactions and 

normally air sensitive. 

A significant progress has been made by using acyl chlorides and 

anhydrides as arylation reagents in C–H functionalization via 

extrusion of carbon monoxide (Scheme 1a).
7 

Both of these 

protocols can be efficiently worked in the absence of oxidants, 

and demonstrated high functional group tolerance. 

While the progress in the C–H functionalization area was 

achieved, the difficulty of utilizing amides as coupling partners 

still exist due to the high activation energy required for an acyl-

nitrogen bond cleavage in amides. Recently, Szostak and Shi 

utilized twisted amides as the coupling partners in the transition-

metal-catalyzed system, which demonstrated a novel route in 

decarbonylation.
8
 Inspired by the challenge of employing amides 

as the arylation precursors, we turned our attention to designing 

an alternative methodology. 

Herein, we report a strategy for C–H functionalization by 

utilizing N-acylsaccharins as coupling partners, which proceeds 

via C–H/C–N cleavage (Scheme 1b). 

N-acylsaccharins provide several advantages: (a) N-

acylsaccharins can be efficiently synthesized from readily 

available and low-cost saccharin. (b) In comparison with acyl 

chlorides and anhydrides, N-acylsaccharinsare shelf-stable 

andeasy to handle white powder.Also, no decomposition was 

observed when N-acylsaccharins suspendedin the water for two 

weeks. (c) The twisted structure of N-acylsaccharins resulted in a 

chemoselective cleavage of acyl-nitrogen bond (Figure 1). 

Also, this protocol tolerated functional groups such as halides, 

aldehydes, ketones, esters and heterocycles. And notably, this 

study demonstrates a new model in acyl-nitrogen bond cleavage. 

Initially, N-benzoylsaccharin 1a was selected as an 

electrophile to couple with benzo[h]quinoline 2a to form 10-

phenyl benzo[h]quinoline 3a in the presence of a rhodium 

catalyst. For the optimization studies (Table 1). [Rh(COD)Cl]2 

was used as the catalyst and toluene as the solvent to investigate 

the hypothesis. No reaction occurred when this approach was 

tested at 110 
o
C (Table 1, entry 1). Inspired by the previous study 

in the decarbonylation and the preliminary experiment, the  

 

Figure 1. Slective Cleavage of C-N. 
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Scheme 1. Previous Works in C–H Functionalization via 

Decarbonylation of Carboxylic Acid Derivatives. 
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Table 1 Effect of Catalyst, Solvent and Base 

NPh

O

catalyst, base, solvent

2a

S

O

O O

1a 3a

N
N

H

 

entry catalyst  baseb temperature yield (%) 

1 [Rh(COD)Cl]2 none 110 oC 0 

2 [Rh(COD)Cl]2 none 140 oC 18 

3 [Rh(COD)Cl]2 K2CO3 140 oC 47 

4 [Rh(COD)Cl]2 Na2CO3 140 oC 43 

5 [Rh(COD)Cl]2 K3PO4 140 oC 61 

6c [Rh(COD)Cl]2 K3PO4 140 oC 83 

7d [Rh(COD)Cl]2 K3PO4 140 oC 53 

8e [Rh(COD)Cl]2 K3PO4 140 oC 90 

9f [Rh(COD)Cl]2 K3PO4 140 oC 51 

10g [Rh(COD)Cl]2 K3PO4 140 oC 38 

11 [Rh(COD)Cl]2 K3PO4 130 oC 68 

12 [Rh(COD)Cl]2 K3PO4 150 oC 90 

13 [Rh(CO)2Cl]2 K3PO4 140 oC 35 

14 RhCl(PPh3)3 K3PO4 140 oC 11 

aConditions: 1a (0.3 mmol), 2a (0.2 mmol), catalyst (5 mol %), 

toluene (0.8 mL). bBase (0.3 mmol). cxylene. dchlorobenzene. eo-

xylene. f2.5 mol %. g1.0 mol % 

 

temperature was increased 140 
o
C, which led to the desired 

product in 18% yield (Table 1, entry 2). To accelerate the 

deprotonation process, a variety of bases were selected to 

examine the protocol. K3PO4 display a remarkable result among 

a series of bases, which led to a 61% yield (Table 1, entries 3-5). 

The solvent also plays an important role in determining the 

yield. o-Xylene seems to be the best solvent in this approach 

since a lower yield was observed when employing toluene, 

xylene and chlorobenzene (Table 1, entries 5-8) under the same 

conditions. Also, the loading of rhodium catalyst influenced the 

yield of the target compound. For example, changing the loading 

from 5.0 mol % to 1.0 mol % led to a lower yield (Table 1, 

entries 9-10). 

With this condition in hand, the reaction temperature was further 

optimized. The result of several experiments proved that 140 
o
C 

is the best temperature of this protocol (Table 1, entries 11-12). 

Finally, the optimal conditions of this C–H functionalization with 

N-acylsaccharins were set as 5 mol % [Rh(COD)Cl]2 in the 

presence of K3PO4 (1 equiv) in o-xylene at 140 
o
C for 12 h.  

With the optimized reaction conditions in hand, a variety of N-

acylsaccharins were employed to probe the scope and limitations 

of this approach (Scheme 2). To investigate the influence of 

electronic and steric factors, a range of N-acylsaccharins with 

neutral and electron-donating groups were coupled to 

benzo[h]quinoline 2a. This provided corresponding C–H 

functionalization compounds (3a-3f) in good to excellent yields. 

Amides bearing strong electron-withdrawing groups generated 

3g and 3h in 79% and 86% yields, respectively. p-Fluoro, p-

chloro and p-bromosubstituents all gave excellentyields (3i-3k). 

When N-acylsaccharins contained formyl and acetylgroups in the 

para-position, the arylation was accomplished in good yields. 

The heterocycles furan and thiophene also provided good yields 

in the typical procedure. Overall, these experiments indicated  

 

Scheme 2. Amide scope in C–H Functionalization. 
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Scheme 3. Amide scope in C2 arylation of N-(2-pyridyl) 

Indoles. 
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that halides, aldehydes, ketones, esters and heterocycleswere 

tolerated, even in the case where the N-acylsaccharin contained a 

functional group in the ortho-position 3e. 

Indoles are among the most investigated heterocycles, widely 

appearing in natural products and pharmaceuticals.
9
 Hence the 

method was expanded to the direct C2 arylation of indoles via 

using a removable N-pyridyl directing group (Scheme 3). The 

result demonstrated that utilizing N-acylsaccharins containing 

electron-donating groups in the para, meta, and ortho-positions 

in the benzene ring, generated the corresponding products (3r-3v) 

in excellent yields. p-Fluoro, p-chloro and p-bromo groups also 

gave the C2 arylated products in high yields (3w-3y). 

Remarkably, N-styrylsaccharin could be utilized in this approach 

to give the corresponding vinyl product in 82% yield (3z). Also, 

2-furyl and 2-thienyl amides are compatible with the reaction 

conditions (3aa, 3ab). 

To investigate the influence of N-protecting group, N-(2-

Pyrimidyl) indole (2c) was probed under the same conditions to 

provide (3ac-3af) in excellent yields (Scheme 4). Next, a variety 

of N-(2-Pyrimidyl) indole derivatives were selected to examine  

 

Scheme 4. Amide scope in C2 arylation of N-(2-Pyrimidyl) 

Indoles. 
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Scheme 5. Indoles scope in C2 arylation of N-(2-Pyrimidyl)  

Indoles. 
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the functional groups tolerance of this protocol. Irrespective of 

methyl occupied in the C4, C5 and C6 position of the indole, 

even in C3, corresponding products could be obtained in good to 

excellent yields (3ca-3fa). Also, indoles containing halides were 

tolerated, particularly bromide (3ga-3ja). Notably, the reaction is 

tolerant to electron-donating and electron-withdrawing 

substituents on the benzene ring of indole moiety to give desired 

products in good yields (3ka-3ma). The result highlight that, 

direct access to C-2 arylated indoles via decarbonylation is a 

viable method in synthetic chemistry (Scheme 5). 

 

Scheme 6. Controlled studies. 
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Figure 2. Crystal structure of 1b. 

 

 

Several amides (1r, 1s, 1t) were employed in this catalysis 

systems and a similar amide 1u were utilized to compare with N-

benzoyl saccharin under the same conditions. N-benzoyl 

saccharin demonstrated higher reactivity than other amides 

(Scheme 6). 

To further investigate the selective cleavage of N-acyl saccharins, 

the X-ray structure of 1b (CCDC 1508194) was generated. 

Compared with amide bond N1-C7 (O1) (τ = 5.8
o
, χN = 11.9

o
, χC = 

2.0
o
), the X-ray structure indicates that amide bond N1-C8 (O2) is 

highly distorted (τ = 21.8
o
, χN = 12.2

o
, χC = 1.8

o
).

 
Twisted angle 

(τ) of amide bond N1-C8 (O2) in N-acyl saccharins support 

ground-state destabilization which could account for its high 

reactivity and selectivity (Figure 2).
10 

On the basis of rhodium chemistry, a tentative mechanism of 

the catalytic cycle is proposed (Scheme 7). Oxidative addition of 

N-acylsaccharins to generate an acylrhodium complex, then 

undergoing extrusion of one molecule of carbon monoxide, 

generating the complex II; then, C–H activation via ortho- 

chelating assistance in the presence of K3PO4, which provides the  

complex III. Finally, reductive elimination to form the new C-C 

bond and regenerate the Rh(I)-species. 

 

Scheme 7. Proposed Mechanism for rhodium-catalyzed C–H 

Functionalization. 
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Conclusions 

In conclusion, utilization of an activated amide as an 

electrophilic participant in a decarbonylative catalytic C-H 

functionalization procedure has been reported. The variety of 

functional groups tolerated using this approach demonstrated the 

utilitarian nature of the methodology, allowing efficient access to 

biaryl compounds. It also provides an alternative route in C–H 

functionalization and a new activation model of C-N amide 

bonds 
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