Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2014, 12, 2099

Highly facile and regio-selective synthesis of pyrazolo[1,5-a]pyrimidines *via* reactions of 1,2-allenic ketones with aminopyrazoles[†]

Xinying Zhang,* Yunping Song, Lin Gao, Xiaojie Guo and Xuesen Fan*

An efficient procedure for the syntheses of pyrazolo[1,5-a]pyrimidines through reactions of 1,2-allenic ketones with aminopyrazoles under extremely mild conditions without using any catalyst or promoter has been developed. The reactions showed excellent regio-selectivity with all the allenic ketone substrates except for those bearing an alkyl group at the internal position of the allene moiety. The reason behind this regio-selectivity dissimilarity has been explored with the aid of the B3LYP/6-31G* level of density functional theory. Moreover, this novel procedure has been successfully applied in the preparation of nucleoside-pyrazolo[1,5-a]pyrimidine chimeras with potent antiviral activities.

Received 6th December 2013, Accepted 23rd January 2014 DOI: 10.1039/c3ob42445f

www.rsc.org/obc

Introduction

Heterobiaryls have attracted significant attention from the scientific community due to their relevance to various biological activities. Among them, pyrazolo[1,5-a]pyrimidine forms the central core of a plethora of pharmaceuticals and pesticides, such as *Zaleplon*, a hypnotic drug; *Ocinaplon*, an anxiolytic drug; and *Pyrazophos*, a fungicide and insecticide (Fig. 1). Moreover, some pyrazolo[1,5-a]pyrimidine derivatives were found to possess anticancer,¹ antitumor,² anxiolytic,³ antimicrobial,⁴ antibacterial,⁵ antitrichomonal,⁶

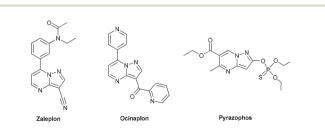


Fig. 1 Examples of the drugs with a pyrazolo[1,5-a]pyrimidine scaffold.

and antischistosomal⁷ activities, and have been examined as TSPO PET ligands,⁸ hepatitis C virus inhibitors,⁹ estrogen receptor ligands, ¹⁰ CRF antagonists, ¹¹ COX-2 inhibitors, ¹² and KDR kinase inhibitors.¹³ These promising biological properties have prompted the development of efficient synthetic strategies toward pyrazolo[1,5-a]pyrimidine derivatives. So far, the available synthetic methods for pyrazolo[1,5-a]-pyrimidines have mostly involved the condensation of aminopyrazole with 1,3-dicarbonyl or α,β -unsaturated carbonyl compounds,¹⁰⁻¹⁴ enaminonitriles, or enaminones.15 While these methods are generally reliable, they are usually carried out in refluxing acetic acid and often suffer from poor regio-selectivity, tedious procedures, and/or low yield. Although microwave¹⁶ and ultrasound irradiation¹⁷ have recently been successfully used to shorten the reaction period and/or improve the yield, low regio-selectivity still remains an unsolved problem in the preparation of pyrazolo[1,5-a]pyrimidines by using classical synthetic protocols.

View Article Online

In recent years, 1,2-allenic ketones are emerging as a powerful tool in forming carbon–carbon and carbon–heteroatom bonds.¹⁸ In particular, they are highly reactive as nucleophilic addition acceptors and usually prefer to undergo conjugate addition rather than direct addition due to their intriguing structural features.

Based on the above facts and as a continuation of our study on the synthetic applications of functionalized allene derivatives,¹⁹ we hypothesized that an efficient and practical synthesis of pyrazolo[1,5-*a*]pyrimidines derivatives with improved regio-selectivity might be achieved by using 1,2-allenic ketones as the required 1,3-bielectrophile reagents. Herein, we would like to report our preliminary result in this regard.

School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, P. R. China. E-mail: xinyingzhang@htu.cn, xuesen.fan@htu.cn

[†]Electronic supplementary information (ESI) available: Experimental details; characterization data; copies of the ¹H NMR and ¹³C NMR spectra of **3a–II**, **4ii–II**, **7**, **8**, **11**, **12**; and the X-ray crystal structures of **3jj** and **4jj**. CCDC 975574 and 975575. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c30b42445f

Results and discussion

Our study was initiated by reacting 1-phenylbuta-2,3-dien-1-one (1a) with 1H-pyrazol-3-amine (2a) in ethanol. We were pleased to find that the reaction of 1a and 2a took place rapidly at ambient temperature in the absence of any catalyst or promoter to afford the desired pyrazolo[1,5-a]pyrimidine with high efficiency. More interestingly, the reaction exhibited excellent regio-selectivity in that 5-methyl-7-phenylpyrazolo-[1,5-a]pyrimidine (3a) was obtained in a yield of 85% while its regio-isomer, 7-methyl-5-phenylpyrazolo[1,5-a]pyrimidine (4a), was formed only in a trace amount (Table 1, entry 1). To further improve the yield, the reaction was then tried in different solvents, and among the solvents screened, acetone gave the best yield of 3a (entries 1-7). Following studies showed that increasing the amount of 2a (entries 7-9) or elevating the reaction temperature (entries 7 and 10-11) resulted in a decrease of the yield. Thus, the optimum reaction conditions are: treating 1a (1 equiv.) and 2a (1 equiv.) at rt in acetone for 2 h. Under these conditions, 3a was obtained in a yield of 91% (entry 7).

With the optimized reaction conditions in hand, we then examined the generality of the synthetic protocol toward pyrazolo[1,5-*a*]pyrimidines. Firstly, various 1-substituted and 1,4disubstituted allenic ketones 1 were reacted with 1*H*-pyrazol-3-amine (**2a**) under standard conditions. The results listed in Table 2 showed that 1-aryl-substituted allenic ketones with various substituents on the aryl ring reacted smoothly with **2a** to afford the corresponding pyrazolo[1,5-*a*]pyrimidines in good to excellent yields (Table 2, entries 1–9). While electron-donating or electron-withdrawing substituents on the aryl ring have little effect on the reaction, *ortho*-substituted substrate gave a relatively lower yield (entry 7). Naphthyl (entry 8) and thienyl (entry 9) substituted allenic ketones afforded the

 Table 1
 Optimization of the conditions for the reaction of 1a and 2a^a

o ∙= Ph	+ //NH2 + //N H 2a	conditions N-N+CH ₃ Ph	N-N-CH3
Id	2d	3a	4a

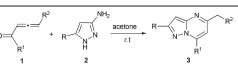
					$\operatorname{Yield}^{b}(\%)$	
Entry	2 a (equiv.)	Solvent	Temp. (°C)	Time (h)	3a	4a
1	1	EtOH	rt	2	85	Trace
2	1	CH_2Cl_2	rt	2	80	Trace
3	1	CH ₃ CN	rt	2	83	Trace
4	1	MeOH	rt	2	85	Trace
5	1	THF	rt	2	86	Trace
6	1	DMF	rt	2	73	Trace
7	1	Acetone	rt	2	91	Trace
8	1.2	Acetone	rt	2	83	Trace
9	1.5	Acetone	rt	2	78	Trace
10	1	Acetone	40	2	82	Trace
11	1	Acetone	60	2	77	Trace

 a Reagents and conditions: 1a (0.5 mmol), solvent (2 mL). b Isolated yield.

 Table 2
 Preparation of pyrazolo[1,5-a]pyrimidine (I)^a

	$O = \begin{pmatrix} R^2 \\ R^1 \end{pmatrix} \begin{pmatrix} NH_2 \\ R \end{pmatrix} \begin{pmatrix} R^2 \\ R \end{pmatrix} \begin{pmatrix} NH_2 \\ R \end{pmatrix} \begin{pmatrix} R^2 \\ $						
Entry	1 R ¹	$2a$ R^2	Time (h)	3 Product	Yield ^{b} (%)		
			111110 (11)	Troduce	(,0)		
1	C_6H_5	Η	2	3a	91		
2	p-CF ₃ C ₆ H ₄	Н	2	3b	87		
3	p-BrC ₆ H ₄	Н	2	3c	86		
4	p-CH ₃ OC ₆ H ₄	Н	2	3d	82		
5	p-CH ₃ C ₆ H ₄	Н	2	3e	84		
6	m-ClC ₆ H ₄	Н	2	3f	90		
7	$0-FC_6H_4$	Н	2	3g	79		
8	1-Naphthyl	Н	2	3ĥ	91		
9	2-Thienyl	Н	2	3i	88		
10	Benzyl	Н	2	3j	85		
11	Phenylethyl	Н	2	3k	89		
12	C_6H_5	CH_3	2	31	87		

 a Reagents and conditions: 1 (1 mmol), 2a (1 mmol), acetone (4 mL), rt. b Isolated yield.


corresponding products in excellent yields. Moreover, diverse functional groups, such as trifluoromethyl, halides, methoxy, and methyl group, were well tolerated under the reaction conditions. Further studies showed that 1-alkyl, such as 1-benzyl, or 1-phenethyl substituted allenic ketones could take part in this reaction efficiently (entries 10 and 11). 1-Phenylpenta-2,3dien-1-one, an allenic ketone with a substituent at the terminal position of the allene moiety, is also a suitable substrate (entry 12). Importantly, it should be noted herein that in all the above cases, the reactions showed excellent regio-selectivity to give one of the two possible isomers dominantly.

In the next stage, the suitability of substituted aminopyrazoles (2) for this pyrazolo[1,5-*a*]pyrimidine synthesis was studied. The results listed in Table 3 showed that both alkyland aryl-substituted aminopyrazoles are suitable substrates for this reaction. It was also observed that while aryl-substituted aminopyrazoles (Table 3, entries 21 and 22) are less reactive and need a longer period to complete the reaction than alkylsubstituted ones (entries 1–20); both of them exhibited excellent regio-selectivity, thus resulting in a rapid and efficient protocol for the preparation of pyrazolo[1,5-*a*]pyrimidines with diverse substitution patterns.

To further explore the scope of the reaction, allenic ketones bearing a methyl or ethyl group on the internal position of the allene moiety were prepared, and reacted with different aminopyrozoles. To our surprise, under similar conditions, the reactions were much more sluggish and showed dramatically diminished regio-selectivity in that the two possible isomers were obtained in ratios within the range of 1:1 to 2:1 (Table 4). The structures of the two isomers were unambiguously confirmed by their spectroscopic data together with X-ray diffraction analysis (Fig. 2 and 3).²⁰

Plausible pathways accounting for the formation of 3 and 4 are speculated in Scheme 1. An initial conjugate addition of the amino group of 2 on the central carbon of the allene unit

Table 3 Preparation of pyrazolo[1,5-a]pyrimidine (II)^é

Entry	\mathbb{R}^1	R^2	R	Time (h)	Product	$\operatorname{Yield}^{b}(\%)$
1	C_6H_5	Н	CH ₃	1	3m	87
2	o-FC ₆ H ₄	Н	CH ₃	1	3n	80
3	m-ClC ₆ H ₄	Н	CH ₃	1	30	89
4	p-BrC ₆ H ₄	Н	CH_3	1	3p	91
5	p-CF ₃ C ₆ H ₄	Н	CH ₃	1	3q	90
6	p-CH ₃ C ₆ H ₄	Н	CH ₃	1	3r	79
7	$m, p-Di-CH_3OC_6H_3$	Н	CH ₃	1	3s	78
8	1-Naphthyl	Н	CH ₃	1	3t	92
9	2-Thienyl	Н	CH ₃	1	3u	90
10	Benzyl	Н	CH ₃	1	3v	83
11	Phenylethyl	Н	CH_3	1	3w	85
12	C_6H_5	CH_3	CH ₃	1	3x	86
13	C_6H_5	Н	Cyclopropyl	1	Зу	85
14	m-ClC ₆ H ₄	Н	Cyclopropyl	1	3z	83
15	$p-CH_3OC_6H_4$	Н	Cyclopropyl	1	3aa	89
16	p-CNC ₆ H ₄	Н	Cyclopropyl	1	3bb	75
17	2-Thienyl	Н	Cyclopropyl	1	3cc	84
18	Benzyl	Н	Cyclopropyl	1	3dd	88
19	Phenylethyl	Н	Cyclopropyl	1	3ee	90
20	C_6H_5	CH_3	Cyclopropyl	1	3ff	89
21	C_6H_5	Н	C_6H_5	3	3gg	65
22	p-BrC ₆ H ₄	Н	C_6H_5	3	3hh	60

^a Reagents and conditions: 1 (1 mmol), 2 (1 mmol), acetone (4 mL), rt. ^b Isolated yield.

		с	$ \begin{array}{c} R^{3} \\ R^{1} \\ R^{1} \\ 1 \end{array} \begin{array}{c} R^{2} \\ R \\ $	NH_2 acetone r.t R^1 R^1	R^2 R^3 $+$ $N-N$ $+$ R^2	R ¹ R ³	
Entry	R^1	R^2	R^3	R	Time (h)	Product	$\operatorname{Yield}^{b}(\%)$
1	C_6H_5	Н	CH ₃	Н	4	3ii + 4ii (2 : 1)	73
2	C_6H_5	Н	CH ₃	CH_3	4	3jj + 4jj (1.2:1)	92
3	C_6H_5	Н	CH ₃	Cyclopropyl	4	3kk + 4kk(1:1)	81
4	C_6H_5	Н	CH_3CH_2	CH_3	4	3ll + 4ll(1.4:1)	55

^{*a*} Reagents and conditions: **1** (1 mmol), **2** (1 mmol), acetone (4 mL), rt. ^{*b*} Isolated yield of two products.

in 1 followed by an intramolecular cyclization would give 3. On the other hand, a direct addition of the amino group of 2 on the carbonyl group of 1 followed by an intramolecular $6-\pi$ electrocyclization and tautomerization affords 4.

According to the proposed mechanism, factors favouring a conjugated addition will benefit the formation of **3**. Otherwise, the selectivity toward **3** will decrease. While the competition between 1,4- and 1,2-addition can be influenced by a multiplicity of different factors, the electronic nature of the nucleophilic addition acceptor can have a predominant influence in many cases. To figure out, at least in part, the reason behind the big difference in regio-selectivity of the reactions starting from allenic ketones with or without a substituent on the internal position of the allenic moiety, the Mulliken charges of

atoms in different allenic ketone substrates, 1-phenylbuta-2,3-dien-1-one (1a), 1-phenylpenta-2,3-dien-1-one (1b) and 2-methyl-1-phenylbuta-2,3-dien-1-one (1c), were calculated with the aid of the B3LYP/6-31G* level of density functional theory. The calculation results listed in Fig. 4 revealed that for compounds 1a and 1b, the positive charge of the central carbon of the allene unit (C3) is much higher than that of the carbonyl carbon (C1). Therefore, the amino group of 2 would prefer to attack on C3 rather C1 to form 3 as the dominating product. On the other hand, the difference of the positive charge between C3 and C1 in 1c, which has a methyl group attached on the internal position of the allenic moiety, is much smaller compared with those of 1a and 1b, thus resulting in a dramatically diminished selectivity in the formation of 3 and 4. As a

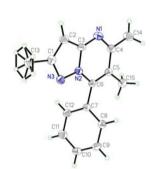


Fig. 2 The X-ray crystal structure of 3jj.

further aspect, the reason for the difference of the positive charge of C3 in **1a**, **1b** and **1c** might be attributed to the following facts. In **1c**, due to the repulsion between the carbonyl oxygen and its neighbouring methyl group, the carbonyl group could not be as coplanar with the C2–C3 olefin as those in **1b** and **1c**, which would dramatically decrease the positive charge on its C3 position.

Next, to showcase the utility of the synthetic method developed herein, we continued our study by exploring the reaction on a larger scale. Thus, 1.01 g of 1-phenylbuta-2,3-dien-1-one (1a, 7 mmol) and 0.68 g of 5-methyl-1*H*-pyrazol-3-amine (2b, 7 mmol) were added to 20 mL of acetone. It was then stirred at rt for 3 h. From the resulting mixture, 2,5-dimethyl-7-phenyl-pyrazolo[1,5-*a*]pyrimidine (3m) was obtained in a yield of 78%.

Furthermore, it is well known that structural modifications of naturally occurring pyrimidine nucleosides have resulted in a large number of therapeutic agents for various diseases.²¹

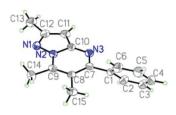
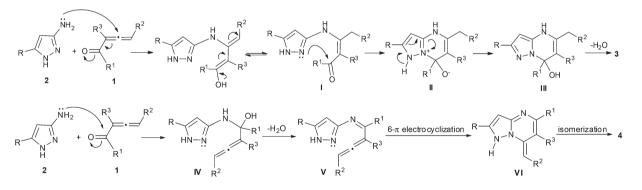



Fig. 3 The X-ray crystal structure of 4jj.

In this regard, we have an ongoing program on the design and synthesis of novel 5-substituted pyrimidine nucleosides as potential antiviral and antimicrobial agents.²² With the novel method developed in this paper, we were interested in the preparation of hybrid compounds combining both pyrimidine nucleoside and pyrazolo[1,5-a]pyrimidine units to get new entities with potential synergetic biological activities. For this purpose, pyrimidine nucleoside derivatives bearing an allenic ketone moiety on the 5-position of the pyrimidine base (6 and 10) were prepared from the corresponding 5-methyl substituted nucleosides 5 and 9, respectively.²³ Treatment of 6 with 1H-pyrazol-3-amine (2a) in acetone at rt for 2 h afforded 7 in a yield of 80%. The following aminolysis of 7 with NH₃·H₂O gave product 8 in a yield of 82%. Similarly, reacting 10 with 5-methyl-1H-pyrazol-3-amine (2b) in acetone at rt for 4 h followed by treatment with NH₃·H₂O led to a novel cytidine-pyrazolo[1,5-a] pyrimidine hybrid (12) in a total yield of 62% with excellent regio-selectivity (Scheme 2). The structures of 7, 8, 11 and 12 were fully characterized by their spectral data of ¹H NMR, ¹³C NMR, and HRMS. Screening these novel

Scheme 1 Plausible pathway towards 3 and 4.

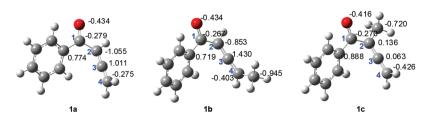
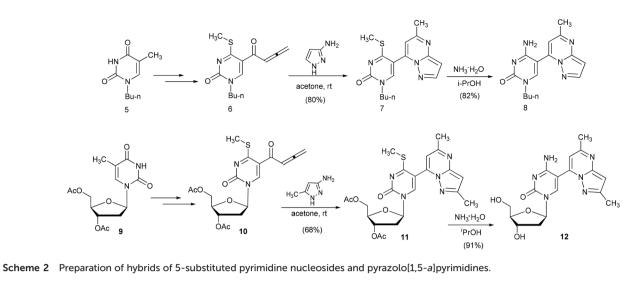



Fig. 4 Mulliken charges of some selected atoms in 1-phenylbuta-2,3-dien-1-one (1a), 1-phenylpenta-2,3-dien-1-one (1b) and 2-methyl-1-phenylbuta-2,3-dien-1-one (1c) with the most stable conformation computed at the B3LYP/6-31G* level of DFT.

5-substituted pyrimidine nucleosides as potential antiviral agents is currently underway.

Conclusions

In summary, an efficient procedure for the syntheses of pyrazolo[1,5-a]pyrimidines through cyclocondensation reactions of 1,2-allenic ketones with a variety of aminopyrazoles without using any catalyst or promoter has been developed. The methodology provided herein has advantages such as high yields, extremely mild conditions, a simple procedure and excellent regio-selectivity. Moreover, this novel procedure has been successfully applied in the preparation of nucleosidepyrazolo[1,5-a]pyrimidine chimeras with potent antiviral activities.

Experimental

General methods

All the commercial reagents and solvents were used without further purification. ¹H NMR and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively. Splitting patterns are designated s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br. (broad). High-resolution mass spectra (HRMS) were obtained by using a MicrOTOF mass spectrometer. All reactions were monitored by thin-layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm) and components were visualized by observation under UV light.

General procedure for the preparation of pyrazolo[1,5-*a*]pyrimidines 3, 4, 7 and 11

A mixture of 1,2-allenic ketone (1 mmol) and aminopyrazole 2 (1 mmol) in acetone (4 mL) was stirred at rt. Upon completion as indicated by TLC, the resulting mixture was concentrated

under vacuum. The residue was purified by chromatography on silica gel to afford the title product.

5-Methyl-7-phenylpyrazolo[**1**,**5**-*a*]**pyrimidine** (**3a**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.60 (s, 3H), 6.61 (d, J = 2.0 Hz, 1H), 6.71 (s, 1H), 7.51 (t, J = 3.2 Hz, 3H), 7.94–7.97 (m, 2H), 8.07 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.8, 95.9, 108.3, 128.7, 129.2, 130.9, 131.2, 144.7, 146.1, 149.5, 158.7. HRMS calcd for C₁₃H₁₂N₃: 210.1031 [M + H], found: 210.1037.

5-Methyl-7-(4-(trifluoromethyl)phenyl)pyrazolo[**1,5-***a*]**pyrimidine** (**3b**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.58 (s, 3H), 6.59 (d, *J* = 2.4 Hz, 1H), 6.70 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 8.02–8.06 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.7, 96.2, 108.6, 119.6, 122.3, 125.0, 125.5, 125.5, 125.6, 125.6, 127.8, 129.6, 132.0, 132.3, 132.6, 132.9, 134.6, 144.4, 144.7, 149.4, 158.8. HRMS calcd for C₁₄H₁₁F₃N₃: 278.0905 [M + H], found: 278.0911.

7-(4-Bromophenyl)-5-methylpyrazolo[1,5-*a*]pyrimidine (3c): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.57 (s, 3H), 6.58 (d, J = 2.0 Hz, 1H), 6.66 (s, 1H), 7.59 (dd, $J_1 = 6.4$ Hz, $J_2 = 2.0$ Hz, 2H), 7.82 (dd, $J_1 = 6.4$ Hz, $J_2 = 2.0$ Hz, 2H), 8.02 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.8, 96.0, 108.1, 125.4, 129.9, 130.7, 131.9, 144.6, 144.8, 149.5, 158.6. HRMS calcd for C₁₃H₁₁BrN₃: 288.0136 [M + H], found: 288.0145.

7-(4-Methoxyphenyl)-5-methylpyrazolo[1,5-*a*]pyrimidine (3d): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.53 (s, 3H), 3.78 (s, 3H), 6.54 (d, *J* = 2.0 Hz, 1H), 6.63 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 7.93 (d, *J* = 8.8 Hz, 2H), 8.02 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.7, 55.4, 95.6, 107.4, 114.0, 123.2, 130.9, 144.4, 145.8, 149.6, 158.6, 161.6. HRMS calcd for C₁₄H₁₄N₃O: 240.1137 [M + H], found: 240.1131.

5-Methyl-7-*p***-tolylpyrazolo**[**1**,**5**-*a*]**pyrimidine** (**3e**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.42 (s, 3H), 2.60 (s, 3H), 6.61 (d, *J* = 2.0 Hz, 1H), 6.71 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 21.6, 24.7, 95.7, 108.0, 128.2, 129.1, 129.3, 141.3, 144.6, 146.3, 149.5, 158.7. HRMS calcd for C₁₄H₁₄N₃: 224.1188 [M + H], found: 224.1181.

7-(3-Chlorophenyl)-5-methylpyrazolo[1,5-*a*]pyrimidine (3f): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.56 (s, 3H), 6.58 (d, J = 2.4 Hz, 1H), 6.67 (s, 1H), 7.38–7.44 (m, 2H), 7.82 (d, J =7.6 Hz, 1H), 7.93 (s, 1H), 8.03 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.8, 96.1, 108.4, 127.3, 129.2, 129.9, 130.9, 132.7, 134.6, 144.4, 144.7, 149.5, 158.7. HRMS calcd for C₁₃H₁₁ClN₃: 244.0642 [M + H], found: 244.0651.

7-(2-Fluorophenyl)-5-methylpyrazolo[1,5-*a*]pyrimidine (3g): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.63 (s, 3H), 6.64 (d, J = 2.4 Hz, 1H), 6.76 (s, 1H), 7.26 (t, J = 9.2 Hz, 1H), 7.31 (t, J =7.2 Hz, 1H), 7.50-7.54 (m, 1H), 7.75 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 8.07 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.8, 96.1, 110.2, 110.2, 116.3, 116.6, 119.2, 124.4, 124.4, 131.1, 131.1, 132.6, 132.6, 141.3, 144.7, 149.1, 158.4, 158.7, 161.2. HRMS calcd for C₁₃H₁₁FN₃: 228.0937 [M + H], found: 228.0945.

5-Methyl-7-(naphthalen-1-yl)pyrazolo[**1**,5-*a*]**pyrimidine** (3**h**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.63 (s, 3H), 6.69 (d, J = 2.0 Hz, 1H), 6.72 (s, 1H), 7.36–7.38 (m, 2H), 7.45–7.49 (m, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.63 (d, J = 6.4 Hz, 1H), 7.89 (d, J =8.4 Hz, 1H), 7.98 (s, 1H), 8.01 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.8, 95.9, 110.6, 125.1, 125.2, 126.5, 127.0, 127.9, 128.7, 129.3, 130.7, 131.0, 133.6, 144.9, 146.0, 149.3, 158.6. HRMS calcd for C₁₇H₁₄N₃: 260.1188 [M + H], found: 260.1182.

5-Methyl-7-(thiophen-2-yl)pyrazolo[1,5-*a*]**pyrimidine** (3i): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.61 (s, 3H), 6.61 (d, J = 2.0 Hz, 1H), 7.05 (s, 1H), 7.21 (t, J = 4.4 Hz, 1H), 7.66 (d, J =4.8 Hz, 1H), 8.17 (d, J = 1.6 Hz, 1H), 8.26 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.7, 95.8, 104.7, 127.6, 131.2, 131.5, 131.9, 139.4, 144.3, 149.5, 158.0. HRMS calcd for C₁₁H₁₀N₃S: 216.0595 [M + H], found: 216.0587.

7-Benzyl-5-methylpyrazolo[1,5-*a*]pyrimidine (3j): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.45 (s, 3H), 4.42 (s, 2H), 6.19 (s, 1H), 6.56 (d, *J* = 2.4 Hz, 1H), 7.27–7.33 (m, 5H), 8.06 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.7, 36.2, 95.9, 107.7, 127.4, 128.9, 129.7, 134.8, 144.3, 148.1, 148.6, 158.5. HRMS calcd for C₁₄H₁₄N₃: 224.1188 [M + H], found: 224.1192.

5-Methyl-7-phenethylpyrazolo[1,5-*a*]**pyrimidine** (3**k**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.46 (s, 3H), 3.10 (t, *J* = 7.6 Hz, 2H), 3.35 (t, *J* = 7.6 Hz, 2H), 6.36 (s, 1H), 6.53 (d, *J* = 2.4 Hz, 1H), 7.13–7.23 (m, 5H), 8.04 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.7, 31.9, 32.2, 95.7, 107.4, 126.4, 128.4, 128.6, 140.1, 144.2, 147.8, 148.6, 158.3. HRMS calcd for C₁₅H₁₆N₃: 238.1344 [M + H], found: 238.1341.

5-Ethyl-7-phenylpyrazolo[**1**,5-*a*]**pyrimidine** (**3**]: yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 1.41 (t, *J* = 8.0 Hz, 3H), 2.93 (q, *J* = 7.6 Hz, 2H), 6.68 (s, 1H), 6.79 (s, 1H), 7.56 (s, 3H), 8.01 (d, *J* = 3.6 Hz, 2H), 8.12 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 13.1, 31.5, 96.0, 107.4, 128.7, 129.2, 130.9, 131.4, 144.7, 144.8, 149.6, 163.6. HRMS calcd for C₁₄H₁₄N₃: 224.1188 [M + H], found: 224.1185.

2,5-Dimethyl-7-phenylpyrazolo[**1,5-***a*]**pyrimidine** (3m): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.49 (s, 3H), 2.60 (s, 3H), 6.41 (s, 1H), 6.66 (s, 1H), 7.53 (t, *J* = 2.8 Hz, 3H), 8.00–8.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8, 24.6, 95.2, 107.5, 128.6, 129.3, 130.8, 131.4, 145.6, 150.3, 154.9, 158.2. HRMS calcd for $C_{14}H_{14}N_3$: 224.1188 [M + H], found: 224.1185.

7-(2-Fluorophenyl)-2,5-dimethylpyrazolo[1,5-*a*]pyrimidine (3n): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.44 (s, 3H), 2.57 (s, 3H), 6.40 (s, 1H), 6.64 (s, 1H), 7.20 (t, *J* = 9.2 Hz, 1H), 7.26 (t, *J* = 8.0 Hz, 1H), 7.44–7.48 (m, 1H), 7.75–7.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8, 24.7, 95.4, 109.3, 109.3, 116.3, 116.5, 119.4, 119.5, 124.3, 124.3, 131.2, 131.2, 132.4, 132.4, 140.6, 149.9, 154.9, 157.9, 158.7, 161.2. HRMS calcd for C₁₄H₁₃FN₃: 242.1094 [M + H], found: 242.1099.

7-(3-Chlorophenyl)-2,5-dimethylpyrazolo[1,5-*a*]pyrimidine (30): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ; 2.50 (s, 3H), 2.61 (s, 3H), 6.43 (s, 1H), 6.66 (s, 1H), 7.47–7.51 (m, 2H), 7.92 (d, *J* = 7.2 Hz, 1H), 8.01 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ ; 14.8, 24.7, 95.5, 107.6, 127.4, 129.3, 129.9, 130.9, 133.0, 134.7, 144.1, 150.2, 155.2, 158.3. HRMS calcd for C₁₄H₁₃ClN₃: 258.0798 [M + H], found: 258.0805.

7-(4-Bromophenyl)-2,5-dimethylpyrazolo[1,5-*a*]pyrimidine (3p): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.42 (s, 3H), 2.52 (s, 3H), 6.35 (s, 1H), 6.56 (s, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8, 24.7, 95.4, 107.2, 125.3, 130.1, 130.8, 131.8, 144.2, 150.2, 154.9, 158.2. HRMS calcd for C₁₄H₁₃BrN₃: 302.0293 [M + H], found: 302.0299.

2,5-Dimethyl-7-(4-(trifluoromethyl)phenyl)pyrazolo[**1,5-***a*]**pyrimidine (3q):** yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.46 (s, 3H), 2.58 (s, 3H), 6.41 (s, 1H), 6.64 (s, 1H), 7.76 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.7, 24.7, 95.6, 107.8, 119.7, 122.4, 125.1, 125.5, 125.6, 125.6, 125.6, 127.9, 129.7, 131.9, 132.2, 132.6, 132.9, 134.8, 143.9, 150.3, 155.1, 158.3. HRMS calcd for C₁₄H₁₃F₃N₃: 292.1062 [M + H], found: 292.1068.

2,5-Dimethyl-7*p***-tolylpyrazolo**[**1,5***-a*]**pyrimidine** (**3r**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.42 (s, 3H), 2.48 (s, 3H), 2.58 (s, 3H), 6.39 (s, 1H), 6.63 (s, 1H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.91 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9, 21.6, 24.7, 95.1, 107.1, 128.4, 129.2, 129.3, 141.2, 145.7, 150.3, 154.8, 158.2. HRMS calcd for C₁₅H₁₆N₃: 238.1344 [M + H], found: 238.1341.

7-(3,4-Dimethoxyphenyl)-2,5-dimethylpyrazolo[1,5-*a*]pyrimidine (3s): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.44 (s, 3H), 2.53 (s, 3H), 3.89 (s, 3H), 3.90 (s, 3H), 6.34 (s, 1H), 6.60 (s, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 7.59 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.6 Hz, 1H), 7.64 (d, *J* = 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8, 24.6, 55.9, 56.0, 94.9, 106.7, 110.8, 112.1, 122.6, 123.5, 145.2, 148.5, 150.4, 151.1, 154.6, 158.1. HRMS calcd for C₁₆H₁₈N₃O₂: 284.1399 [M + H], found: 284.1403.

2,5-Dimethyl-7-(naphthalen-1-yl)pyrazolo[**1,5-***a*]**pyrimidine** (**3t**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.37 (s, 3H), 2.59 (s, 3H), 6.48 (s, 1H), 6.60 (s, 1H), 7.33–7.37 (m, 1H), 7.42–7.47 (m, 2H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 6.4 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9, 24.7, 95.4, 109.9, 125.3, 125.3, 126.4, 126.9, 127.9, 128.6, 129.4, 130.7, 130.8, 133.6, 145.3, 150.0, 155.1, 158.1. HRMS calcd for C₁₈H₁₆N₃: 274.1344 [M + H], found: 274.1341. **2,5-Dimethyl-7-(thiophen-2-yl)pyrazolo**[**1,5-***a*]**pyrimidine (3u):** yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.55 (s, 3H), 2.60 (s, 3H), 6.40 (s, 1H), 6.98 (s, 1H), 7.21–7.23 (m, 1H), 7.65 (d, *J* = 4.4 Hz, 1H), 8.31 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9, 24.7, 95.1, 103.9, 127.6, 131.3, 131.6, 131.8, 138.8, 150.3, 154.8, 157.5. HRMS calcd for C₁₂H₁₂N₃S: 230.0752 [M + H], found: 230.0758.

7-Benzyl-2,5-dimethylpyrazolo[**1,5-***a*]**pyrimidine** (**3v**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.37 (s, 3H), 2.47 (s, 3H), 4.36 (s, 2H), 6.03 (s, 1H), 6.32 (s, 1H), 7.22–7.30 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.7, 24.6, 36.1, 95.2, 106.7, 127.3, 128.8, 129.8, 134.9, 147.6, 149.3, 154.4, 158.1. HRMS calcd for C₁₅H₁₆N₃: 238.1344 [M + H], found: 238.1345.

2,5-Dimethyl-7-phenethylpyrazolo[**1,5-***a*]**pyrimidine** (3**w**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.42 (s, 3H), 2.46 (s, 3H), 3.08 (t, *J* = 8.0 Hz, 2H), 3.31 (t, *J* = 8.0 Hz, 2H), 6.26 (s, 1H), 6.31 (s, 1H), 7.13–7.24 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.7, 24.6, 31.8, 32.0, 95.0, 106.3, 126.4, 128.4, 128.5, 140.2, 147.3, 149.3, 154.3, 157.9. HRMS calcd for C₁₆H₁₈N₃: 252.1501 [M + H], found: 252.1509.

5-Ethyl-2-methyl-7-phenylpyrazolo[1,5-*a*]**pyrimidine** (3x): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 1.38 (t, *J* = 8.0 Hz, 3H), 2.50 (s, 3H), 2.87 (q, *J* = 8.0 Hz, 2H), 6.44 (s, 1H), 6.69 (s, 1H), 7.54 (t, *J* = 3.2 Hz, 3H), 8.02 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 13.2, 14.8, 31.5, 95.3, 106.5, 128.6, 129.2, 130.8, 131.5, 145.9, 150.3, 154.9, 163.2. HRMS calcd for C₁₅H₁₆N₃: 238.1344 [M + H], found: 238.1348.

2-Cyclopropyl-5-methyl-7-phenylpyrazolo[**1**,5-*a*]**pyrimidine** (**3y**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 0.85–0.87 (m, 2H), 0.95–0.99 (m, 2H), 2.06–2.10 (m, 1H), 2.50 (s, 3H), 6.20 (s, 1H), 6.56 (s, 1H), 7.44 (d, J = 2.4 Hz, 3H), 7.97–7.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.3, 10.2, 24.6, 91.2, 107.2, 128.4, 129.3, 130.7, 131.3, 145.2, 150.4, 158.2, 161.3. HRMS calcd for C₁₆H₁₆N₃: 250.1344 [M + H], found: 250.1341.

7-(3-Chlorophenyl)-2-cyclopropyl-5-methylpyrazolo[1,5-*a*]pyrimidine (3z): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ: 0.81–0.85 (m, 2H), 0.96–1.00 (m, 2H), 2.04–2.08 (m, 1H), 2.51 (s, 3H), 6.18 (s, 1H), 6.55 (s, 1H), 7.33–7.41 (m, 2H), 7.84 (d, *J* = 7.2 Hz, 1H), 7.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 9.5, 10.2, 24.6, 91.4, 107.3, 127.4, 129.3, 129.7, 130.7, 132.9, 134.4, 143.6, 150.2, 158.2, 161.5. HRMS calcd for C₁₆H₁₅ClN₃: 284.0955 [M + H], found: 284.0953.

2-Cyclopropyl-7-(4-methoxyphenyl)-5-methylpyrazolo[**1**,**5**-*a*]-**pyrimidine (3aa):** yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 0.81–0.84 (m, 2H), 0.93–0.97 (m, 2H), 2.03–2.08 (m, 1H), 2.46 (s, 3H), 3.75 (s, 3H), 6.14 (s, 1H), 6.50 (s, 1H), 6.91 (d, *J* = 8.8 Hz, 2H), 7.97 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.3, 10.2, 24.6, 55.3, 90.9, 106.3, 113.8, 123.3, 130.9, 144.9, 150.4, 158.0, 161.1, 161.5. HRMS calcd for C₁₇H₁₈N₃O: 280.1450 [M + H], found: 280.1453.

4-(2-Cyclopropyl-5-methylpyrazolo[**1**,5-*a*]**pyrimidin-7-yl)benzonitrile** (**3bb**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 0.81–0.83 (m, 2H), 0.97–1.01 (m, 2H), 2.03–2.07 (m, 1H), 2.56 (s, 3H), 6.20 (s, 1H), 6.64 (s, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.5, 10.2, 24.7, 91.8, 107.7, 114.2, 118.2, 129.9, 132.2, 135.6, 143.0, 143.0, 150.2, 158.3, 161.8, 161.8. HRMS calcd for $C_{17}H_{15}N_4$: 275.1297 [M + H], found: 275.1295.

2-Cyclopropyl-5-methyl-7-(thiophen-2-yl)pyrazolo[1,5-*a*]**pyrimidine** (3cc): yellow solid; ¹H NMR (400 MHz, CDCl₃) δ : 0.98–1.07 (m, 4H), 2.12–2.15 (m, 1H), 2.53 (s, 3H), 6.27 (s, 1H), 6.91 (s, 1H), 7.15 (t, J = 4.0 Hz, 1H), 7.60 (d, J = 4.8 Hz, 1H), 8.19 (d, J = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.7, 10.2, 24.7, 92.0, 103.3, 127.3, 130.9, 131.6, 131.9, 138.5, 150.1, 157.4, 161.0. HRMS calcd for C₁₄H₁₄N₃S: 256.0908 [M + H], found: 256.0903.

7-Benzyl-2-cyclopropyl-5-methylpyrazolo[**1**,5-*a*]**pyrimidine** (**3dd**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ: 0.90–0.94 (m, 2H), 1.01–1.06 (m, 2H), 2.11–2.15 (m, 1H), 2.41 (s, 3H), 4.38 (s, 2H), 6.06 (s, 1H), 6.20 (s, 1H), 7.26–7.35 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ: 9.3, 10.2, 24.6, 36.1, 91.5, 106.5, 127.3, 128.8, 129.9, 135.0, 147.6, 149.2, 158.1, 161.0. HRMS calcd for $C_{17}H_{18}N_3$: 264.1501 [M + H], found: 264.1505.

2-Cyclopropyl-5-methyl-7-phenethylpyrazolo[1,5-*a*]pyrimidine (3ee): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 0.90–0.91 (m, 2H), 1.02 (d, *J* = 8.4 Hz, 2H), 2.09–2.12 (m, 1H), 2.44 (s, 3H), 3.10 (t, *J* = 8.4 Hz, 2H), 3.31 (t, *J* = 8.0 Hz, 2H), 6.18 (s, 1H), 6.28 (s, 1H), 7.17 (d, *J* = 6.8 Hz, 2H), 7.25 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.4, 10.2, 24.6, 31.8, 32.1, 91.3, 106.2, 126.4, 128.4, 128.5, 140.4, 147.2, 149.3, 157.9, 160.9. HRMS calcd for C₁₈H₁₉N₃: 278.1657 [M + H], found: 278.1653.

2-Cyclopropyl-5-ethyl-7-phenylpyrazolo[1,5-*a*]**pyrimidine** (**3ff**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 0.86–0.90 (m, 2H), 1.01–1.06 (m, 2H), 1.37 (t, *J* = 7.6 Hz, 3H), 2.11–2.15 (m, 1H), 2.86 (q, *J* = 7.6 Hz, 2H), 6.24 (s, 1H), 6.68 (s, 1H), 7.54 (t, *J* = 7.6 Hz, 3H), 8.04–8.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.4, 10.2, 13.2, 31.4, 91.1, 106.3, 128.5, 129.3, 130.8, 131.5, 145.7, 150.3, 161.6, 163.1. HRMS calcd for C₁₇H₁₈N₃: 264.1501 [M + H], found: 264.1508.

5-Methyl-2,7-diphenylpyrazolo[**1**,5-*a*]**pyrimidine** (**3gg**): yellow solid. 1H NMR (400 MHz, CDCl₃) δ : 2.61 (s, 3H), 6.71 (s, 1H), 6.94 (s, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.53–7.56 (m, 3H), 8.00–8.02 (m, 2H), 8.11–8.14 (m, 2H); 13C NMR (100 MHz, CDCl₃) δ : 24.8, 92.5, 108.2, 126.6, 128.5, 128.7, 128.8, 129.5, 130.9, 131.1, 133.1, 145.6, 150.8, 155.6, 158.6. HRMS calcd for C₁₉H₁₆N₃: 286.1344 [M + H], found: 286.1348.

7-(4-Bromophenyl)-5-methyl-2-phenylpyrazolo[1,5-*a*]pyrimidine (3hh): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.62 (s, 3H), 6.71 (s, 1H), 6.92 (s, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.68–7.70 (m, 2H), 7.96–7.98 (m, 2H), 8.01–8.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 24.8, 92.7, 107.9, 125.4, 126.5, 128.7, 128.9, 129.9, 131.0, 131.8, 132.9, 144.5, 150.7, 155.7, 158.6. HRMS calcd for C₁₉H₁₅BrN₃: 364.0449 [M + H], found: 364.0455.

5,6-Dimethyl-7-phenylpyrazolo[**1,5-***a*]**pyrimidine** (**3ii**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.14 (s, 3H), 2.62 (s, 3H), 6.58 (d, *J* = 2.0 Hz, 1H), 7.45–7.47 (m, 2H), 7.53–7.57 (m, 3H), 7.95 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 15.1, 24.1, 95.5, 114.9, 128.9, 129.4, 129.9, 130.9, 144.0, 147.4, 159.6. HRMS calcd for C₁₄H₁₄N₃: 224.1188 [M + H], found: 224.1185.

2,5,6-Trimethyl-7-phenylpyrazolo[**1,5***a*]**pyrimidine** (3jj): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.08 (s, 3H), 2.39 (s,

2-Cyclopropyl-5,6-dimethyl-7-phenylpyrazolo[1,5-*a*]pyrimidine (3kk): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 0.74–0.77 (m, 2H), 0.93–0.96 (m, 2H), 2.01–2.03 (m, 1H), 2.08 (d, *J* = 1.2 Hz, 3H), 2.55 (d, *J* = 2.0 Hz, 3H), 6.11 (s, 1H), 7.45–7.54 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.4, 10.2, 15.1, 24.0, 90.0, 113.7, 128.6, 129.7, 129.7, 130.9, 143.4, 148.2, 159.0, 160.7. HRMS calcd for C₁₇H₁₈N₃: 264.1501 [M + H], found: 264.1498.

6-Ethyl-2,5-dimethyl-7-phenylpyrazolo[**1**,5-*a*]**pyrimidine** (3ll): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 1.05 (t, *J* = 7.6 Hz, 3H), 2.39 (s, 3H), 2.47 (q, *J* = 7.2 Hz, 2H), 2.64 (s, 3H), 6.36 (s, 1H), 7.41–7.43 (m, 2H), 7.53–7.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8, 14.8, 21.7, 23.2, 94.7, 120.7, 128.9, 129.1, 129.6, 131.1, 143.9, 148.1, 154.3, 158.6. HRMS calcd for C₁₆H₁₈N₃: 252.1501 [M + H], found: 252.1503.

6,7-Dimethyl-5-phenylpyrazolo[**1,5**-*a*]**pyrimidine** (**4ii**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.32 (s, 3H), 2.86 (s, 3H), 6.67 (d, *J* = 2.0 Hz, 1H), 7.46–7.53 (m, 5H), 8.10 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ ; 14.1, 15.5, 96.7, 113.4, 128.4, 128.7, 128.7, 128.9, 139.7, 144.0, 146.9, 159.5. HRMS calcd for C₁₄H₁₄N₃: 224.1188 [M + H], found: 224.1181.

2,6,7-Trimethyl-5-phenylpyrazolo[**1,5**-*a*]**pyrimidine** (4jj): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 2.26 (s, 3H), 2.52 (s, 3H), 2.80 (s, 3H), 6.43 (s, 1H), 7.43–7.51 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.2, 14.7, 15.5, 95.8, 112.5, 128.3, 128.6, 128.7, 139.7, 143.4, 147.6, 154.2, 159.1. HRMS calcd for C₁₅H₁₆N₃: 238.1344 [M + H], found: 238.1351.

2-Cyclopropyl-6,7-dimethyl-5-phenylpyrazolo[1,5-*a*]pyrimidine (4kk): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 0.88–0.92 (m, 2H), 1.02–1.07 (m, 2H), 2.12–2.16 (m, 1H), 2.24 (s, 3H), 2.79 (s, 3H), 6.25 (s, 1H), 7.40–7.50 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 9.2, 10.2, 14.1, 15.5, 91.8, 112.3, 128.3, 128.6, 128.7, 139.8, 143.4, 147.6, 159.0, 160.8. HRMS calcd for C₁₇H₁₈N₃: 264.1501 [M + H], found: 264.1505.

6-Ethyl-2,7-dimethyl-5-phenylpyrazolo[**1**,5-*a*]**pyrimidine** (**4ll**): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 1.06 (t, J = 7.2 Hz, 3H), 2.54 (s, 3H), 2.68 (q, J = 7.2 Hz, 2H), 2.84 (s, 3H), 6.44 (s, 1H), 7.44–7.47 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 13.9, 14.7, 15.1, 21.6, 95.8, 119.1, 128.2, 128.3, 128.5, 139.9, 143.3, 147.4, 154.4, 159.3. HRMS calcd for C₁₆H₁₈N₃: 252.1501 [M + H], found: 252.1504.

1-Butyl-5-(5-methylpyrazolo[**1,5-***a*]**pyrimidin-7-yl**)-**4-(methyl-thio)pyrimidin-2(1***H***)-one (7): yellow solid. ¹H NMR (400 MHz, CDCl₃) \delta: 0.90 (t,** *J* **= 8.0 Hz, 3H), 1.35 (sext,** *J* **= 7.2 Hz, 2H), 1.73 (quint,** *J* **= 7.2 Hz, 2H), 2.47 (s, 3H), 2.58 (s, 3H), 3.86 (t,** *J* **= 7.2 Hz, 2H), 6.57 (d,** *J* **= 2.4 Hz, 1H), 6.86 (s, 1H), 7.99 (d,** *J* **= 2.4 Hz, 1H), 8.00 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta: 13.5, 13.7, 19.7, 24.8, 30.8, 51.2, 96.6, 107.1, 110.6, 138.5, 144.5, 146.9, 149.1, 153.1, 158.4, 175.6. HRMS calcd for C₁₆H₂₀N₅OS: 330.1389 [M + H], found: 330.1382.**

((2*R*,3*S*,5*R*)-3-Acetoxy-5-(5-(2,5-dimethylpyrazolo[1,5-*a*]pyrimidin-7-yl)-4-(methylthio)-2-oxopyrimidin-1(2*H*)-yl)tetrahydrofuran-2-yl)methyl acetate (11): yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ : 1.54 (s, 3H), 2.00 (s, 3H), 2.13–2.20 (m, 1H), 2.32 (s, 3H), 2.42 (s, 3H), 2.49 (s, 3H), 2.71–2.77 (m, 1H), 4.17 (d, *J* = 2.8 Hz, 2H), 4.23–4.25 (m, 1H), 5.12–5.13 (m, 1H), 6.21 (t, *J* = 6.8 Hz, 1H), 6.30 (s, 1H), 6.70 (s, 1H), 8.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 13.5, 14.6, 20.0, 20.8, 24.6, 38.8, 62.5 74.0, 62.0, 27.2, 61.07 (s, 140.5 (s, 140.

¹⁰C NMR (100 MHz, CDCl₃) δ : 13.5, 14.6, 20.0, 20.8, 24.6, 38.8, 63.5, 74.0, 82.9, 87.3, 95.9, 107.7, 109.6, 137.9, 141.6, 149.7, 152.1, 154.8, 157.9, 169.9, 170.2, 176.4. HRMS calcd for C₂₂H₂₆N₅O₆S: 488.1604 [M + H], found: 488.1609.

General procedure for the preparation of nucleoside-pyrazolo-[1,5-*a*]pyrimidine chimeras 8 and 12

A sealed tube (50 mL) containing compound 7 or **11** (0.5 mmol), i-PrOH (5 mL), $NH_3 \cdot H_2O$ (1 mL) and a magnetic stirring bar was heated to 90 °C for 8 h. The resulting mixture was then concentrated under vacuum, and the residue was purified by chromatography on silica gel to afford the nucleoside-pyrazolo[1,5-*a*]pyrimidine chimera **8** or **12**.

4-Amino-1-butyl-5-(5-methylpyrazolo[**1**,5-*a*]**pyrimidin-7-yl**)**pyrimidin-2(1***H***)-one** (8): white solid. ¹H NMR (400 MHz, DMSO) δ: 0.88 (t, *J* = 7.2 Hz, 3H), 1.22–1.30 (m, 2H), 1.55–1.62 (m, 2H), 2.52 (s, 3H), 3.70 (t, *J* = 7.6 Hz, 2H), 6.58 (s, 1H), 6.94 (s, 1H), 8.09 (s, 1H), 8.13 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ: 14.1, 19.7, 24.7, 31.3, 49.1, 95.9, 98.1, 111.0, 140.3, 144.4, 149.0, 149.1, 155.2, 158.8, 162.8. HRMS calcd for $C_{15}H_{19}N_6O$: 299.1620 [M + H], found: 299.1656.

4-Amino-5-(2,5-dimethylpyrazolo[1,5-*a*]pyrimidin-7-yl)-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1*H*)-one (12): white solid. ¹H NMR (400 MHz, DMSO) δ: 2.02–2.08 (m, 1H), 2.18–2.22 (m, 1H), 2.35 (s, 3H), 2.48 (s, 3H), 3.46–3.54 (m, 2H), 3.77 (s, 1H), 4.19 (s, 1H), 4.90 (t, *J* = 4.4 Hz, 1H), 5.22 (d, *J* = 2.8 Hz, 1H), 6.18 (t, *J* = 6.0 Hz, 1H), 6.37 (s, 1H), 6.69 (br., 1H), 6.81 (s, 1H), 7.48 (br., 1H), 8.28 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ: 14.9, 24.7, 41.2, 61.5, 70.5, 85.8, 87.9, 95.2, 99.3, 110.1, 139.8, 143.7, 149.8, 153.7, 154.5, 158.5, 162.5. MS: *m*/*z* 373 (MH)⁺. HRMS calcd for C₁₇H₂₁N₆O₄: 373.1624 [M + H], found: 373.1628.

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (NSFC) (grant numbers 21172057 and 21272058), the Research Fund for the Doctoral Program of Higher Education (RFDP) (grant number 20114104110005), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (IRT 1061) for financial support.

Notes and references

- A. Kamal, J. R. Tamboli, V. L. Nayak, S. F. Adil and M. V. P. S. Vishnuvardhan, *Bioorg. Med. Chem. Lett.*, 2013, 23, 3208–3215.
- 2 O. M. Ahmed, M. A. Mohamed, R. R. Ahmed and S. A. Ahmed, *Eur. J. Med. Chem.*, 2009, **44**, 3519–3523.

Organic & Biomolecular Chemistry

- 3 S. Selleri, F. Bruni, C. Costagli, A. Costanzo, G. Guerrini, G. Ciciani, P. Gratteri, F. Besnard, B. Costa, M. Montali, C. Martini, J. Fohlin, G. D. Siena and P. M. Aiello, *J. Med. Chem.*, 2005, 48, 6756–6760.
- 4 S. Bondock, W. Fadaly and M. A. Metwally, *Eur. J. Med. Chem.*, 2010, **45**, 3692–3701.
- 5 W. M. Al-Adiwish, M. I. M. Tahir, A. Siti-Noor-Adnalizawati, S. F. Hashim, N. Ibrahim and W. A. Yaacob, *Eur. J. Med. Chem.*, 2013, 64, 464–476.
- 6 K. Senga, T. Novinson, R. H. Springer, R. P. Rao, D. E. O'Brien, R. K. Robins and H. R. Wilson, *J. Med. Chem.*, 1975, 18, 312–314.
- 7 K. Senga, T. Novinson and H. R. Wilson, J. Med. Chem., 1981, 24, 610-613.
- 8 D. Tang, E. T. Mckinley, M. R. Hight, M. I. Uddin, J. M. Harp, A. Fu, M. L. Nickels, J. R. Buck and H. C. Manning, *J. Med. Chem.*, 2013, 56, 3429–3433.
- 9 J. Y. Hwang, M. P. Windisch, S. Jo, K. Kim, S. Kong, H. C. Kim, S. Kim, H. Kim, M. E. Lee, Y. Kim, J. Choi, D.-S. Park, E. Park, J. Kwon, J. Nam, S. Ahn, J. Cechetto, J. Kim, M. Liuzzi, Z. No and J. Lee, *Bioorg. Med. Chem. Lett.*, 2012, 22, 7297–7301.
- D. R. Compton, S. Sheng, K. E. Carlson, N. A. Rebacz,
 I. Y. Lee, B. S. Katzenellenbogen and
 J. A. Katzenellenbogen, *J. Med. Chem.*, 2004, 47, 5872–5893.
- (a) D. J. Wustrow, T. Capiris, R. Rubin, J. A. Knobelsdorf, H. Akunne, M. D. Davis, R. MacKenzie, T. A. Pugsley, K. T. Zoski, T. G. Heffner and L. D. Wise, *Bioorg. Med. Chem. Lett.*, 1998, 8, 2067–2070; (b) P. J. Gilligan, C. Baldauf, A. Cocuzza, D. Chidester, R. Zaczek, L. W. Fitzgerald, J. McElroy, M. A. Smith, H. S. L. Shen, J. A. Saye, D. Christ, G. Trainor, D. W. Robertson and P. Hartig, *Bioorg. Med. Chem.*, 2000, 8, 181–189.
- 12 C. Almansa, A. F. de Arriba, F. L. Cavalcanti, L. A. Gomez, A. Miralles, M. Merlos, J. Garcia-Rafanell and J. Forn, *J. Med. Chem.*, 2001, 44, 350–361.
- 13 M. E. Fraley, W. F. Hoffman, R. S. Rubino, R. W. Hungate, A. J. Tebben, R. Z. Rutledge, R. C. McFall, W. R. Huckle, R. L. Kendall, K. E. Coll and K. A. Thomas, *Bioorg. Med. Chem. Lett.*, 2002, 12, 2767–2770.
- 14 (a) Y. Makisumi, Chem. Pharm. Bull., 1962, 10, 612–620;
 (b) B. T. Gregg, D. O. Tymoshenko, D. A. Razzano and M. R. Johnson, J. Comb. Chem., 2007, 9, 507–512;
 (c) T. Novinson, J. P. Miller, M. Scholten, R. K. Robins, L. N. Simon, D. E. O'Brien and R. B. Meyer Jr., J. Med. Chem., 1975, 18, 460–464; (d) J. Quiroga, J. Portilla, R. Abonía, B. Insuasty, M. Nogueras and J. Cobo, Tetrahedron Lett., 2007, 48, 6352–6355; (e) H. B. Abed, O. Mammoliti, G. V. Lommen and P. Herdewijn, Tetrahedron Lett., 2013, 54, 2612–2614.

- 15 (a) H. Haider Behbehani, H. M. Ibrahim and S. Makhseed, ARKIVOC, 2010, ii, 267–282; (b) A. V. Ivachtchenko, E. S. Golovina, M. G. Kadieva, V. M. Kysil, O. D. Mitkin, S. E. Tkachenko and I. M. Okun, J. Med. Chem., 2011, 54, 8161–8173; (c) S. Ahmetaj, N. Velikanje, U. Grošelj, I. Šterbal, B. Prek, A. Golobič, D. Kočar, G. Dahmann, B. Stanovnik and J. Svete, Mol. Diversity, 2013, 17, 731–743; (d) K. D. Khalil, H. M. Al-Matar, D. M. Al-Dorri and M. H. Elnagdi, Tetrahedron, 2009, 65, 9421–9427.
- 16 R. N. Daniels, K. Kim, E. P. Lebois, H. Muchalski, M. Hughes and C. W. Lindsley, *Tetrahedron Lett.*, 2008, 49, 305–310.
- 17 L. Buriol, T. S. München, C. P. Frizzo, M. R. B. Marzari, N. Zanatta, H. G. Bonacorso and M. A. P. Martins, *Ultrason. Sonochem.*, 2013, 20, 1139–1143.
- 18 (a) S. Ma, Acc. Chem. Res., 2003, 36, 701-712; (b) S. Ma, Chem. Rev., 2005, 105, 2829-2871; (c) N. Krause and A. S. K. Hashmi, Modern Allene Chemistry, WILEY-VCH, Weinheim, 2004, vol. 2, ch. 10; (d) S. Ma, Aldrichimica Acta, 2007, 40, 91-102; (e) B. Alcaide, P. Almendros and T. M. del Campo, Chem.-Eur. J., 2010, 16, 5836-5842; (f) Y. Xia, A. S. Dudnik, V. Gevorgyan and Y. Li, J. Am. Chem. Soc., 2008, 130, 6940-6941; (g) D. Malhotra, L.-P. Liu and G. B. Hammond, Eur. J. Org. Chem., 2010, 6855-6862.
- 19 (a) X. Zhang, X. Jia, L. Fang, N. Liu, J. Wang and X. Fan, Org. Lett., 2011, 13, 5024–5027; (b) Y. He, X. Zhang, L. Cui, J. Wang and X. Fan, Green Chem., 2012, 14, 3429–3435.
- 20 CCDC 975575 (**3jj**) and CCDC 975574 (**4jj**) contain the supplementary crystallographic data for this paper.
- 21 (a) L. A. Agrofoglio, Curr. Org. Chem., 2006, 10, 333-362;
 (b) E. De Clercq, Antiviral Res., 2005, 67, 56-75; (c) C. Mathé and G. Gosselin, Antiviral Res., 2006, 71, 276-281;
 (d) R. Kumar, Curr. Med. Chem., 2004, 11, 2749-2766;
 (e) L. A. Agrofoglio, I. Gillaizeau and Y. Saito, Chem. Rev., 2003, 103, 1875-1916; (f) C. Simons, Q. P. Wu and T. T. Htar, Curr. Top. Med. Chem., 2005, 5, 1191-1203.
- 22 (a) X. Fan, X. Zhang, L. Zhou, K. A. Keith, M. N. Prichard, E. R. Kern and P. F. Torrence, J. Med. Chem., 2006, 49, 4052–4054; (b) X. Fan, X. Zhang, L. Zhou, K. A. Keith, M. N. Prichard, E. R. Kern and P. F. Torrence, J. Med. Chem., 2006, 49, 3377–3382; (c) X. Fan, D. Feng, Y. Qu, X. Zhang, J. Wang, P. M. Loiseau, G. Andrei, R. Snoeck and E. De Clercq, Bioorg. Med. Chem. Lett., 2010, 20, 809–813; (d) X. Zhang, X. Li, D. Li, Q. Qu, J. Wang, P. M. Loiseau and X. Fan, Bioorg. Med. Chem. Lett., 2009, 19, 6280–6283; (e) X. Fan, Y. Wang, Y. Qu, H. Xu, Y. He, X. Zhang and J. Wang, J. Org. Chem., 2011, 76, 982–985.
- 23 S. Guo, J. Wang, D. Guo, X. Zhang and X. Fan, *RSC Adv.*, 2012, **2**, 3772–3777.