1804 Jeffery and Vogel: Physical Properties and Chemical Constitution.

364. Physical Properties and Chemical Constitution. Part XVIII. Three-membered and Four-membered Carbon Rings.

By George H. Jeffery and Arthur I. Vogel.

New measurements have been made of the refractivities at 20° and the parachors of a number of *cyclo*propane and *cyclo*butane compounds, largely esters of *cyclo*propane- and *cyclo*butane-carboxylic and -1: 1-dicarboxylic acids. The contributions of the three- and four-membered carbon rings have been computed from the relationship:

	$[CH_2]_n$	R_1		[CH ₂]n	R_1
Ring constant $=$		X	+ 2H -		ΞΗζ
	CH_2	$\mathbb{N}R_2$		CH3	$\mathbb{N}R_2$

The necessary physical data for H and the reference compounds are given in the earlier papers of this series. The results are :

	P.	$R_{\mathbf{C}}$.	$R_{\mathbf{D}}$.	$R_{\mathbf{F}}$.	$R_{\mathbf{G'}}$.	$Mn_{\mathbf{D}}^{20^{\mathbf{o}}}$.
	12.3	0.592	0.614	0.656	0.646	-4.72
Four-carbon ring	10.0	0.303	0.312	0.332	0.322	-4.67

The new constants differ appreciably from those previously accepted.

THE early attempts to determine the contribution to the refractivity of the three- and four-membered carbon rings cannot now be regarded as satisfactory for the following reasons: (1) The selection of compounds included many containing dicyclic structures. (2) The calculations were based upon erroneous values for the CH₂ constants (compare Vogel, Part IX, J., 1946, 133). The most comprehensive data are due to Ostling (J., 1912, 101, 468), whose $R_{\rm D}$ values for the *cyclo*propane and *cyclo*butane rings were 0.71 and 0.48, respectively (for a detailed review, see Eisenlohr, "Spektrochemie organischer Verbindungen, Molekularrefraktion und -dispersion", Ferdinand Enke, 1912, 89—91, 134—141). The parachor contribution of the three-membered ring is based upon data on 9 compounds of very varied type which include ethylene oxide and epichlorohydrin and upon a CH₂ value of 39.0 (compare Vogel, Part IX, who found 40.0); the extreme values were 12.9 and 20.2 and the mean was 16.7 (Sugden and Wilkins, J., 1927, 240). The constant of the four-membered ring was computed from the results upon ethyl 1-cyanocyclobutane-1-carboxylate, ethyl cyclobutane-1: 1-dicarboxylate, and ethyl cyclobutanecarboxylate and was given as 11.6 (Sugden and Wilkins, J., 1927, 141).

We have determined the parachors and refractivities of 10 simple *cyclo*propane compounds (largely esters of *cyclo*propane-carboxylic and 1:1-dicarboxylic acids) and have computed the contributions of the three-carbon ring from the relationship given above (n = 1). The necessary experimental data were taken from earlier papers of this series (2H from Part IX, alkyl *n*-butyrates and alkyl ethylmalonates from Part XIII, this vol., p. 624; the data for *n*-butyric acid are given in Part XX, *ibid.*, p. 1814). The results are summarised in Table I; the experimental data for dimethyl *cyclo*propane-1:1-dicarboxylate were taken from Part I (*J.*, 1934, 340). The slight (and often negative) difference between R_F and R_G , is noteworthy; it is hoped to repeat

TABLE I.

V	alues j	for	the	three-car	bon	ring	from	cycl	loproj	pane	compo	unds.
---	---------	-----	-----	-----------	-----	------	------	------	--------	------	-------	-------

		-		-		
	P.	R_{0} .	$R_{\mathbf{D}}$.	$R_{\mathbf{F}}$.	$R_{G'}$.	$Mn_{ m D}^{20}$.
cycloPropanecarboxylic acid	14.0	0.59	0.61	0.65	0.66	-4.44
cycloPropyl methyl ketone	13.3	0.69	0.72	0.78	0.78	-5.00
Me cyclopropanecarboxylate	13.4	0.59	0.61	0.65	0.64	-4.78
Et cyclopropanecarboxylate	12.6	0.54	0.60	0.60	0.60	-4.67
Pr ⁿ cyclopropanecarboxylate	12.4	0.61	0.62	0.66	0.66	-4.59
Bu ⁿ cyclopropanecarboxylate	12.0	0.61	0.63	0.67	0.66	-4.81
Am ⁿ cyclopropanecarboxylate	11.3	0.49	0.52	0.56	0.55	-4.85
Me ₂ cyclopropane-1 : 1-dicarboxylate	12.3	0.63	0.63	0.68	0.65	-4.46
Et ₂ cyclopropane-1 : 1-dicarboxylate	11.2	0.58	0.59	0.65	0.61	-4.91
Pr ⁿ ₂ cyclopropane-1 : 1-dicarboxylate	10.5	0.45 *	0.44 *	0.51 *	0.48 *	-4.73
Mean (excluding *)	12.3	0.592	0.614	0.656	0.646	-4.72
Mean)	12.3	0.578	0.597	0.641	0.629	-4.73

the measurements for $n_{\rm F}$ and $n_{\rm G}$, with the new Hilger-Chance refractometer to establish whether the differences are due to experimental error in the measurement of the faint G' line or whether these are characteristic of *cyclopropane* compounds. It will be noted that two values of the mean

[1948] Part XVIII. Three- and Four-membered Carbon Rings. 1805

constants are given in the table; the first set of figures, which excludes the apparently low results for di-*n*-propyl *cyclo*propane-1: 1-dicarboxylate, is considered to be more trustworthy.

The contributions of the four-membered carbon ring have been similarly calculated from new measurements upon esters of cyclobutane-carboxylic and -1: 1-dicarboxylic acids and upon the first acid itself; the reference data for alkyl *n*-valerates and *n*-propylmalonates are given in Part XIII and for *n*-valeric acid in Part XX (*locc. cit.*). Precision measurements with the Hilger-Chance refractometer must decide whether the apparently anomalous values for R_{α} , are real or are due to experimental error. The results are collected in Table II.

TABLE II.

Values	for the	four-carbon	ring	from	cyclobutane	compounds.

	P.	$R_{\mathbf{C}}.$	$R_{\mathbf{D}}.$	$R_{\mathbf{F}}$.	$R_{\mathbf{G}'}$.	$Mn_{D}^{20^{\circ}}$.
cycloButanecarboxylic acid	11.1	0.36	0.37	0.38	0.37	$-4 \cdot 40$
Me cyclobutanecarboxylate	10.0	0.31	0.33	0.33	0.32	-4.63
Et cyclobutanecarboxylate	10.2	0.29	0.31	0.32	0.32	-4.68
Pr ⁿ cyclobutanecarboxylate	10.0	0.32	0.35	0.34	0.35	-4.78
Bu ⁿ cyclobutanecarboxylate	10.3	0.36	0.36	0.38	0.38	-4.72
Am ⁿ cyclobutanecarboxylate	9.9	0.26	0.29	0.29	0.28	-4.63
Me ₂ cyclobutane-1: 1-dicarboxylate	10.2	0.32	0.34	0.37	0.34	-4.48
Et ₂ cyclobutane-1 : 1-dicarboxylate	9.5	0.26	0.26	0.29	0.28	-4.83
Pr ⁿ ₂ cyclobutane-1: 1-dicarboxylate	9.7	0.31	0.31	0.35	0.34	-4.82
Bu ⁿ ₂ cyclobutane-1 : 1-dicarboxylate	$9 \cdot 2$	0.24	0.25	0.27	0.24	-4.71
Mean 🔿	10.0	0.303	0.317	0.332	0.322	-4.67

EXPERIMENTAL.

Physical Measurements.—Full details applying to this and the subsequent papers of this series are given in Part VII (J., 1943, 18). Surface tensions were measured by the method of capillary rise, and only the values for H (= h - 0.24 mm.) are given. The constants for the various apparatus are : A 1.8725, B 2.33449, C 2.3740, D 2.4696, E 2.3290, F 2.3282. Unless otherwise stated, all b. p.s are corrected. Measurements of the refractive indices were made at $20^{\circ} \pm 0.05^{\circ}$ on a Zeiss Pulfrich refractometer; with some compounds the G' line was so faint that setting of the crosswires was less accurate than for the C and F lines.

Previous Work.—The larger proportion of the measurements described in this and succeeding papers of this series are new. The constants deduced will in all cases be based upon the measurements from this laboratory. In order to economise space, no reference will be made (save in exceptional circumstances) to previous work since this can be found in I.C.T., Landolt–Börnstein "Tabellen", or the original literature.

Preparation of Pure Compounds.—cycloPropyl methyl ketone. The Eastman-Kodak product was dried (CaSO₄) and distilled through a Widmer column in an all-glass apparatus. A middle fraction, b. p. 111°/757 mm. (semicarbazone, m. p. 117°), was used for the physical measurements.

cycloPropanecarboxylic acid. Decomposition of cyclopropane- $\hat{1}$: 1-dicarboxylic acid, m. p. 136—137°, by heating at 160° until evolution of carbon dioxide ceased yielded crude cyclopropanecarboxylic acid, b. p. 185—195°. The physical properties of the liquid were anomalous owing to the presence of a considerable quantity of γ -butyrolactone (Perkin, $J_{..}$, 1885, **47**, 815; Bone and Perkin, $J_{..}$, 1895, **67**, 117); a middle fraction, b. p. 188°, had d_{20}^{29} : 1-1148, n_{20}^{29} : 1-4395. Upon dissolving the crude acid in dilute sodium carbonate solution, extracting with ether to remove the butyrolactone, acidifying with dilute sulphuric acid at 0°, and extracting with ether, fairly pure cyclopropanecarboxylic acid, b. p. 184—185°, was obtained in poor yield : this had d_{40}^{29} : 1-0891, n_{20}^{29} : 1-4376 (Bruylants, *Bull. Soc. chim. Belg.*, 1929, **38**, 133, gives $d_{40}^{29}: 1$:0885, $n_{40}^{29}: 1$:4390 for the acid presumably prepared by hydrolysis of cyclopropyl cyanide).

133, gives d²⁰/₄ 1.0885, n²⁰/₄ 1.43901 for the acid presumably prepared by hydrolysis of cyclopropyl cyanide). The most convenient method for the preparation of the pure acid in quantity was the oxidation of the readily available cyclopropyl methyl ketone (compare Org. Synth., 1944, 24, 36). In a 3-1. three-necked flask, equipped with a dropping funnel, mechanical stirrer, and thermometer, was placed a solution of 165 g. of sodium hydroxide in 1400 ml. of water, cooled to 0--2°, and 240 g. of A.R. bromine were added with stirring at such a rate that the temperature did not rise above 10°. The sodium hypobromite solution was cooled to 0°; redistilled cyclopropyl methyl ketone, b. p. 110-5--111.5°/757 mm., was added with stirring so that the temperature did not rise above 10°. The isodium hypobromite solution do a further 2 hours. The mixture was steam-distilled to remove the bromoform (105--115 g.; a little solid carbon tetrabromide may separate in the condenser). The liquid was cooled in ice, acidified to Congo-red with concentrated hydrochloric acid, a little solium hydrogen sulphite added to remove the very pale yellow colour, and the acid isolated by saturation with salt and extraction with ether (4 × 300 ml.). Removal of the solvent and distillation under reduced pressure yielded 36 g. of pure cyclopropanecarboxylic acid, b. p. 97°/27 mm., m. p. 17--17.5°. Slight decomposition occurs upon distillation at atmospheric pressure : b. p. 179--180°, m. p. 15:5--16:5°.

Methyl cyclopropanecarboxylate. An all-glass apparatus, provided with a reflux condenser and dropping funnel, was charged with 100 g. of redistilled thionyl chloride and 52 g. of pure cyclopropanecarboxylic acid were slowly added. The mixture was refluxed for 30 minutes and then distilled through an all-glass Dufton column; 53 g. of the acid chloride, b. p. 119-119.5°/763 mm., were collected.

10.5 G. of pure anhydrous methyl alcohol were placed in an all-glass apparatus (50 ml. round-bottomed flask fitted with an adapter carrying a condenser and a dropping funnel equipped with guard tubes), cooled in ice, and 33 g. of the acid chloride added during 30 minutes. The mixture was kept at room

temperature for 5 hours, poured into water, the ester separated, washed successively with saturated sodium hydrogen carbonate solution and water, dried (CaSO4), and distilled. The yield of ester, b. p. 117.5°/761 mm., was 11 g.

Ethyl cyclopropanecarboxylate. 10·I G. of absolute ethyl alcohol and 22 g. of the acid chloride, after standing at room temperature for 90 minutes, gave 13 g. of the ester, b. p. 133°/763 mm.

n-Propyl cyclopropanecarboxylate. 13.2 G. of absolute n-propyl alcohol and 22 g. of the acid chloride, after standing at room temperature for 5 hours, afforded 13 g. of the ester, b. p. 155°/766 mm. (Found : C, 65.8; H, 9.2. C₇H₁₂O₂ requires C, 65.6; H, 9.4%). n-Butyl cyclopropanecarboxylate. 11.8 G. of pure n-butyl alcohol and 16 g. of the acid chloride gave, after standing for 1 hour at room temperature, 19 g. of the ester, b. p. 175°/759 mm. (Found : C, 67.5;

h, 9.7. C₈H₁₄O₂ requires C, 67.6; H, 9.9%). n-Amyl cyclopropanecarboxylate. 13.2 G. of Boots synthetic *n*-amyl alcohol and 15 g. of the acid chloride gave, after standing for 1 hour at room temperature, 13 g. of the ester, b. p. 193°/753 mm. Redistillation yielded the pure *ester*, b. p. 87°/17 mm. (Found : C, 69.1; H, 10.1. C₉H₁₆O₂ requires

dry ethylene dibromide (compare Part I, J_{\cdot} , 1934, 337) or preferably from ethyl sodiocyanoacetate and ethylene dibromide (compare Carpenter and Perkin, J., 1899, **75**, 924; Jones and Scott, J. Amer. Chem. Soc., 1922, **44**, 413). The acid is best isolated by continuous ether extraction, and after two recrystal-

lisations from ether-light petroleum (b. p. $60-80^{\circ}$) had m. p. $136-137^{\circ}$. *Diethyl* cyclopropane-1: 1-dicarboxylate. A mixture of 19.5 g. of the acid, 28 g. of absolute ethyl alcohol, 9 g. of concentrated sulphuric acid, and 55 ml. of sodium-dried A.R. benzene was refluxed for 20 between and the petroleum (b. p. $60-80^{\circ}$). 20 hours and then poured into excess of water. The benzene layer was separated, the aqueous phase was extracted once with ether, and the combined benzene and ether extracts washed successively with water, saturated sodium hydrogen carbonate solution, and water, dried $(MgSO_4)$, the solvents removed at atmospheric pressure, and the residue distilled under reduced pressure. The yield of diethyl ester, b. p. 114°/22 mm., was 16 g.

Di-n-propyl cyclopropane-1: 1-dicarboxylate. A similar preparation, but with 42 g. of absolute *n*-propyl alcohol, gave 17 g. of *di*-n-*propyl* cyclo*propane*-1 : 1-*dicarboxylate*, b. p. 124°/12 mm. (Found : C, 61-5; H, 8·7. C₁₁H₁₈O₄ requires C, 61·7; H, 8·5%). cyclo*Butane*-1 : 1-*dicarboxylic acid*. The yield of acid obtained by condensation of 212 g. of

trimethylene dibromide with ethyl sodiomalonate (from 46 g. of sodium, 800 ml. of absolute ethyl alcohol, and 160 g. of ethyl malonate) according to the procedure of Org. Synth., 1943, 23, 16 (compare Perkin, *J.*, 1887, 51, 1) can be increased from 30—34 g. to 50—51 g. by the use of perfectly dry materials, *i.e.*, trimethylene dibromide and ethyl malonate dried over anhydrous calcium sulphate, and absolute ethyl alcohol dried by the ethyl phthalate method. The resulting cyclobutane-1: 1-dicarboxylic acid has

m. p. 158° unaffected by recrystallisation. Dimethyl cyclobutane-1: 1-dicarboxylate. A mixture of 21.6 g. of the acid, 20 g. of absolute methyl alcohol, 9 g. of concentrated sulphuric acid, and 50 ml. of sodium-dried A.R. benzene was refluxed for 22 hours and yielded, when worked up as detailed for diethyl cyclopropane-1 : 1-dicarboxylate, 17 g. of ester, b. p. 87°/8 mm.

Diethyl cyclobutane-1: 1-dicarboxylate. This ester was similarly prepared from 28 g. of absolute

ethyl alcohol; yield 16 g., b. p. 101.5°/11 mm. Di-n-propyl cyclobutane-1: 1-dicarboxylate. In like manner, but from 42 g. of absolute n-propyl alcohol and with 34 hours' refluxing, 23 g. of this ester, b. p. 129°/13 mm. (Found: C, 63.3; H, 8.8. $C_{12}H_{20}O_4$ requires C, 63.1; H, 8.8%), were obtained.

 D_{i} D_{i H, 9.4%).

cycloButanecarboxylic acid. The 1:1-dicarboxylic acid, m. p. 158°, was decomposed by heating above the m. p. (Org. Synth., 1943, 23, 17) and gave an 88% yield of the pure acid, b. p. 195.5°/765 mm. (compare op. cit., which gives b. p. 191.5—193.5°/740 mm.). Methyl cyclobutanecarboxylate. The reaction between 100 g. of redistilled thionyl chloride and 65 g.

of pure cyclobutanecarboxylic acid yielded, as for the cyclopropane compound, 62 g. of the acid chloride, b. p. 136-137°/762 mm. The preparation of all the esters from this acid chloride was conducted as detailed for methyl

cyclopropanecarboxylate; after the addition of the acid chloride to the appropriate alcohol cooled to 0° , the mixture was kept at room temperature for 60-90 minutes before being poured into water, etc. Thus 38 g. of the acid chloride and 15 g. of absolute methyl alcohol afforded 30 g. of methyl *cyclobutane*c arboxylate, b. p. 134.5°/764 mm.

Ethyl cyclobutanecarboxylate. From 18 g. of the acid chloride and 8.0 g. of absolute ethyl alcohol, the

yield of ester, b. p. 152°/762 mm., was 13 g. n-Propyl cyclobutanecarboxylate. From 22.5 g. of the acid chloride and 13.0 g. of pure n-propyl alcohol, the yield of ester, b. p. 172°/765 mm., was 23 g. (Found : C, 67.5; H, 9.9. C₈H₁₄O₂ requires C, 67.6; H, 9.9%).

n-Butyl cyclobutanecarboxylate. From 20.1 g. of acid chloride and 13.8 g. of absolute *n*-butyl alcohol, the yield of ester, b. p. 98°/32 mm., was 22 g. (Found : C, 69.2; H, 10.2. $C_9H_{16}O_2$ requires C, 69.2; H, 10.3%).

n-Amyl cyclobutanecarboxylate. From 22.0 g. of the acid chloride and 19.4 g. of Boots synthetic *n*-amyl alcohol, the yield of ester, b. p. 105°/20 mm., was 22 g. (Found : C, 70.5; H, 10.8. $C_{10}H_{18}O_2$ requires C, 70.6; H, 10.7%).

The results of the physical measurements upon the freshly distilled compounds are collected below. The numbering of compounds in Clarendon type follows from Part XVII (this vol., p. 683). Reference to

[1948] Part XVIII. Three- and Four-membered Carbon Rings. 1807

compounds, the preparation of which is described in preceding or succeeding papers of this series, will be abbreviated to, e.g., XVII, **418**.

419. cycloPropyl methyl ketone. B. p. 111°/757 mm.; M 84·11; $n_{\rm C}$ 1·42243, $n_{\rm D}$ 1·42496, $n_{\rm F}$ 1·43116, $n_{\rm G'}$ 1·43555; $R_{\rm C}$ 23·78, $R_{\rm D}$ 23·91, $R_{\rm F}$ 24·22, $R_{\rm G'}$ 24·43; $Mn_{\rm D}^{20}$ 119·86. Densities determined : d_4^{20} 0·8994, $d_4^{40\cdot0^\circ}$ 0·8803, $d_4^{43\cdot7^\circ}$ 0·8575, $d_4^{47\cdot7^\circ}$ 0·8332. Apparatus E.

$0.8994, u_{4}^{-3}$. 0.9905	$u_{4} = 0.00$	•			• • • •			
	77	•	• •		ibsequent ta				מ
t. 17·9°	H. 14.67	d ^{t°} . 0∙9014	$\gamma \cdot 30.80$	P. 219·8	<i>t</i> . 60·9°	H. 12·77	$d_{4^{\bullet}}^{l^{\bullet}}$. 0.8602	$\gamma \cdot 25 \cdot 58$	P. 219.9
21.3	14.54	0.3014 0.8981	30.41	219.9	87.1	11.67	0.8338	$20.00 \\ 22.66$	$210 \cdot 3$ $220 \cdot 1$
40.9	13.67	0.8794	28.00	220.0					n 219·9
400	1- 7		a said D	- 07º (07		17.59. 74	86.00	1.49569 4	1.49999
420. C $n_{\rm E}$] 44448	n_{0} 1.44	inecarooxyii 922 : Ro 20	<i>c acia</i> . E ·65. Rn 20·	5. p. 977/27 77. R _v 21.0	mm., m. p. 1 2, R _G , 21·21	$: Mn_{10}^{20^{\circ}}$	123.82. Determines 1.000 (1000) (10	nsities det	p 1.43832, cermined :
d40° 1.0889), $d_{4^{\circ}}^{40\cdot0^{\circ}}$ 1.	0707, $d_{4^{\circ}}^{60\cdot2^{\circ}}$	$1.0514, d_{4}^{2}$	^{6.5} 1.0262.	Apparatus	<i>E</i> .			
22·4°	13.55	1.0867	34.29	191.7	60.9°	12.31	1.0508	30.13	191.9
40.1	12.95	1.0706	$32 \cdot 29$	191.7	$85 \cdot 9$	11.56	1.0267	27.64	192.3
								Mea	n 191.9
421 . <i>N</i>	lethvl cve	clo <i>brobanec</i>	arboxvlate	B. p. 11	7·5°/763 mm	n : M = 10	$0.0.11: n_0$	$\cdot 41637, n_{\rm T}$	1.41866.
$n_{\rm III}$ 1.42424	no. 1.42	$825 \cdot R_{c} 25$	$\cdot 21 R_{\rm D} 25$	·34. Rv 25.6	3. Roy 25.84	$: Mn_{\rm h}^{20^{\circ}}$	142.03. D	ensities de	termined :
d_4^{20} 0.9972	$2, d_{4^{\circ}}^{40\cdot3^{\circ}} 0\cdot$	9759, $d_{4^{\bullet}}^{63\cdot6^{\circ}}$	$0.9508, d_{4}^{80}$	$3.5^{\circ} 0.9272.$	Apparatus	E.			
20.0°	13.26	0.9972	30.80	236.5	61.5°	11.54	0.9530	25.61	236.3
23.1	$13.18 \\ 12.37$	0.9940	30.51	$236.7 \\ 236.3$	86.2	10.52	0.9275	22.72	236.0
40.9	12.37	0.9753	28.10	230.9				Mea	n 236·4
422 . E	Ethyl cycl	opropaneca	vboxylate.	B. p. 133	°/763 mm.;	M 114 1	$4; n_0 1.41$	789, n _D 1	42076, n _F
1.42573, n	$\iota_{\mathbf{G}'} \stackrel{1.4297}{_{440.0^{\circ}}}$	$(9; R_{C} 29.8)$	4, $R_{\rm D}$ 30.0	$2 R_{\rm F} 30.3$	3, R _{G′} 30·58 Apparatus	; $Mn_{\rm D}^{20^\circ}$	162·17. D	ensities de	termined :
-	-						0.0010		
$20 \cdot 9^{\circ} \\ 41 \cdot 3$	$12.94 \\ 12.15$	$0.9629 \\ 0.9421$	$29.02 \\ 26.66$	$275 \cdot 1 \\ 275 \cdot 3$	$61 \cdot 1^{\circ} \\ 85 \cdot 9$	$11.28 \\ 10.36$	$0.9219 \\ 0.8952$	$24 \cdot 22 \\ 21 \cdot 60$	$274.7 \\ 274.9$
41.5	12 10	0 0 4 2 1	20 00	210 0	00 5	10 00	0 0002		n 275.0
		•							
423 . n w ₂ 1.43011	-Propyl (1 May 1.49	cyclopropan 1395 · R ₂ 3	ecarboxyla 1.54 R ₂ 3	<i>ite</i> . B. p. 4.70 <i>R</i> ₂ 35.	155°/766 mr 10, R _G , 35·38	n.; $M = 1$ $M = M = 20^{\circ}$	28·27; n ₀ 182·72 D	$1.42216, n_{\rm p}$	D 1.42446,
$d_{4^{\bullet}}^{20^{\bullet}} 0.9441$	$d_{A}^{41.0}$ 0.	9240, $d_{4^{\circ}}^{62\cdot8^{\circ}}$	$).9029, d_{4}^{87}$	^{.3°} 0.8794.	Apparatus	E.	102 (2. 1)	chornes de	tormined .
19·8°	13.21	0.9443	29.05	315.4	61·2°	11.58	0.9044	24.39	315.2
22.7	13.08	0.9415	28.68	$315 \cdot 2$	85.7	10.68	0.8809	21.91	315.0
40.7	12.34	0.9243	26.56	$315 \cdot 1$				Mea	n 315·2
424 , n	-Butyl cy	vclopropane	carboxvlat	e. B. p. 17	5°/759 mm.	: M 142	$\cdot 19$: no $1\cdot 4$	2620. np 1	·42847. nr
1.43404, n	ι ₀ , 1.4381	$3: R_0 39.1$	7. Rn [°] 39∙3	36, R _F 39·80), $R_{0'}$ 40.12;	$Mn_{\rm D}^{20^{\circ}}$	203·12. De	ensities de	termined :
$d_{4^{\circ}}^{20^{\circ}} 0.9304$	$d_{4^{\circ}}^{40.0^{\circ}} 0.9$	9136, $d_{4^{\circ}}^{61.5^{\circ}}$	$0.8944, d_{4^{\circ}}^{80}$	$6^{\circ} 0.8714.$	Apparatus I	£.			
$25 \cdot 8^{\circ}$	13.16	0.9254	28.36	354.6	$62 \cdot 2^{\circ}$	11.82	0.8936	24.60	$354 \cdot 4$
40.7	12.58	0.9130	26.75	354.2	85.7	10.96	0.8713	22.24	354.4
								Mea	n 354·4
425 . n	-Amyl cy	yclopropane	carboxylat	e. B. p. 1	93°/753 mm	. followe	d by 87°/1	7 mm.; A	M 156.22;
$n_0 1.42976$	$6, n_{\rm F} 1.43$	219, $n_{\rm F} 1.43$	$3765, n_{G'} 1$	$\cdot 44174; R_0$	$43.74, R_{\rm D}$ 4 4° 0.8870, $d_4^{\rm 8}$	$3.96, R_{\rm F}$	44.45, $R_{G'}$ 4	4.80; Mn	$_{\rm D}^{20^{\circ}}$ 223.74.
Densities	determin	ed : a_{4}^{2} 0.	$3221, a_{4}^{**}$	$0.9034, a_{4^{\circ}}$	$-0.8870, a_4^\circ$. 0.803	9. Appara	tus <i>E</i> .	
15·6°	13.73	0.9259	29.61	393·6	61.5°	11.99	0.8861	24.74	393.2
40.5	12.84	0.9043	27.04	393.9	86.7	11.14	0.8623	22·37	394·0 n 393·7
					B. p. $114^{\circ}/22$				
$d_{43}^{20^{\bullet}} 1.0612$	$1, m_{G'} = 1.44$ 5. $d_{10}^{40.0^{\circ}} = 1.6$	$d_{19}^{60.5^{\circ}}$	$0.38, \pi_{\rm D} = 4.0217, d^{85}$	3° 0.9962.	•12, <i>R</i> g [,] 46•4' Apparatus <i>E</i>	$T; M m_{\rm D}$	200·84. D	ensities de	termined :
		-	-				1 0010	05.05	110.0
16.2° 19.9	$12.99 \\ 12.88$	$1.0653 \\ 1.0616$	$32.23 \\ 31.85$	$416.5 \\ 416.7$	$\begin{array}{c} 60\cdot3^{\circ}\ 86\cdot2 \end{array}$	$11.50 \\ 10.71$	$1.0219 \\ 0.9953$	$27.37 \\ 24.83$	$416.8 \\ 417.6$
41.3	12.10	1.0406	29.33	416.4		••			n 416.8
A0" 7	Din hunh	ul aralatus	6	dicartowi-	10 - 10	1º/19			
427. 1 1·43751. 1	$i_{\mathbf{r}} 1.4432$	$1. n_{0} 1.447$	11: Ro 5	$4.57, R_{\rm D}, 5$	te. p. 124 4·82, R _F 55·	44. Ra 5	5.87: Mn ²¹⁴	$23, n_{\rm C} 1$ 307.98.	Densities $n_{\rm D}$
determine	ed : $d_{4^{\circ}}^{20^{\circ}}$	$1.0249, d_4^{40.5}$	°1.0052, d	4° 0.9864	d4.86.7 0.9622	2. Appa	ratus E .	-	-
18·7°	13.16	1.0262	31.45	494 ·4	61.5°	11.64	0.9854	26.71	494 ·3
40.4	12.28	1.0053	28.75	$\hat{493}\cdot\hat{5}$	86.8	10.85	0.9621	24.31	494.5
ß	_							Mea	n 494·2
C C	n								

Physical Properties and Chemical Constitution. Part XVIII. 1808

428. Dimethyl cyclobutane-1 : 1-dicarboxylate.* B. p. 87°/8 mm.; M 172·18; $n_{\rm C}$ 1·43920, $n_{\rm D}$ 1·44154, $n_{\rm F}$ 1·44079, $n_{\rm G'}$ 1·45100; $R_{\rm G}$ 40·52, $R_{\rm D}$ 40·70, $R_{\rm F}$ 41·15, $R_{\rm G'}$ 41·46; $Mn_{\rm D}^{20^\circ}$ 248·20. Densities determined : $a_{4^{\circ\circ}}^{40^\circ}$ 1·1182, $d_{4^{\circ\circ}}^{40^\circ}$ 1·0981, $d_{4^{\circ\circ}}^{40^\circ}$ 1·0786, $d_{4^{\circ\circ}}^{91\cdot9^\circ}$ 1·0464. Apparatus E.

<i>t</i> . 20·4° 40·1	H. 13·49 12·76	$d_{4^{\circ}}^{t^{\circ}}$. 1·1178 1·09882	γ . 35·12 32·62	₽. 375∙0 374∙7	<i>t</i> . 60∙8° 85∙0	$\begin{array}{c} H. \\ 12 \cdot 12 \\ 11 \cdot 30 \end{array}$	$d^{t^{\circ}_{4^{\circ}}}_{1\cdot0781}$ $1\cdot0781$ $1\cdot0532$	γ. 30·43 27·72 Mea	P. 375·1 375·1 n 375·0
429. 1·43590, determin	n _F 1.4414(). na 1.445	39: Ro 4	9.78 , $R_{\rm p}$ 50	B. p. 101.5°).01, R _F 50.4 4° 0.9831.	56. Ra 50	$0.96: Mn^{20}$	23; n _c 1. ^{0°} 287.51.	43364, n _D Densities
13.4° 18.9 40.2	$13.14 \\ 12.98 \\ 12.33$	1.0530 1.0477 1.0271	$32 \cdot 22 \\ 31 \cdot 67 \\ 29 \cdot 49$	453·1 453·4 454·3	60·1° 87·1	$11.59 \\ 10.72$	$1.0082 \\ 0.9820$	27·21 24·52 Mea	453∙6 453∙7 n 453∙6
1.43913.	n _r 1.44467	1. na 1.448	$75: R_{c} 5$	9·07. Ŕn 59	B. p. 129 $0.33, R_F 59.9$ $d_{4^\circ}^{86.7^\circ} 0.9527$	$99. R_{G'} 60$	$.47: Mn_{\rm D}^{20}$		43689, $n_{\rm D}$ Densities
$25 \cdot 1^{\circ}$ $40 \cdot 4$	$12.89 \\ 12.38$	1.0077 0.9941	$\begin{array}{c} 30 \cdot 22 \\ 28 \cdot 66 \end{array}$	$531.3 \\ 531.3$	61·3° 86·4	$\begin{array}{c} 11 \cdot 73 \\ 10 \cdot 95 \end{array}$	0·9755 0·9530	26·65 24·30 Mea	531.7 531.9 n 531.6
1.44205	n _F 1.4476	5. $n_{\alpha'}$ 1.451	63: $R_{\rm C}$ 6	8.18 R _D 68	B. p. 146° 8.49, $R_{\rm F}$ 69. $d_{4^{\circ}}^{85.9^{\circ}}$ 0.9908	$24. R_{a'} 69$	$9.76: Mn_{10}^{20}$		
$\begin{array}{c} 23 \cdot 9^{\circ} \\ 40 \cdot 7 \end{array}$	$\begin{array}{c} 13 \cdot 03 \\ 12 \cdot 57 \end{array}$	$0.9871 \\ 0.9723$	$29.96 \\ 28.46$	$\begin{array}{c} 607 \cdot 5 \\ 608 \cdot 9 \end{array}$	$rac{61\cdot1^\circ}{86\cdot2}$	$11.83 \\ 11.15$	$\begin{array}{c} 0.9544 \\ 0.9344 \end{array}$	26·20 24·26 Mea	608·3 609·1 n 608·5
1.44932	na 1.4533	$7 \cdot R_{a} 25.0$	$2 R_{\rm D} 25$	$14 R_{P} 25.4$	/772 mm.; 2, <i>R_G,</i> 25·62 Apparatus	$: Mn_{\rm D}^{20^{\circ}}$	l; n _c 1·44 144·52. De	115, n _D 1 ensities de	$\cdot 44355, n_{\mathbf{F}}$ termined :
$22 \cdot 8^{\circ}$ $28 \cdot 5$ $40 \cdot 3$	$16.93 \\ 16.66 \\ 16.12$	$1.0546 \\ 1.0496 \\ 1.0396$	$33 \cdot 43 \\ 32 \cdot 74 \\ 31 \cdot 38$	228·3 228·2 227·8	$\begin{array}{c} 60 \cdot 2^{\circ} \\ 86 \cdot 9 \end{array}$	15.47 14.34	1.0220 0.9983	29·60 26·81 Mea	228·5 228·2 n 228·2
1.43111,	ng 1.4350.	clobutanecan 5; R _C 29·5 9645, d ^{61.5} 0	6, Ŕ _D 29∙7	1, $R_{\rm F}$ 30.02	5°/754 mm. 2, <i>R_G,</i> 30·26; Apparatus <i>E</i>	$Mn_{\rm D}^{20^{\circ}}$ 1	14; n ₀ 1·42 62·76. De	$2354, n_D 1$ ensities de	$42596, n_{\rm F}$ termined :
$19\cdot3^{\circ}$ $42\cdot3$	$\begin{array}{c} 13 \cdot 54 \\ 12 \cdot 43 \end{array}$	$0.9851 \\ 0.9620$	$\begin{array}{c} 31 \cdot 06 \\ 27 \cdot 85 \end{array}$	$\begin{array}{c} 273 \cdot 6 \\ 272 \cdot 6 \end{array}$	61·9° 86·8	$\begin{array}{c} 11 \cdot 74 \\ 10 \cdot 76 \end{array}$	$0.9425 \\ 0.9162$	25·77 22·96 Mea	272·9 272·7 n 273·0
$\begin{array}{c} \textbf{434.} \\ \textbf{1} \cdot \textbf{43103.} \\ d_{\textbf{4}^{\circ}}^{20^{\circ}} \ 0 \cdot 954 \end{array}$	Ethyl cycle ng· 1·4349 0, d ^{40·2°} 0·	$butanecarb 8; R_0 34.2 9346, d_{4^{\circ}}^{60.7^{\circ}}$	oxylate. 4, R _D 34 0·9143, d	B. p. 152° 41, R _F 34·7 6 ^{6-3°} 0·8895.	/762 mm.; 8, R _G , 35.06 Apparatus	$\begin{array}{ccc} M & 128 \cdot 1' \\ ; & Mn_{\rm D}^{20^{\circ}} & 1 \\ ; & E. \end{array}$	7; n ₀ 1·42 92·74. De	353, n _D 1 nsities de	42581, $n_{\rm F}$ termined :
$15 \cdot 1^{\circ}$ 20 \cdot 9 40 · 7	$13.46 \\ 13.22 \\ 12.30$	$0.9589 \\ 0.9531 \\ 0.9341$	$30.06 \\ 29.35 \\ 26.76$	$313.0 \\ 313.0 \\ 312.1$	61·7° 89·1	$11.52 \\ 10.45$	$0.9133 \\ 0.8863$	24·50 21·57 Mea	312·2 311·7 n 312·4
$1.43430, \pm$	n _a 1.4383	5; R_{C} 38.8	6, $R_{\rm D}$ 39.0	06, $R_{\rm F}$ 39.4	2°/765 mm. 6, R _G , 39·79 Apparatus	; $Mn_{\rm D}^{20^{\circ}} 2$	19; n ₀ 1·42 03·20. De	$2680, n_D 1$ Ensities de	•42912, n _F termined :
17.2° 41.4	$\begin{array}{c} 13{\cdot}43\\ 12{\cdot}59\end{array}$	$0.9415 \\ 0.9191$	$29{\cdot}45$ $26{\cdot}95$	$351.8 \\ 352.5$	63·2° 87·6	$\begin{array}{c} 11 \cdot 74 \\ 10 \cdot 85 \end{array}$	$0.8980 \\ 0.8758$	24·55 22·13 Mea	352·5 352·1 n 352·2
1.43809.	na 1.4420	clobutaneca 0 ; R ₀ 43·4 0093, d ^{62·3°} 0	3, $R_{\rm D}$ 43.6	56, $R_{\rm F}$ 44.13	°/32 mm.; 3, R _G , 44·48; Apparatus I	$Mn_{\mathbf{D}}^{20^{\circ}} 2$	2; n_0 1.43 23.82. De	052, n _D 1 snities de	43274, $n_{\rm F}$ termined :
15·4° 18·3 41·6	13.7413.6112.82	$0.9334 \\ 0.9309 \\ 0.9101$	$29.87 \\ 29.51 \\ 27.17$	$391.3 \\ 391.1 \\ 391.9$	61·9° 86·3	$12 \cdot 10 \\ 11 \cdot 30$	0.8928 0.8722	25·16 22·95 Mea	391∙9 392∙0 n 391∙6

* The results for this new preparation supersede those in Part I, J., 1934, 340.

[1948] Physical Properties and Chemical Constitution. Part XIX. 1809

437. n-Amyl cyclobutanecarboxylate. B. p. $105^{\circ}/20 \text{ mm}$; $M 170\cdot24$; $n_{0} 1\cdot43362$, $n_{D} 1\cdot43600$, $n_{F} 1\cdot44131$, $n_{G'} 1\cdot44533$; $R_{0} 48\cdot06$, $R_{D} 48\cdot30$, $R_{F} 48\cdot80$, $R_{G'} 49\cdot19$; $Mn_{D}^{20^{\circ}} 244\cdot46$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0\cdot9217$, $d_{4^{\circ}}^{41\cdot6^{\circ}} 0\cdot9031$, $d_{4^{\circ}}^{41\cdot3^{\circ}} 0\cdot8863$, $d_{4^{\circ}}^{45\cdot7^{\circ}} 0\cdot8652$. Apparatus E.

t.	H.	$d_{4^{\circ}}^{t^{\circ}}$.	γ.	Ρ.	<i>t</i> .	H.	$d_{4^{\circ}}^{1^{\circ}}$.	γ.	P.
$16 \cdot 1^{\circ}$	13.85	0.9251	29.84	43 0·1	61.7°	12.24	0.8860	25.26	430.7
41.3	12.91	0.9034	27.16	430.2	86.8	11.43	0.8643	23.01	$431 \cdot 4$
								Mea	n 430.6

The authors' thanks are due to Sharples Chemicals Inc., of Philadelphia, U.S.A., for a gift of *cyclo*propyl methyl ketone.

WOOLWICH POLYTECHNIC, LONDON, S.E.18.

[Received, December 4th, 1947.]