LETTERS TO THE EDITOR

Reaction of Dithiooxamide with Benzoylacetylene

T. V. Nizovtseva, T. N. Komarova, and A. S. Nahmanovich

Favorskii Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia

Received November 2, 2005

DOI: 10.1134/S1070363206040281

Previously we described the synthesis of 4-amino-(anilino)-2-(benzoylmethyl)-1,3-dithiin-6-iminium perchlorate by the reaction of dithiomalonamide and dithiomalonanilide with c acylacetylenes and 1-bro-mo-2-acylacetylenes in glacial AcOH in the presence of perchloric acid [1, 2].

We found that dithiooxamide reacts with benzoyl-

acetylene in methanol, benzene, and acetonitrile at 20° C to form the E,Z and Z,Z isomers of bis(benzoylvinyl) sulfide (I). The reaction of dithiooxamide with benzoylacetylene was also performed under microwave activation in DMF for 1-2 min. In this case, bis(benzoylvinyl) sulfide (I) was isolated in 64% yield, along with unidentified reaction products.

$$\begin{array}{c|c}
 & S \\
 & NH_2 + H \\
\hline
 & O \\
\hline
 & MeOH \\
\hline
 & H_2N \\
\hline
 & S \\
\hline
 & H \\
\hline
 & A \\
\hline
 & A \\
\hline
 & H \\
\hline
 & H \\
\hline
 & H \\
\hline
 & B \\
\hline
 & I \\
 & I \\
\hline
 & I \\
 & I \\$$

The reactions of dithiooxamide with benzoylacetylene in benzene, acetonitrile, or glacial AcOH at 65–70°C provide 1,2-bis(benzoylvinylsulfanyl)ethane-diimine (**II**) in 17–30% yields.

$$\begin{array}{c} H_2N \\ S \\ NH_2 \end{array} + 2H \xrightarrow{\qquad Ph} \begin{array}{c} Ph \\ C_6H_6 \\ O \end{array} \xrightarrow{\qquad HN} \begin{array}{c} O \\ Ph \\ NH_2 \end{array}$$

Bis(benzoylvinyl) sulfide (I). A solution of 2.6 g of benzoylacetylene in 20 ml of methanol was added to a solution of 1.2 g of dithiooxamide in 30 ml of methanol. The mixture was stirred for 8 h at 20°C and

cooled to 0°C. The precipitate that formed was filtered off, dried in a vacuum, and recrystallized from methanol-benzene, 1:1, to obtain 1.17 g of sulfide I, yield 38%, mp 143–145°C (*E*,*Z* isomer). IR spectrum,

v, cm $^{-1}$: 1640 (C=O), 1523 (C=C), 957 (trans-CH=CH), 733 (CS), 695 (cis-CH=CH). Found, %: C 73.34; H 4.71; S 10.54. $C_{18}H_{14}O_2S$. Calculated, %: C 73.47; H 4.76; S 10.88.

The reaction in benzene gave 0.71 g of sulfide **I**, yield 23%, mp 194–195°C (Z,Z isomer). IR spectrum, v, cm⁻¹: 1638 (C=O), 1545 (C=C), 730 (CS), 696 (cis-CH=CH). Found, %: C 73.52; H 4.81; S 10.95. C₁₈H₁₄O₂S. Calculated, %: C 73.47; H 4.76; S 10.88.

The reaction in acetonitrile in the presence of Et_3N gave 0.65 g of compound **I**, yield 21%, mp 194–195°C (Z,Z isomer).

The reaction of dithiooxamide with benzoylace-tylene in DMF under microwave activation (360 W, 1–2 min) gave 1.97 g of sulfide **I**, yield 64%, mp 143–145°C (*E*,*Z* isomer).

1,2-Bis(benzoylvinylsulfanyl)ethanediimine (II). A solution of 2.6 g of benzoylacetylene in 30 ml of benzene was added to a solution of 1.2 g of dithio-oxamide in 20 ml of benzene. The mixture was heated at 65–70°C with stirring for 3 h and then kept for 4 days at 20°C with intermittent stirring. Reaction progress was followed by TLC, eluent benzene–ether, 3:1. Benzene was partially evaporated, the residue was poured to a stirred cold ether. The precipitate that formed was filtered off and dried in a vacuum to ob-

tain 0.84 g of compound **II**, yield 22%, mp 148–150°C (*E,Z* isomer). IR spectrum, v, cm⁻¹: 3385 (=NH), 1640 (C=O), 1535 (C=C), 950 (*trans*-CH=CH), 740 (CS), 690 (*cis*-CH=CH). ¹H NMR spectrum, v, ppm: 7.52–8.00 m (5H, C_6H_5), 8.07–8.09 d (2H, CH=CH, $J_{\alpha,\beta}$ 9.3 Hz), 8.81–8.83 d (2H, CH=CH, $J_{\alpha,\beta}$ 9.3 Hz), 9.02 (2H, 2NH). Found, %: C 63.28; H 4.15; N 7.44; S 16.68. $C_{20}H_{16}N_2O_2S_2$. Calculated, %: C 63.16; H 4.21; N 7.37; S 16.84.

The reaction under the same conditions in glacial acetic acid gave 1.37 g of compound **II**, yield 36%, mp 172–174°C (Z,Z isomer). IR spectrum, v, cm⁻¹: 3380 (=NH), 1680 (C=O), 1580 (C=C), 760 (CS), 690 (cis-CH=CH).

The IR spectra were obtained on a Specord IR-75 instrument in KBr. The 1 H NMR spectrum is recorded on a Bruker-400 spectrometer in DMSO- d_6 , internal reference HMDS.

REFERENCES

- 1. Nizovtseva, T.V., Komarova, T.N., Nakhmanovich, A.S., and Lopyrev, V.A., *Khim. Geterotsikl. Soedin.*, 2002, no. 9, p. 1293.
- 2. Nizovtseva, T.V., Komarova, T.N., Nakhmanovich, A.S., Larina, L.I., Lopyrev, V.A., and Kalistratova, E.F., *Zh. Org. Khim.*, 2002, vol. 38, no. 8, p. 1256.