View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: V. Tandon, T. Y. Chaudhari and S. K. Ginotra, *Org. Biomol. Chem.*, 2017, DOI: 10.1039/C7OB02498C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

Journal Name

ARTICLE

Received 00th January 20xx,

A Facile Access to functionalized Indenes and Fused Quinolines by Regioselective 5-*enolexo*-dig Michael Addition and Cyclization Reaction

Accepted 00th January 20xx Tohasib Yusub Chaudhari,^a Sandeep K. Ginotra^b and Vibha Tandon^{*a, b}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Herein we reported a facile approach to multi-substituted indenes and cyclopenta[b]quinolines under mild conditions. The reaction proceeds via Michael addition between commercially available cyanoacetate/malonic esters and α , β -unsaturated ketones. The synthetic methodology involves enolate mediated regio- and stereoselective intramolecular 5-*enolexo*-dig cyclization promoted by a catalytic base. The products formed stereoselectively *cis* in indenes and *trans*-isomers for cyclopenta[b]quinolines albeit presence of steric hindrance at a quaternary carbon substituted by active methylene compounds. The reaction pathway was investigated by isolating the reaction intermediate. This synthetic transformation was achieved with various aromatic and heteroaromatic Michael acceptors and desired products were obtained in high to excellent yields. The reaction is scalable up to grams level with only 10 mol% of base.

Friedländer

Introduction

Indenes¹ and fused quinolines² are an important core of many natural products and pharmaceutical drugs. These scaffolds show anti-HIV,³ anti-cancer,⁴ antidiabetic,⁵ anti-inflammatory activity.⁶ Particularly, cyclopentane ring fused quinolines showed inhibitory activity as AchE inhibitor implicated in Alzheimer's⁷ disease and excellent MIC against M. tuberculosis.8 These molecules are DNA intercalators and inhibit the enzymatic activity of topoisomerase I/II resulting in antitumor/anticancer agents9 (Figure 1). In view of the importance of these scaffolds, various transformations have been reported for its synthesis in past two decades.¹⁰ In particular, Jie Wu¹¹ (Scheme 1, egn 1) and R. Sanz¹² had made enormous contributions to the synthesis of indenes by Michael addition and cycloisomerization cascade reactions using o-(alkynyl)styrenes. Jan Paradies13 used metal free frustrated Lewis pair catalyst to achieve 5-endo-dig cyclization. Radicalmediated cyclization by I. V. Alabugin via 5-exo-dig^{14a} as well as 5-exo-trig^{14b} pathway developed to synthesize indene which would further recycle to 6-endo-trig by homoallylic ring expansion.14c Subsequently, domino coupling and C-H functionalization by gold catalyst¹⁵ have also emerged as a method for preparation of indene derivatives. Recently, X. Xu¹⁶ has demonstrated the synthesis of spiroindene derivatives using isocyanide by cycloaddition/iodocyclization strategy. In 2016, A. K. Verma group achieved lodo-substituted indenes by 5-endo-dig cyclization using enediyne.¹⁷

E-mail: vtandon@mail.jnu.ac.in

^{b.} Department of Chemistry, University of Delhi

Delhi 110067 (India).

Ilting in of the is have es.¹⁰ In d made

condensation.22

reaction to access the indene scaffolds.

synthesis of fused quinolines.

Michael addition has an important role in C-C and C-N bond

forming reactions to achieve the complex, diversified enantioselective structure. In 2015, O. Kwon¹⁸ (Scheme 1, eqn

2), D. H. Dethe¹⁹ and R. Balamurugan²⁰ developed Michael

Among previously reported strategies, radical annulation²¹

photocyclization²⁴ found to be an important tool for the

Povarov

reaction.23

Figure 1 Selected examples of indene and fused quinoline containing natural compounds.

In 2016, L. Zhou²⁵ employed visible light mediated radical cyclization to assemble fused quinolines. Most recently, 2,3disubstituted fused quinolines were synthesized via ketenimine or carbodiimide using α -diazo ketones.²⁶ In the continuation of our ongoing research towards the synthesis of *N*-heterocycles,²⁷ we successfully achieved the synthesis of highly functionalized indenes and fused quinolines by the tandem Michael addition followed 5-*enolexo*-dig cyclization. The previously presented methodologies to synthesize indenes and fused quinoline involve either harsh reaction conditions

^{a.} Special Centre for Molecular Medicine, Jawaharlal Nehru University Delhi 110067 (India)

Electronic Supplementary Information (ESI) available: Copies of 1 H, 13 C and HRMS spectra of all synthesized compounds as PDF. See DOI: 10.1039/x0xx00000x

ARTICLE

Published on 13 October 2017. Downloaded by University of Newcastle on 13/10/2017 14:53:02

Scheme 1 Synthetic route to indenes and cyclopenta[b]quinolines.

or high loading of catalysts and bases. Therefore, we developed a highly regiospecific and stereoselective 5-*enol*exodig cyclization of the above compounds promoted by a catalytic base in mild conditions.

Scheme 2 Synthetic route to *o*-alkynylaromatic/heterocyclic chalcones. Reaction condition: **1** (5 mmol), **2** (5 mmol), 10% NaOH (1.5 mL), MeOH (15 mL) room temperature, 3-24 h.

Page 2 of 12

The first enolate mediated 5-*enolexo*-dig cyclization was described by J. E. Baldwin *et al.*²⁸ The required "favored attack trajectories" for alkyne cyclization is well supported by experimental and theoretical calculations.²⁹ We observed selectively only *cis* product in case of indene and trans product for fused quinolines via regioselective 5-*enolexo*-dig cyclization. The pendant aryl group moves towards the quaternary carbon albeit the presence of steric hindrance which was confirmed by crystal analysis.³⁰

Results and discussion

Preparation of starting materials: To achieve our target moieties indenes and cyclopenta[*b*]quinolines, we synthesized **1** by standard Sonogashira cross-coupling reaction followed by Knoevenagel condensation reaction to delivered *o*-alkynylaromatic/heterocylic chalcones **3a-j** in good to excellent yield (Scheme 2).

Herein, we choose (E)-1-phenyl-3-(2-(phenylethynyl)phenyl)prop-2-en-1-one (**3a**) and methyl cyanoacetate **4a** as a model substrate to intrigue the optimized conditions (Table 1).

The different bases were screened to optimize the reaction conditions. Initially, we used organic base DBU 0.5 equiv. and Lewis acid AgNO₃ (10 mol %) providing desired Michael adduct **5a** in 62% yield in 2 h at room temperature (Table 1, entry 1). The Similar reaction was carried out without Lewis acid to achieve the functionalized indene (entry 2). The use of strong base did not improve the yield (entry 3-5). The good yields were obtained with use of carbonate bases such as Na₂CO₃ and K₂CO₃ (entry 6-8), while NaHCO₃ delivered 63% yield (entry 9).

Table 1 Reaction optimizations for Michael addition^{a,b}

Entry	Base	Solvent	Time (h)	Yield (%) ^c
1 ^c	DBU (50 mol%)	CH₃CN	2	62
2	DBU (50 mol%)	CH ₃ CN	2	62
3	<i>t</i> -BuOK (1 equiv)	CH ₃ CN	0.5	20
4	NaOH (50 mol%)	CH₃CN	3	65
5	NaH (1 equiv)	CH₃CN	1	68
6	K ₂ CO ₃ (50 mol%)	CH₃CN	10	79
7	K ₂ CO ₃ (1 equiv)	CH ₃ CN	8	80
8	Na_2CO_3 (1 equiv)	CH ₃ CN	7	78
9	NaHCO₃ (1 equiv)	CH ₃ CN	10	63
9	Cs ₂ CO ₃ (10 mol%)	CH ₃ CN	3	84
10	Cs ₂ CO ₃ (15 mol%)	CH₃CN	3	85
11	Cs ₂ CO ₃ (20 mol%)	CH₃CN	3	84
12	Cs ₂ CO ₃ (15 mol%)	DMA	3	73

This journal is © The Royal Society of Chemistry 20xx

Organic & Biomolecular Chemistry

Journal Name

13	Cs ₂ CO ₃ (15 mol%)	DMF	3	76		
14	Cs ₂ CO ₃ (15 mol%)	DMSO	4	79		
15	Cs ₂ CO ₃ (15 mol%)	THF	6	60		
16	Cs ₂ CO ₃ (15 mol%)	Dioxane	4	46		
17	Cs ₂ CO ₃ (15 mol%)	DCE	3	N. R.		
18	Li ₂ CO ₃ (15 ml%)	CH₃CN	2.5	68%		
^a Reaction	n condition: 3a (0.5 m	nmol), 4a (0.6	6 mmol), ^b l	solated yield		
pased on $\mathbf{3a}$, AginO ₃ (10 mol %) used.						

Interestingly, 15 mol% of Cs_2CO_3 produced indene **5a** (entry 10) in 85% yield and changing the quantity of Cs_2CO_3 did not affect the yield at all (entries 9 and 11). The same reaction in non-protic solvents such as DMA, DMF and DMSO gave **5a** in 73-79% yield (entry 12-14). The reaction in THF and Dioxane provided lower yield (entry 15 and 16). But the reaction completely failed in DCE (entry 17). Further there was no improvement in the reaction yield in the presence of Li_2CO_3 (entry 18). The structure of **5a** was confirmed by single crystal X-ray crystallographic analysis.³⁰

The results of the optimized conditions (entry 10) encouraged us to study the substrate scope of Michael addition, with respect to α , β -unsaturated ketone and sterically featured cyanoacetates. The results are summarized in (Scheme 3). The aromatic chalcones bearing halogen substituents (**3b-c**) at *para*-position of phenyl ring proceed well with methyl cyanoacetate **4a** to afford **5b** and **5c** in 85 and 87% yield respectively. However, the substrate **3d** having 2, 4-dichloro substituent gave **5d** in 72% yield. Whereas chalcones **3e**

View Article Online DOI: 10.1039/C7OB02498C

ARTICLE

Scheme 3 Substrate scope of Michael addition using different chalcones and cyanoacetates for the synthesis of Indenes. Reaction Condition: **3a-k** (0.5 mmol), **4a-f** (0.6 mmol), Cs₂CO₃ (15 mol %), CH₃CN (3 mL), 3 h, Isolated pure products yield.

and **3f** bearing electron donating groups gave **5e** and **5f** in excellent yields respectively. The substrate **3g**, containing fluoro substituent at R¹ position and electron donating groups such as methoxy group at R¹ and R² position of phenyl ring **3h** furnished **5g** and **5h** in 87 and 86% yield respectively. Interestingly, **5i** and **5j** were obtained in good yield by reacting ethyl cyanoacetate with 2-furan and 2-thienyl containing chalcones respectively.

Scheme 4 Substrate scope of Michael addition with heteroareness chalcones for cyclopenta[*b*]quinolines. Reaction conditions: **3I-o** (0.5 mmol), **4** (0.6 mmol), Cs_2CO_3 (15 mol %), $CH_3CN 3$ mL, Isolated pure products yield.

Similarly, with ethyl cyanoacetate products **5k-q** obtained in 70-92% yield. Furthermore, steric nature of cyanoacetate was carefully

molecular Chemistry Accepted Manuscri

DOI: 10.1039/C7OB02498C

studied. The present synthetic pathway is well tolerated up to C4 aliphatic chains, such as n-propyl **4c** and n-butyl **4d** delivered expected product **5r** and **5s** in excellent yields. The sterically hindered nucleophiles **4e** and **4f** also gave products **5t** and **5u** in similar yields respectively. The indenes formed by 5-*enolexo*-dig cyclization were selectively *Z*-isomers.

Due to the diverse utility of cyclopenta[b]quinolines in medicinal scaffolds, we evaluated the scope of quinolines based Michael acceptor **3I-o** (Scheme 4). To our surprise, these substrates well tolerated Michael addition cyclization cascade reactions. The electron withdrawing as well as electron donating heteroarene chalcones provides the product **6a-6c** in excellent yields. Interestingly, chalcones **3n** with substitution at alkyne with an electron donating group delivered the desired transformation in good yield. This Michael addition-cyclization reaction is feasible with substrate **3o** bearing 2-thienyl group as well. The *E*-isomers were formed with quinoline containing chalcones as substrate.

Scheme 5 Michael reaction at gram scale. Reaction conditions: 3e (1gm scale), 4b (1.2 equiv.), Cs_2CO_3 (10 mol %), 3 h, Isolated pure product yield.

To demonstrate the rationality of present methodology, we conducted the reaction in gram scale (Scheme 5). The reaction delivered desired Michael product $\mathbf{5p}$ in 90% yield with the 10 mol% of Cs₂CO₃.

To Next, we elaborate the substrate scope with malonic esters (Scheme 6). The dimethyl and diethyl malonate **4g** and **4h** smoothly

To investigate the reaction mechanism, we conducted a few control experiments. We isolated the intermediate of reaction such as Michael product **8** (Scheme 7 eqn 1). When this intermediate subjected to standard conditions, it delivered the 5-*enolexo*-dig cyclized product **7c** in 80% yield (Scheme 6, eqn 2). Based on the evidence from the control experiments and result and discussion we proposed a plausible reaction mechanism (Scheme 8).

Scheme 7 Control experiment for elucidation of mechanisms.

Base abstracts a proton from the active methylene compound '**A**' and generates enolate '**B**', which subsequently attacks at the *b*-position of chalcone furnishing Michael addition product '**D**'. Further removal of an active proton from the intermediates '**D**' generates enolate '**E**'. The base could be involved in activation of the alkyne.³¹ This enolate attacks the LUMO of alkyne by an obtuse angle at a π^* -system²⁹ which leads to 5-*enolexo*-dig cyclization gives the intermediates '**F**' which on protonation furnished the desired product '**G**'. The nucleophilic attack onto alkynes is favoring the *trans*-addition which resulted in the *Z*-isomers in case of indenes and *E*-isomers for fused quinolines.³²

4 | J. Name., 2012, 00, 1-3

Conclusions

In summary, we have developed an expeditious, cost-efficient method for the synthesis of highly substituted indenes and cyclopenta[b]quinolines using aromatic/heteroaromatic chalcones as building blocks. The reaction was completed using a catalytic amount of base in air using mild conditions. The stereochemistry of products did not change in the presence of different cations such as Na⁺ or K⁺ and at variable temperatures. The exclusive 5-enolexo-dig cyclization of oalkynyl aromatic α, β -unsaturated ketones yielded highly regioselective product. The stereochemically single products were obtained suggesting kinetically controlled reactions according to Baldwin's rules. The mechanistic pathway of reaction has been described by isolating the intermediate. The presence of cyano and ester group will facilitate the further synthetic elaboration of the above compounds to synthesize complex scaffolds.

Experimental section

General Information

The solvents used for reactions were dried and distilled before use by standard methods. All the reagents used were commercially available and used without further purification. ¹H and ¹³C NMR of compounds were recorded on JEOL spectrometer using 400 MHz and 100 MHz frequency respectively. The HRMS (m/z) of synthesized compounds were recorded on Mass Q-TOF LC/MS mass spectrometer. Melting points were measured using Buchi-B-540 instrument and are uncorrected. For the monitoring and visualization of reactions, TLC coated on silica gel plates (silica gel 60, F₂₅₄) was used.

General procedure for the synthesis of α , β -unsaturated ketones/Chalcones (3a-o):

To the 25 mL RB flask added 2-bromo-benzaldehyde 1 (5 mmol) followed by 10 ml methanol and acetophenone 2 (5 mmol). The 10% NaOH (1.5 mL) was added dropwise for 15 min. at 0°C. The reaction mixture was allowed to stir at room temperature for 3-24 h. After completion of reaction as indicated by TLC, the reaction mixture was poured onto 50 gm of crushed ice to precipitate the reaction mixture. The precipitate formed was washed with dist. water (2 X 10 mL) and a cold ethanol solution (5 mL) and dried to yield the desired product. Alternatively, methanol was evaporated under reduced pressure and extracted with ethyl acetate (2 X 50 mL). The combined organic layer was washed with distilled water (2 x 10 mL) and finally with brine solution (10 mL). The separated organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was purified by chromatography on silica gel using ethyl acetate/hexane as the eluent to yield the 3a-o as the desired product.

General procedure for the synthesis of indenes and cyclopenta[*b*]quinolines (5a-7h):

To the 10 mL RB flask was added α , β -unsaturated ketone **3** (0.5 mmol), Cs₂CO₃ (15–30 mol%), and cyanoacetates/malonic esters **4** (0.6 mmol) and allowed to stir at room temperature or

heat at 50 °C for 3 to 12 h. After completion of the reaction indicated by TLC, it was diluted with 10 mL of sat. NH₄Cl solution (in case of malonic ester 10 mL of dilute HCl was added). Extraction with ethyl acetate (2 x 50 mL) and distilled water (2 x 10 mL) was carried out. Finally, a combined organic layer was washed with brine solution and dried over anhydrous Na_2SO_4 and concentrated under vacuum to yield the crude product, which was purified by chromatography on silica gel using ethyl acetate/hexane as the eluent to yield the **5a-7h** as desired products.

DOI: 10.1039/C7OB02498C

ARTICLE

(*E*)-1-Phenyl-3-(2-(phenylethynyl)phenyl)prop-2-en-1-one (3a). Yellow oil; (1.46 gm, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ = 8.24 (d, *J* = 16.0 Hz, 1H), 8.1 (d, *J* = 7.4 Hz, 2H), 7.79-7.76 (m, 1H), 7.67 - 7.51 (m, 5H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.40-7.35 ppm (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ = 191.4, 143.0, 138.1, 136.1, 132.9, 132.6, 131.6, 129.8, 128.6, 128.4, 128.3, 128.2, 126.7, 124.3, 124.1, 122.7, 95.7, 87.1 ppm; HRMS (ESI) *m/z* calcd for C₂₃H₁₆O (M+H)⁺ 309.1279, found 309.1277.

(*E*)-1-(4-Fluorophenyl)-3-(2-(phenylethynyl) phenyl) prop-2-e-1one (3b). Pale yellow solid; (1.50 gm, 92% yield); mp 87- 88°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.32 (d, *J* = 16.0Hz, 1H), 8.05-8.09 (m, 2H), 7.76-7.74 (m, 1H), 7.64-7.59 (m, 2H), 7.54-7.51 (m, 2H), 7.40-7.35 (m, 5H), 7.12 ppm (t, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 189.5, 165.5 (d, *J* = 252.6 Hz), 143.1, 135.9, 134.4, 132.9, 131.5, 131.1, 131.0, 129.9, 128.6 (d, *J* = 17.1 Hz), 128.4, 126.8, 124.3, 123.6, 122.6, 115.6 (d, *J* = 20.9 Hz), 95.8, 87.1 ppm; HRMS (ESI) *m/z* calcd for C₂₃H₁₅FO (M+H)+ 327.1185, found 327.1182.

(*E*)-1-(4-Chlorophenyl)-3-(2-(phenylethynyl)phenyl)prop-2-en-1one (3c). Pale yellow solid; (1.53 gm, 90% yield); mp 109.1-112.1°C. ¹H NMR (400 MHz, CDCl₃): δ = 8.32 (d, *J* = 15.2 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.77-7.74 (m, 1H), 7.62-7.56 (m, 2H), 7.52-7.50 (m, 2H), 7.44-7.36 ppm (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.1, 143.5, 139.0, 136.4, 135.8, 132.9, 131.5, 130.0, 129.9, 128.8, 128.7, 128.5, 128.4, 126.7, 124.4, 123.7, 122.6, 95.8, 87.0 ppm; HRMS (ESI) *m/z* calcd for C₂₃H₁₅ClO (M+H)⁺ 343.0889, found 343.0888

(*E*)-1-(2,4-Dichlorophenyl)-3-(2-(phenylethynyl)phenyl)prop-2en-1-one (3d). Yellow solid; (1.64 gm, 87% yield); mp 146-148°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, *J* = 16.0 Hz, 1H), 7.68-7.66 (m, 1H), 7.51-7.49 (m, 1H), 7.38-7.37 (m, 1H), 7.36-7.28 (m, 6H), 7.24-7.22 (m, 3H), 7.07-7.03 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 193.7, 145.7, 137.2, 136.5, 135.2, 132.7, 132.3, 131.4, 130.6, 130.2, 130.0, 128.8, 128.6, 128.4, 127.4, 127.1, 126.1, 124.7, 122.3, 95.9, 86.4 ppm; HRMS (ESI) *m/z* calcd for C₂₃H₁₄Cl₂O (M+H)⁺ 377.0500, found 377.0505.

(*E*)-3-(2-(Phenylethynyl)phenyl)-1-(*p*-tolyl)prop-2-en-1-one (3e). Yellow solid; (1.49 gm, 93% yield); mp 95.6-98.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.34 (d, *J* = 16.0 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.77-7.75 (m, 1H), 7.65-7.58 (m, 2H), 7.54-7.52 (m, 2H), 7.37-7.33 (m, 5H), 7.25 (d, *J* = 8.4 Hz, 2H), 2.40 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 190.7, 143.4, 142.5, 136.2, 135.5, 132.9, 131.6, 129.7, 129.2, 128.7, 128.6, 128.5, 128.3, 126.6, 124.2, 124.1, 122.7, 95.7, 87.1, 21.6 ppm; HRMS (ESI) m/z calcd for C₂₄H₁₈O (M+H)⁺, 323.1436, found 323.1455.

(*E*)-1-(4-Methoxyphenyl)-3-(2-(phenylethynyl)phenyl)prop-2-en-1-one (3f). Yellow solid; (1.82 gm, 94% yield); 79.6-83.3 mp 79.6-84.3 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.32 (d, *J* = 16.0 Hz, 1H), 8.03

DOI: 10.1039/C7OB02498C

(d, J = 8.4 Hz, 2H), 7.78-7.75 (m, 1H), 7.63 (d, J = 16.0 Hz, 1H), 7.62-7.59 (m, 1H), 7.56-7.55 (m, 2H), 7.39-7.36 (m, 5H), 6.94 (d, J = 9.1 Hz, 2H), 3.86 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 189.3, 163.2, 142.0, 136.3, 132.9, 131.6, 130.9, 130.8, 129.6, 128.6, 128.5, 128.3, 126.7, 124.1, 123.9, 122.7, 113.7, 95.6, 87.2, 55.4 ppm; HRMS (ESI) m/z calcd for C₂₄H₁₈O₂(M+H)⁺ 339.1385, found 339.1364.

(E)-3-(5-Fluoro-2-(phenylethynyl)phenyl)-1-phenylprop-2-en-1-

one (3g). Yellow solid; (0.98 gm, 88% yield); mp 84.1-87.8 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.29 (d, J = 16.0 Hz, 1H), 8.01 (d, J = 7.6 Hz, 2H), 7.62-7.60 (m, 1H), 7.59-7.57 (m, 2H), 7.54-7.44 (m, 5H), 7.37-7.34 (m, 3H), 7.10 ppm (td, J = 8.4, 3.0, Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 190.6, 162.2 (d, J = 248.8 Hz), 141.6, 138.3,138.2, 137.8, 134.7 (d, J = 7.6 Hz), 132.8, 131.5, 128.6, 128.5 (d, J = 6.6 Hz), 128.3, 124.9, 122.5, 120.5, 117.3 (d, J = 22.8 Hz), 113.1 (d, J = 22.8 Hz), 95.4, 86.1 ppm; HRMS (ESI) m/z calcd for C₂₃H₁₅FO (M+H)+ 327.1185, found 327.1184.

(E)-3-(4,5-Dimethoxy-2-(phenylethynyl)phenyl)-1-phenylprop-2en-1-one (3h). Yellow solid; (1.65 gm, 90% yield); mp 147.1-140.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 16.0 Hz, 1H), 7.99 (d, J = 7.6 Hz, 2H), 7.58-7.55 (m, 1H), 7.49-7.45 (m, 5H), 7.35-7.33 (m, 3H), 7.20 (s, 1H), 7.05 (s, 1H), 3.98 (s, 3H), 3.95 ppm (s, 3H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta = 191.6, 150.7, 149.5, 143.3, 138.4, 132.3, 131.4,$ 129.5, 128.5, 128.4, 128.3, 122.8, 122.2, 118.1, 114.4, 108.4, 94.7, 87.1, 56.0, 55.9 ppm; HRMS (ESI) m/z calcd for C₂₅H₂₀O₃ (M+H)⁺ 369.1490 found 369.1480.

(E)-1-(Furan-2-yl)-3-(2-(phenylethynyl)phenyl)prop-2-en-1-one

(3i). Pale yellow solid; (1.35 gm, 91% yield); mp 84.5-87.1 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.38 (d, J = 16.0 Hz, 1H), 7.70-7.67 (m, 1H), 7.55-7.51 (m, 5H), 7.32-7.24 (m, 6H), 6.49-6.48 ppm (m, 1H); ^{13}C NMR (100 MHz, CDCl₃) δ = 178.1, 153.6, 146.4, 141.9, 135.9, 132.9, 131.6, 129.9, 128.6, 128.4, 128.3, 126.8, 124.4, 122.8, 122.7, 117.5, 112.5, 95.8, 87.1 ppm; HRMS (ESI) m/z calcd for C₂₁H₁₄O₂ (M+H)+ 299.1072 found 299.1065.

(E)-3-(2-(Phenylethynyl)phenyl)-1-(thiophen-2-yl)prop-2-en-1-one (3j). Pale yellow solid; (1.50 gm, 96% yield); mp 134.5-137.9 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.43 (d, J = 16.0 Hz, 1H), 7.85 (d, J = 3.8 Hz, 1H), 7.77-7.75 (m, 1H),7.66 (d, J = 4.5 Hz,1H), 7.61-7.54 (m, 4H), 7.39 -7.35 (m, 5H), 7.14 ppm (t, J = 3.8 Hz, 1H); ¹³C NMR (100 MHz, $CDCl_3$) δ = 182.2, 145.4, 142.0, 135.8, 133.9, 132.9, 131.9, 131.6, 129.9, 128.6, 128.5, 128.4, 128.2, 126.6, 124.4, 123.3, 122.7, 95.8, 87.1 ppm; HRMS (ESI) *m/z* calcd for C₂₁H₁₄OS (M+H)⁺ 315.0843 found 315.0860.

(E)-1-(4-Bromophenyl)-3-(2-(phenylethynyl)phenyl)prop-2-en-1one (3k). Pale yellow solid; (1.80 gm, 93% yield); 108.1-111.2 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.32 (d, J = 16.0 Hz, 1H), 7.85 (d, J = 9.9 Hz, 2H), 7.76-74 (m, 1H), 7.61-7.49 (m, 6H), 7.39-7.36 ppm (m, 5H); ^{13}C NMR (100 MHz, CDCl_3) δ = 190.3, 143.6, 136.8, 135.8, 132.9, 131.8, 131.5, 130.1, 128.7, 128.5, 128.4, 127.6, 126.7, 124.4, 123.6, 122.6, 95.9, 87.0 ppm; HRMS (ESI) m/z calcd for C23H15BrO (M+H)+ 387.0385 found 387.0380.

(E)-1-(4-Fluorophenyl)-3-(2-(phenylethynyl)quinolin-3-yl)prop-2en-1-one (3). Pale yellow solid; (2.14 gm, 91% yield); mp 160.1-163.8 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.51 (s, ¹H), 8.46 (d, J = 15.6 Hz, 1H), 8.14-8.08 (m, 3H), 7.87 (d, J = 8.4 Hz, 1H), 7.80-7.74 (m, 2H), 7.69-7.67 (m, 2H), 7.59 (t, J = 8.4 Hz, 1H), 7.44-7.40 (m, 3H), 7.16 ppm (t, J = 11.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 188.7,

165.5 (d, J = 253.6 Hz), 148.4, 143.3, 141.0, 134.1(d, J = 2.8 Hz), 133.9, 132.2, 131.3, 131.2, 131.1, 129.5, 129.4, 129.1, 128.4, 127.9 (d, J = 20.9 Hz), 126.8, 124.9, 121.5, 115.8 (d, J = 21.9 Hz), 94.9, 87.2 ppm; HRMS (ESI) m/z calcd for C₂₆H₁₆FNO (M+H)⁺ 378.1294, found 378.1274.

(E)-3-(2-(Phenylethynyl)quinolin-3-yl)-1-(p-tolyl)prop-2-en-1-one (3m). Colourless solid; (1.75 gm, 94% yield); mp 135.2-139.9 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.51 (s, ¹H), 8.46 (d, J = 16.0 Hz, 1H), 8.12 (d, J = 9.1 Hz, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 7.6 Hz, 1H), 7.78-7.74 (m, 2H), 7.69-7.67 (m, 2H), 7.58 (t, J = 8.4 Hz, 1H), 7.42-7.36 (m, 3H), 7.29 (d, J = 8.0 Hz, 2H), 2.43 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 189.9, 148.3, 143.7, 143.4, 140.3, 135.2, 133.7, 132.3, 131.0, 129.6, 129.4, 129.3, 129.0, 128.7, 128.4, 128.0, 127.7, 126.8, 125.4, 121.6, 94.9, 87.2, 21.6 ppm; HRMS (ESI) m/z calcd for C₂₇H₁₉NO (M+H)⁺ 374.1544, found 374.1543.

(E)-1-Phenyl-3-(2-(p-tolylethynyl)quinolin-3-yl)prop-2-en-1-one (3n). Colourless solid; (1.69 53 gm, 90% yield); mp 185.5-188.6 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.42 (s, 1H), 8.37 (d, J = 16.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 6.8 Hz, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.70-7.67 (m, 2H), 7.55-7.48 (m, 4H), 7.42 (t, J = 7.6 Hz, 2H), 7.11 (d, J = 7.6 Hz, 2H); 2.32 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 190.5, 148.4, 143.5, 140.9, 139.9, 137.8, 133.8, 132.8, 132.2, 131.1, 129.5, 129.2, 129.0, 128.7, 128.6, 128.0, 127.6, 126.7, 125.4, 118.5, 95.4, 86.8, 21.6 ppm; HRMS (ESI) m/z calcd for C₂₇H₁₉NO (M+H)+, 374.1544, found 374.1542.

(E)-3-(2-(Phenylethynyl)quinolin-3-yl)-1-(thiophen-2-yl)prop-2-

en-1-one (3o). Pale yellow solid; (1.55 gm, 85% yield); mp 163.1-165.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.54-8.49 (m, 2H), 8.11 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 3.8 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.77-7.65 (m, 5H), 7.57 (t, J = 6.8 Hz, 1H), 7.42-7.39 (m, 3H), 7.17 ppm (t, J = 3.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 181.6$, 148.4, 145.1, 143.4, 139.9, 134.3, 133.8, 132.3, 132.1, 131.1, 129.5, 129.4, 129.1, 128.4, 128.3, 128.0, 127.8, 126.8, 124.8, 121.6, 95.0, 87.2 ppm; HRMS(ESI) m/z calcd for C₂₄H₁₆NOS (M+H)+, calculated 366.0925, found 366.0952.

(Z)-Methyl-1-benzylidene-2-cyano-3-(2-oxo-2-phenylethyl)-2,3-

dihydro-1H-indene-2-carboxylate (5a). Colorless solid; (179 mg, 85% yield); mp 153.1-156.2 °C; 1H NMR (400 MHz, CDCl3) δ = 8.03 (d, J = 7.8 Hz, 2H), 7.62-7.58 (m, 2H), 7.51-7.47 (m, 4H), 7.40-7.20 (m, 6H), 7.21-7.19 (m, 1H), 4.61 (t, J = 6.0 Hz, 1H), 3.86-3.70 (m, 2H), 3.36 ppm (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 197.1, 167.6, 142.1, 138.8, 138.4, 136.1, 134.9, 133.6, 129.7, 128.8, 128.7, 128.6, 128.3, 128.1, 128.0, 125.6, 123.7, 121.0, 117.4, 57.0, 53.2, 48.8, 41.1 ppm; HRMS (ESI) m/z calcd for C₂₇H₂₁NO₃ (M+NH₄)⁺ 425.1865, found 425.1869.

(Z)-Methyl-1-benzylidene-2-cyano-3-(2-(4-fluorophenyl)-2-oxoe-

thyl)-2,3-dihydro-1H-indene-2-carboxylate (5b). Colorless solid; (187 mg, 85% yield); mp 152.5-155.5 °C; $^1\!H$ NMR (400 MHz, CDCl_3) δ = 8.08-8.04 (m, 2H), 7.62-7.60 (m, 1H), 7.48-7.46 (m, 2H), 7.40-7.30 (m, 6H), 7.20-7.14 (m, 3H), 4.62-4.58 (m, 1H), 3.83-3.66 (m, 2H), 3.36 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 195.5, 167.6, 166.0 (d, J = 254.5 Hz), 142.0, 138.8, 138.3, 134.9, 132.6 (d, J = 2.8 Hz), 130.8 (d, J = 9.5 Hz), 129.7, 128.8, 128.7, 128.2, 128.0, 125.7, 123.6, 121.1, 117.4, 115.8 (d, J = 21.9 Hz), 56.9, 53.2, 48.8, 41.0 ppm; HRMS (ESI) m/z calcd for C₂₇H₂₀FNO₃ (M+NH₄)⁺ 443.1771, found 443.1768.

Journal Name

(Z)-Methyl-1-benzylidene-3-(2-(4-chlorophenyl)-2-oxoethyl)-2-cy ano-2,3-dihydro-1H-indene-2-carboxylate (5c). Colorless solid; (200 mg, 87% yield); mp 128.7-131.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.06-8.02 (m, 2H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.46-744 (m, 2H), 738-7.29 (m, 6H), 7.18-7.11 (m, 3H), 4.58 (t, *J* = 6.8 Hz, 1H), 3.81-3.64 (m, 2H), 3.31 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.0, 167.6, 141.9, 140.1, 138.8, 138.3, 134.9, 134.5, 129.7, 129.6, 129.0, 128.8, 128.7, 128.3, 128.0, 125.7, 123.6, 121.1, 117.4, 56.9, 53.2, 48.8, 41.1 ppm; HRMS (ESI) *m/z* calcd for C₂₇H₂₀CINO₃ (M+NH₄)⁺ 459.1475, found 459.1477.

(Z)-Methyl-1-benzylidene-2-cyano-3-(2-(2,4-dlchlorophenyl-2-

oxo-ethyl)-2,3-dihydro-1H-indene-2-carboxylate (5d). Colorless white solid; (171 mg, 72% yield); mp 132.3-135.6°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.60 (t, *J* = 8.4 Hz, 2H), 7.46-7.44 (m, 3H), 7.39-7.29 (m, 7H), 7.24-7.20 (m, 1H), 4.57 (t, *J* = 6.0 Hz, 1H), 3.74-3.72 (m, 2H), 3.36 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 198.7, 167.7, 141.5, 138.8, 138.2, 138.0, 136.3, 134.7, 132.1, 130.7, 130.5, 129.8, 128.8, 128.3, 128.0, 127.5, 125.8, 123.5, 121.1, 117.3, 56.7, 53.3, 48.9, 45.4 ppm; HRMS (ESI) *m/z* calcd for $C_{27}H_{19}C_2INO_3$ (M+NH₄)⁺ 493.1085, found 493.1097.

(*Z*)-Methyl-1-benzylidene-2-cyano-3-(2-oxo-2-(p-tolyl)ethyl)- 2,3dihydro-1H-indene-2-carboxylate (5e). Colorless solid; (199 mg, 94% yield); mp 138.7-142.8 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.93 (d, *J* = 8.4 Hz, 2H), 7.61-7.59 (m, 1H), 7.49-7.47 (m, 2H), 7.39-7.29 (m, 8H), 7.20-7.18 (m, 1H), 4.61 (t, *J* = 6.0Hz, 1H), 3.82-3.72 (m, 2H), 3.35 (s, 3H), 2.41 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.6, 167.6, 144.5, 142.2, 138.8, 138.4, 134.9, 133.7, 129.7, 129.3, 128.7, 128.6, 128.2, 127.9, 125.5, 123.7, 121.0, 117.4, 57.0, 53.1, 48.8, 40.9, 21.6 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₃NO₃ (M+Na)⁺ 444.1575, found 444.1592.

(*Z*)-Methyl-1-benzylidene-2-cyano-3-(2-(4-methoxyphenyl)-2-ox - oethyl)-2,3-dihy dro-1H-indene-2-carboxylate (5f). Pale yellow solid; (201 mg, 92% yield); mp 112.2-115.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 6.8 Hz, 1H), 7.47-7.45 (m, 2H), 7.39-7.28 (m, 6H), 7.20-7.18 (m, 1H), 6.94 (d, *J* = 8.2 Hz, 2H), 4.60 (t, *J* = 6.1 Hz, 1H), 3.86 (s, 3H), 3.79-3.64 (m, 2H), 3.34 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 195.4, 167.6, 163.8, 142.3, 138.8, 138.4, 134.9, 130.5, 129.7, 129.2, 128.7, 128.5, 128.2, 127.9, 125.5, 123.7, 121.0, 117.5, 113.8, 57.0, 55.4, 53.1, 48.9, 40.6 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₃NO₄ (M+NH₄)⁺ 460.1524, found 460.1526.

(*Z*)-Methyl-1-benzylidene-2-cyano-5-fluoro-3-(2-oxo-2-phenylet - hyl)-2,3-dihydro-1H-indene-2-carboxylate (5g). Colorless solid; (185 mg, 87% yield); mp 164.5-166.8 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.02 (d, *J* = 8.4 Hz, 2H), 7.62-7.54 (m, 2H), 7.50-7.44 (m, 4H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.32-7.28 (m, 1H), 7.21 (s, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.91-6.89 (m, 1H), 4.57 (t, *J* = 6.0 Hz, 1H), 3.85-3.64 (m, 2H), 3.35 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.7, 167.4, 163.8 (d, *J* = 254.6 Hz), 144.4, 144.3, 137.1, 135.9, 134.7, 133.7, 128.7, 128.3, 128.2, 128.1, 125.3, 122.6, 122.5, 117.2, 116.2 (d, *J* = 22.8 Hz), 111.0 (d, *J* = 22.8 Hz), 57.2, 53.3, 48.5, 40.9 ppm; HRMS (ESI) *m/z* calcd for C₂₇H₂₀FNO₃ (M+NH₄)+ 443.1771, found 443.1750

(Z)-Methyl-1-benzylidene-2-cyano-5,6-dimethoxy-3-(2-oxo-2-phe-
nylethyl)-2,3-dihydro-1H-indene-2-carboxylate(5h).Colorlesssolid; (200 mg, 86% yield); mp 167-169 °C; ¹H NMR (400 MHz,
CDCl₃): δ = 8.03 (d, J = 7.6 Hz, 2H), 7.60-7.58 (m, 1H), 7.51-7.45 (m,
4H), 7.37 (t, J = 7.6 Hz, 2H), 7.30-7.28 (m, 1H), 7.09 (s, 1H), 7.04 (s,

1H), 6.67 (s, 1H), 4.53 (t, J = 6.1 Hz, 1H), 3.96 (s, 3H), 3.87 (s, 3H), 3.82 (dd, $J_2 = 18.3$, $J_2 = 7.6$ Hz, 1H), 3.66 (dd, $J_1 = 19.1$, $J_2 = 6.2$ Hz, 1H), 3.38 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 197.3$, 167.7, 151.2, 150.1, 138.4, 136.2, 135.1, 135.0, 133.6, 131.2, 128.7, 128.7, 128.2, 128.1, 127.6, 123.0, 117.5, 105.9, 103.0, 57.0, 56.1, 53.2, 48.6, 41.4 ppm; HRMS (ESI) m/z calcd for $C_{29}H_{25}NO_5$ (M+NH₄)⁺ 485.2076, found 485.2064.

DOI: 10.1039/C7OB02498C

ARTICLE

(Z)-Ethyl-1-benzylidene-2-cyano-3-{2-(furan-2-yl)-2-oxoethyl)-2,-3 -dihydro-1H-indene-2-carboxylate (5i). Colorless solid; (203 mg, 92% yield); mp 139.4-142.4 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.63 (s, 1H), 7.60 (d, *J* = 6.8 Hz, 1H), 7.49-7.47 (m, 2H), 7.39-7.27 (m, 7H), 7.20-7.18 (m, 1H), 6.58-6.56 (m, 1H), 4.58 (t, *J* = 6.8 Hz, 1H), 3.85-3.78 (m, 1H), 3.75-3.66 (m, 2H), 3.62-3.56 (m, 1H), 0.99 ppm (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 185.7 166.9, 152.0, 146.9, 141.9, 139.0, 137.8, 135.1, 129.7, 128.8, 128.7, 128.3, 128.0, 125.5, 123.7, 121.0, 118.0, 117.3, 112.4, 62.9, 57.2, 48.4, 40.5, 13.3 ppm; HRMS (ESI) *m/z* calcd for C₂₆H₂₁NO₄ (M+NH₄)⁺ 429.1814, found 429.1805.

(Z)-Ethyl-1-benzylidene-2-cyano-3-(2-oxo-2-(thiophen-2-yl)ethyl-)-2,3-dihydro-1H-indene-2-carboxylate (5j). Colorless solid; (205 mg, 96% yield); mp 155.6-157.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.86 (d, *J* = 3.4 Hz, 1H), 7.69 (d, *J* = 4.5 Hz, 1H), 7.60 (d, *J* = 6.8 Hz, 1H), 7.49-7.47 (m, 2H), 7.38-7.25 (m, 6H), 7.19-7.15 (m, 2H), 4.61 (t, *J* = 6.9 Hz, 1H), 3.84-3.62 (m, 4H), 0.98 ppm (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 189.6, 166.9, 143.3, 141.9, 139.0, 137.8, 135.1, 134.4, 132.7, 129.7, 128.7, 128.6, 128.3, 128.0, 125.5, 123.7, 121.0, 117.4, 62.9, 57.2, 48.8, 41.3, 13.3 ppm; HRMS (ESI) *m/z* calcd for C₂₆H₂₁NO₃ (M+NH₄)⁺ 445.1585, found 445.1582.

(Z)-Ethyl-1-benzylidene-2-cyano-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-indene-2-carboxylate (5k). Colorless solid; (168 mg, 80% yield); mp 146-148°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.05-8.03 (m, 2H), 7.61-7.60 (m, 2H), 7.51-7.47 (m, 4H), 7.39-7.27 (m, 6H), 7.20-7.18 (m, 1H), 4.63 (t, *J* = 6.8 Hz, 1H), 3.88-3.81 (m, 2H), 3.75-3.69 (m, 2H), 1.00 ppm (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 197.0, 167.1, 142.2, 139.0, 138.0, 136.2, 135.1, 133.5, 129.6, 128.8, 128.7, 128.5, 128.3, 128.1, 128.0, 125.5, 123.7, 121.0, 62.8, 57.2, 48.8, 41.0, 13.4 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₃NO₃ (M+NH₄)⁺ 439.2021, found 439.2021.

(Z)-Ethyl-1-benzylidene-2-cyano-3-(2-(4-fluorophenyl)-2-oxoethyl)-2,3-dihydro-1H-indene-2-carboxylate (5l). Colorless solid; (165 mg, 75% yield); mp 117.8-120.8 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.08-8.05 (m, 2H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.49-7.47 (m, 2H), 7.39-7.29 (m, 6H), 7.19-7.14 (m, 3H), 4.62 (t, *J* = 6.0 Hz, 1H), 3.88-3.77 (m, 2H), 3.74-3.64 (m, 2H), 1.00 ppm (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) = δ 195.4, 167.2, 165.9 (d, *J* = 238.3 Hz), 142.0, 139.0, 137.9, 135.0, 132.6 (d, *J* = 2.8 Hz), 130.7 (d, *J* = 8.5 Hz), 129.7, 128.8, 128.6, 128.3, 128.0, 125.6, 123.6, 121.0, 117.4, 115.8, (d, *J* = 21.9 Hz), 62.8, 57.1, 48.8, 40.9, 13.3 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₂FNO₃ (M+NH₄)⁺ 457.1927, found 457.1918.

(Z)-Ethyl-1-benzylidene-3-(2-(4-chlorophenyl)-2-oxoethyl)-2-cyano-2,3-dihydro-1H-indene-2-carboxylate (5m). Colorless solid; (179 mg, 80% yield); mp 137.1-140.4 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.91(d, J = 9.1 Hz, 2H), 7.55-7.53 (m, 1H), 7.42-7.39 (m, 4H), 7.32-7.18 (m, 6H), 7.12-7.10 (m, 1H), 4.54 (t, J = 6.8 Hz, 1H), 3.80-3.70 (m, 2H), 3.67-3.56 (m, 2H), 0.94 ppm (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 195.8, 167.1, 142.0, 140.1, 139.0, 137.9, 135.0, 134.5, 129.7, 129.6, 129.0, 128.8, 128.6, 128.3, 128.0, 125.6, 123.6,

121.1, 117.4, 62.9,57.1, 48.8, 41.0, 13.4 ppm; HRMS (ESI) $\mbox{m/z}$ calcd for $C_{28}H_{22}CINO_3$ (M+NH_4)* 473.1632, found 473.1616.

(Z)-Ethyl-1-benzylidene-3-(2-(4-bromophenyl)-2-oxoethyl)-2-cyano-2,3-dihydro-1H-indene-2-carboxylate (5n). Colorless solid; (205 mg, 82% yield); mp 138.5-141.7 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.90 (d, *J* = 8.4 Hz, 2H), 7.65-7.60 (m, 3H), 7.48 (d, *J* = 6.8 Hz, 2H), 7.39-7.29 (m, 6H), 7.19-7.17 (m, 1H), 4.61 (t, *J* = 5.3 Hz, 1H), 3.88 3.76 (m, 2H), 3.72-3.62 (m, 2H), 1.00 ppm (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.0, 167.1, 142.0, 139.0, 137.9, 135.0, 134.9, 132.0, 129.6, 128.9, 128.8, 128.6, 128.3, 128.0, 125.6, 123.6, 121.1, 117.4, 62.9, 57.1, 48.7, 41.0, 13.4 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₂BrNO₃ (M+Na)⁺ 522.0680, found 522.0689.

(*Z*)-Ethyl-1-benzylidene-2-cyano-3-(2-(2,4-dichlorophenyl)-2-oxoethyl)-2,3-di hydro-1H-indene-2-carboxylate (50). Colorless solid; (165 mg, 70% yield); mp 106.7-109.8 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.56-7.52 (m, 2H), 7.42-7.40 (m, 3H), 7.33-7.28 (m, 5H), 7.25-7.14 (m, 3H), 4.52 (t, *J* = 6.8 Hz, 1H), 3.83-3.79 (m, 1H), 3.68-3.62 (m, 3H), 0.97 ppm (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) = δ 198.6, 167.2, 141.7, 139.0, 137.9, 136.4, 134.9, 132.1, 130.7, 130.5, 129.7, 128.9, 128.7, 128.3, 128.1, 127.5, 125.8, 123.5, 121.1, 117.3, 63.0, 56.9, 48.9, 45.4, 13.4 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₁Cl₂NO₃ (M+NH₄)⁺ 507.1242, found 507.1251.

(*Z*)-Ethyl1-benzylidene-2-cyano-3-(2-oxo-2-(p-tolyl)ethyl)-2,3-dihydro-1H-inden e-2-carboxylate (5p). Colorless solid; (200 mg, 92% yield); mp 146-148°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 6.8 Hz, 1H), 7.50-7.48 (m, 2H), 7.39-7.33 (m, 3H), 7.31-7.27 (m, 5H), 7.19-7.17 (m, 1H), 4.62 (t, *J* = 6.4 Hz, 1H), 3.87-3.77 (m, 2H), 3.74-3.66 (m, 2H), 2.42 (s, 3H), 0.99 ppm (t, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.5, 167.1, 144.5, 142.2, 139.0, 138.0, 135.1, 133.7, 129.6, 129.3, 128.8, 128.5, 128.3, 128.3, 128.0, 125.5, 123.7, 121.0, 117.5, 62.8, 57.2, 48.8, 40.9, 21.6, 13.4 ppm; HRMS (ESI) *m/z* calcd for C₂₉H₂₅NO₃ (M+Na)+ 458.1732, found 458.1742.

(*Z*)-Ethyl-1-benzylidene-2-cyano-5-fluoro-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-indene-2-carboxylate (5q). Colourless solid; (167 mg, 75%), mp 121-124 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.08-8.05 (m, 2H), 7.60 (d, J = 8.0 Hz, 1H), 7.49-7.47 (m, 2H), 7.39-7.29 (m, 6H), 7.19-7.13 (m, 3H), 4.62 (t, J = 6.8 Hz, 1H), 3.88-3.82 (m, 2H), 3.81-3.64 (m, 2H), 1.00 ppm (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 195.4, 166.8, 163.8 (d, J = 248.8 Hz), 144.5, 144.4, 136.8, 136.0, 135.0, 134.9, 133.7, 128.7, 128.2 (d, J = 19.0 Hz), 128.0, 125.2, 122.5, 122.4, 117.2, 116.1 (d, J = 22.8 Hz), 111.1 (d, J = 23.8 Hz), 63.0, 57.4, 48.5, 40.9, 13.3 ppm; HRMS (ESI) m/z calcd for C₂₈H₂₂FNO₃ (M+NH₄)⁺ 457.1927, found 457.1918.

(Z)-Propyl-1-benzylidene-2-cyano-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-inde ne-2-carboxylate (5r). Colorless solid; (200 mg, 91% yield); mp 163.5-166.1 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.04 (d, *J* = 8.0 Hz, 2H), 7.62-7.58 (m, 2H), 7.51-7.47 (m, 4H), 7.41-7.27 (m, 6H), 7.20-7.19 (m, 1H), 4.64 (t, *J* = 6.0 Hz, 1H), 3.88-3.68 (m, 3H), 3.60-3.54 (m, 1H), 1.58-1.39 (m, 2H), 0.79 ppm (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.9, 167.1, 142.2, 139.0, 138.0, 136.2, 135.0, 133.5, 129.6, 128.8, 128.7, 128.6, 128.3, 128.1, 127.9, 125.5, 123.7, 121.0, 117.4, 68.3, 57.2, 48.8, 41.1, 21.2, 10.2 ppm; HRMS (ESI) *m/z* calcd for C₂₉H₂₅NO₃ (M+NH₄)+ 453.2178, found 453.2174.

(Z)-Butyl-1-benzylidene-2-cyano-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-inden e-2-carboxylate (5s). Colorless solid; (215 mg, 96% yield); mp 141.2-143.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.04 (d, J = 8.0 Hz, 2H), 7.62-7.58 (m, 2H), 7.51-7.47 (m, 4H), 7.39-7.29 (m, 6H), 7.20-7.18 (m, 1H), 4.63 (t, J = 6.0 Hz, 1H), 3.87-3.79 (m, 2H), 3.73-3.67 (m, 1H), 3.64-3.58 (m, 1H), 1.41-1.32 (m, 2H), 1.31-1.18 (m, 2H), 0.82 ppm (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 196.9$, 167.1, 142.3, 139.0, 138.0, 136.2, 135.0, 133.5, 129.6, 128.8, 128.7, 128.6, 128.3, 128.2, 128.0, 125.5, 123.7, 121.0, 117.4, 66.6, 57.2, 48.8, 41.1, 29.8, 18.8, 13.5 ppm; HRMS (ESI) m/z calcd for C₃₀H₂₇NO₃ (M+NH₄)⁺ 467.2334, found 467.2332.

(Z)-Isopropyl-1-benzylidene-2-cyano-3-(2-oxo-2-phenylethyl)-2,3dihydro-1H-indene-2-carboxylate (5t). Colorless solid; (203 mg, 93% yield); mp 146-148°C; ¹H NMR (400 MHz, CDCI₃) δ = 8.06 (d, *J* = 7.6 Hz, 2H), 7.62-7.60 (m, 2H), 7.53-7.48 (m, 4H), 7.40-7.28 (m, 6H), 7.18-7.16 (m, 1H), 4.73-4.63 m, 2H), 3.88-3.66(m, 2H), 1.04-1.02 (m, 3H), 0.88-0.87 ppm (m, 3H); ¹³C NMR (100 MHz, CDCI₃) δ = 196.8, 166.5, 142.3, 139.2, 137.2, 136.2, 135.1, 133.6, 129.6, 128.9, 128.7, 128.5, 128.4, 128.2, 128.1, 125.4, 123.8, 121.0, 117.5, 57.5, 48.9, 41.2, 21.2, 20.8 ppm; HRMS (ESI) *m/z* calcd for C₂₉H₂₅NO₃ (M+NH₄)⁺ 453.2178, found 453.2174.

(*Z*)-tert-Butyl-1-benzylidene-2-cyano-3-(2-oxo-2-phenylethyl)-2,-3-di hydro-1H-indene-2-carboxylate (5u): Colorless solid; (211 mg, 94% yield); mp 146-148°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.08 (d, *J* = 8.0 Hz, 2H), 7.61-7.55 (m, 4H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.36-7.27 (m, 4H), 7.16-7.14 (m, 1H), 4.65 (t, *J* = 6.8 Hz, 1H), 3.85-3.65 (m, 2H), 1.15 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.9, 165.8, 142.6, 139.4, 137.1, 136.3, 135.4, 133.6, 129.5, 129.0, 128.7, 128.6, 128.4, 128.2, 128.0, 125.3, 123.9, 120.9, 117.7, 84.3, 57.9, 48.9, 41.6, 27.1 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₂₇NO₃ (M+Na)⁺ 472.1888, found 472.1872.

(*E*)-Methyl-3-benzylidene-2-cyano-1-(2-(4-fluorophenyl)-2-oxoethyl)-2,3-dihydro-1H-cyclo-penta[*b*]quinoline-2-carboxylate (6a). Colorless solid; (214 mg, 90% yield); mp 162-165 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.20 (s, 1H), 8.14-8.09 (m, 3H), 7.95 (s, 1H), 7.78-7.73 (m, 2H), 7.60-7.58 (m, 2H), 7.55-7.51 (m, 1H), 7.45-7.41 (m, 2H), 7.38-7.37 (m, 1H), 7.21-7.16 (m, 2H), 4.70 (t, *J* = 6.8 Hz, 1H), 3.94-3.79 (m, 2H), 3.44 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 195.1, 167.4, 164.8, 157.4, 149.0, 135.5, 134.4, 133.6, 132.4, 131.5, 131.2, 130.9 (d, *J* = 9.5 Hz), 130.0, 129.3, 129.2, 128.8, 128.4, 128.2, 127.8, 126.8, 118.8, 116.0 (d, *J* = 21.9Hz), 55.3, 53.5, 46.1, 41.4 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₂₁FN₂O₃ (M+H)⁺ 477.1614, found 477.1629.

(*E*)-Butyl-3-benzylidene-2-cyano-1-(2-(4-fluorophenyl)-2-oxoethyl)-2,3-dihydro-1H-cyclo-penta[b]quinoline-2-carboxylate (6b): Colorless solid; (243 mg, 94% yield); mp 145.1-148.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.20 (s, 1H), 8.14-8.10 (m, 3H), 7.95 (s, 1H), 7.78-7.71 (m, 2H), 7.62-7.60 (m, 2H), 7.54-7.50 (m, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.36-7.34 (m, 1H), 7.20 (t, J = 9.1 Hz, 2H), 4.70 (t, J = 6.8 Hz, 1H), 3.96-3.85 (m, 2H), 3.81-3.73 (m, 2H), 1.41-1.33 (m, 2H), 1.28-1.16 (m, 2H), 0.81 ppm (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 195.0, 166.9, 166.1 (d, J = 255.5 Hz), 157.6, 149.0, 135.1, 134.5, 133.8, 132.5, 132.4, 131.3, (d, J = 30.2 Hz), 131.0 (d, J = 9.5 Hz), 130.0, 129.4, 129.2, 128.9, 128.4, 128.2, 127.8, 126.7, 116.7, 116.5 (d, J = 21.9 Hz), 67.0, 55.5, 46.1, 41.5, 29.8, 18.8, 13.5 ppm; HRMS (ESI) *m/z* calcd for C₃₃H₂₇FN₂O₃ (M+H)⁺ 519.2084, found 519.2075.

(E)-Isopropyl-3-benzylidene-2-cyano-1-(2-oxo-2-(p-tolyl)ethyl)-2,-3-dihydro-1H-cyclo-penta[b]quinoline-2-carboxylate (6c). Colorless solid; (230 mg, 92% yield); mp 179.5-183.8 °C; ¹H NMR (400 MHz,

Journal Name

CDCl₃) δ = 8.19 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 2H), 7.92 (s, 1H), 7.76-7.69 (m, 2H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.37-7.31 (m, 3H), 4.80-4.76 (m, 1H), 4.70 (t, *J* = 8.0 Hz, 1H), 3.96-3.78 (m, 2H), 2.45 (s, 3H), 1.08 (d, *J* = 6.1 Hz, 3H), 0.85 ppm (d, *J* = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.2, 166.3, 157.8, 148.9, 144.8, 134.7, 134.6, 134.1, 133.5, 131.4, 131.1, 129.8, 129.6, 129.5, 129.2, 129.0, 128.6, 128.4, 128.2, 127.8, 126.6, 116.9, 71.6, 55.8, 46.2, 41.5, 21.7, 21.2, 20.7 ppm; HRMS (ESI) *m/z* calcd for C₃₃H₂₈N₂O₃ (M+H)⁺ 501.2178, found 501.2145.

(E)-Ethyl-2-cyano-3-(4-methylbenzylidene)-1-(2-oxo-2-phenyle

thyl)-2,3-dihydro-1H-cyclo-penta[b]quinoline-2-carboxylate (6d). Colorless solid; (210 mg, 86 % yield); mp 132.1-134.1 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.16 (s, 1H), 8.13-8.09 (m, 3H), 7.93 (s, 1H), 7.77-7.69 (m, 2H), 7.65-7.62 (m, 1H), 7.55-7.49 (m, 5H), 7.24 (d, *J* = 8.0 Hz, 2H), 4.71 (t, *J* = 6.8 Hz, 1H), 4.00-3.90 (m, 3H), 3.85-3.79 (m, 1H), 2.39 (s, 3H), 1.04 ppm (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.7, 167.0, 157.9, 149.0, 139.2, 136.0, 134.1, 133.9, 133.8, 131.7, 131.5, 131.3, 129.9, 129.5, 129.2, 128.8, 128.3, 128.2, 127.8, 126.6, 116.8, 63.2, 55.6, 46.1, 41.7, 21.4, 13.4 ppm; HRMS (ESI) *m/z* calcd for C₃₂H₂₆N₂O₃(M+H)⁺ 487.2021, found 487.2004.

(*E*)-Ethyl-3-benzylidene-2-cyano-1-(2-oxo-2-(thiophen-2-yl)ethyl)-2,3-dihydro-1H-cyclo-penta[*b*]quinoline-2-carboxylate (6e). Colorless solid; (211 mg, 88 % yield); mp 163-166 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.18 (s, 1H), 8.12 (d, *J* = 8.5 Hz, 1H), 7.96 (s, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.78-7.76 (m, 1H), 7.73-7.69 (m, 2H), 7.61-7.59 (m, 2H), 7.53-7.49 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.37-7.35 (m, 1H), 7.19-7.17 (m, 1H), 4.68 (t, *J* = 5.3 Hz, 1H), 3.92-3.85 (m, 2H), 3.83-3.73 (m, 2H), 1.00 ppm (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 189.3, 166.7, 157.5, 149.0, 143.0. 135.1, 134.7, 134.6, 133.6, 133.0,131.4, 131.3, 129.9, 129.3, 129.2, 128.9, 128.4, 128.2, 127.8, 126.7, 116.7, 63.3, 55.5, 46.0, 41.7, 13.4 ppm; HRMS (ESI) *m/z* calcd for C₂₉H₂₂N₂O₃S (M+H)⁺ 479.1429, found 479.1401.

(*Z*)-Dimethyl1-benzylidene-3-(2-oxo-2-phenylethyl)-1H-Inde ne-2,2(3H)-dicarbo xylate (7a). Pale Yellow solid; (189 mg, 86% yield); mp 64-67 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.87 (d, *J* = 8.2 Hz, 2H) 7.57 (d, *J* = 7.6 Hz, 1H), 7.52-7.47 (m, 3H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.31-7.25 (m, 5H), 7.23-7.27 (m, 2H), 4.97-4.94 (m, 1H). 3.67 (s, 3H), 3.60 (dd, *J*₁ = 19.3, *J*₂ = 9.1 Hz, 1H), 3.18-3.12 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 197.7, 170.2, 168.6, 144.3, 140.5, 139.0, 136.5, 130.2, 129.0, 128.4, 128.3, 127.9, 125.9, 124.0, 120.8, 67.8, 53.4, 52.2, 47.9, 42.7 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₅O₅ (M+H)⁺ 441.1702, found 441.1723.

(*Z*)-Dimethyl1-benzylidene-3-{2-(4-fluorophenyl)-2-oxoethy }-1Hindene-2,2(3H)-dicarboxylate (7b). Pale Yellow solid; (186 mg, 81% yield); mp 61-63 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.92-7.88 (m, 2H), 7.58 (d, *J* = 6.8 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.32-7.28 (m, 4H), 7.24-7.20 (m, 2H), 7.16-7.13 (m, 1H), 7.05 (t, *J* = 8.0 Hz, 2H), 4.96-4.93 (m, 1H), 3.68 (s, 3H), 3.58 (dd, *J*₁ = 19.0, *J*₂ = 9.1 Hz, 1H), 3.16 (s, 3H), 3.10 ppm (dd, *J*₁ = 18.3, *J*₂ = 3.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.2, 170.2, 168.7, 165.7 (d, *J* = 266.0 Hz), 144.2, 140.5, 139.0, 136.2, 132.9, 130.6, 130.5, 129.0, 128.3, 128.0, 127.4, 126.1, 124.0, 120.8, 115.5 (d, *J* = 21.9 Hz), 67.8, 53.2, 52.3, 48.0, 42.7 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₂₃FO₅ (M+H)⁺ 459.1607, found 459.1626.

(Z)-Dimethyl-1-benzylidene-3-(2-oxo-2-(p-tolyl)ethyl)-1H-indene-2,2(3H)-dicarb oxylate (7c). Pale Yellow solid; (182 mg, 80% yield); mp 68-71 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.31-7.27 (m, 5H), 7.22-7.17 (m, 4H), 4.97-4.94 (m, 1H), 3.67 (s, 3H), 3.56 (dd, *J*₁ = 18.3, *J*₂ = 9.6 Hz, 1H), 3.17 (s, 3H), 3.14-3.09 (m, 1H), 2.36 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 197.3, 170.3, 168.6, 144.4, 143.8, 140.5, 139.1, 136.2, 134.0, 129.1, 129.0,128.3, 128.0, 127.9, 127.8, 127.3, 125.9, 124.0,120.7, 67.8, 53.1, 52.2, 48.0, 42.6, 21.5 ppm; HRMS (ESI) *m/z* calcd for C₂₉H₂₆O₅ (M+H)⁺ 455.1858, found 455.1873.

DOI: 10.1039/C7OB02498C

ARTICLE

(Z)-Dimethyl1-benzylidene-3-(2-oxo-2-(thiophen-2-yl)ethyl)-1,3dihydro-2H-in dene-2,2-dicarboxylate (7d). Pale yellow solid; (200 mg, 93% yield); mp 60-63 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.60-7.56 (m, 3H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.32-7.25 (m, 5H), 7.23-7.20 (m, 2H), 7.06-7.03 (m, 1H), 4.94-4.91 (m, 1H), 3.65 (s, 3H), 3.49 (dd, *J*₁ = 17.5, *J*₂ = 8.4 Hz, 1H), 3.21 (s, 3H), 3.13 ppm (dd, *J*₁ = 17.5, *J*₂ = 5.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 190.6, 170.1, 168.6, 144.1, 143.7, 140.5, 138.9, 136.2, 133.4, 131.9, 129.0, 128.5, 128.4, 128.2, 128.0, 127.4, 126.0, 124.1, 120.8, 67.8, 53.1, 52.2, 47.9, 43.1 ppm; HRMS (ESI) *m/z* calcd for C₂₆H₂₂O₅S (M+H)⁺ 447.1266, found 447.1276.

(*E*)-Dimethyl-3-benzylidene-1-(2-(4-fluorophenyl)-2-oxoethyl)-1-H-cyclopenta[*b*]quinoline-2,2(3H)-dicarboxylate (7e). Colorless solid; (185 mg, 87% yield); mp 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.16 (s, 1H), 8.10 (d, *J* = 9.1 Hz, 1H), 7.98-7.95 (m, 2H), 7.91 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.67 (t, *J* = 8.7 Hz, 1H), 7.61 (d, *J* = 6.8 Hz, 2H), 7.47 (t, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 6.8 Hz, 2H), 7.31 7.29 (m, 1H), 7.10 (t, *J* = 8.4 Hz, 2H), 4.98 (t, *J* = 6.0 Hz, 1H), 3.65-3.59 (m, 1H), 3.57 (s, 3H), 3.39 (s, 3H), 3.38-3.32 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 195.8, 169.5, 168.4, 159.4, 148.6, 136.4, 135.9, 135.7, 132.8, 132.7, 131.1, 130.9, 130.7, 130.6, 129.4, 129.1, 128.3, 128.2, 128.0, 127.7, 126.2, 115.8, 115.6, 66.3, 53.0, 52.3, 45.4, 41.9 ppm; HRMS (ESI) *m/z* calcd for C₃₁H₂₄FNO₅ (M+H)⁺ 510.1716, found 510.1710.

(*E*)-Dimethyl-3-benzylidene-1-(2-oxo-2-(p-tolyl)ethyl)-1H-cyclop enta[*b*]quinoline-2,2(3H)-dicarboxylate (7f). Colorless solid; (196 mg, 78% yield); mp 175.2-178.1 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.16 (s,1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.91 (s, 1H), 7.84 (d, *J* = 7.6 Hz, 2H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.67 (t, *J* = 6.8 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.46 (t, *J* = 6.8 Hz, 1H), 7.37 (t, *J* = 8.4 Hz, 2H), 7.31-7.29 (m, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 4.99 (t, *J* = 6.8 Hz, 1H), 3.63-3.59 (m, 1H), 3.57 (s, 3H), 3.41-3.34 (m, 1H), 3.39 (s, 3H), 2.39 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 197.0, 169.5, 168.4, 159.5, 148.6, 144.2, 136.4, 136.2, 135.7, 133.9, 131.0, 129.3, 129.2, 129.2, 129.1, 128.4, 128.1, 128.0, 127.8, 126.1, 66.3, 52.9, 52.5, 45.4, 41.8, 21.6 ppm; HRMS (ESI) *m/z* calcd for C₃₂H₂₈NO₅ (M+H)⁺ 506.1967, found 506 1973.

(Z)-Diethyl-1-benzylidene-5-fluoro-3-(2-oxo-2-phenylethyl)-1,3dihydro-2H-indene-2,2-dicarboxylate (7g). Yellow solid; (200mg, 87% yield); mp 78-81 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.90 (d, *J* = 9.6 Hz, 2H), 7.56-7.51 (m, 4H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 6.8 Hz, 2H), 7.24-7.22 (m, 1H), 7.18 (s, 1H), 7.00-6.98 (m, 2H), 4.92 (t, *J* = 6.8 Hz, 1H), 4.16-4.07 (m, 2H), 3.71-3.67 (m, 1H), 3.62-3.55 (m, 2H), 3.20 (dd, *J*₁ = 19.1, *J*₂ = 6.0 Hz, 1H), 1.17 (t, *J* = 6.8 Hz, 3H), 0.88 ppm (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 197.2, 169.4, 168.0, 163.3 (d, *J* = 245.9 Hz), 146.7 (d, *J* = 7.6 Hz), 137.6, 136.6, 136.3 (d, *J* = 13.3 Hz), 133.1, 128.6, 128.2, 128.0, 127.9, 127.9, 127.3, 125.5, 122.0 (d, J = 34.3 Hz), 115.1 (d, *J* = 23.8 Hz), 111.2 (d, *J*

DOI: 10.1039/C7OB02498C

Journal Name

ARTICLE

= 22.8 Hz), 68.3, 62.1, 61.7, 47.5, 42.2, 13.7, 13.3 ppm; HRMS (ESI) m/z calcd for C₃₀H₃₁FO₅ (M+H)⁺ 487.1921, found 487.1903.

(*E*)-Diethyl-3-benzylidene-1-(2-oxo-2-(p-tolyl)ethyl)-1H-cyclopenta[*b*]quinoline-2,2(3H)-dicarboxylate (7h). Yellow solid; (210 mg, 77% yield); mp 62-65 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.16 (s,1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.91 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.73-7.70 (m, 3H), 7.66 (t, *J* = 6.8 Hz, 1H), 7.46 (t, *J* = 6.8 Hz, 1H), 7.38-7.34 (m, 2H), 7.31-7.28 (m, 1H), 7.23 (d, *J* = 7.6 Hz, 2H), 4.95 (t, *J* = 7.6 Hz, 1H), 4.03-4.39 (m, 2H), 3.95-3.91 (m, 1H), 3.84-3.8 (m, 1H), 3.60 (dd, *J*₁ = 18.3, *J*₂ = 6.0 Hz, 1H), 3.44 (dd, *J*₁ = 18.3, *J*₂ = 7.6 Hz, 1H), 2.39 (s, 3H), 1.03 (t, *J* = 7.6 Hz, 3H), 0.98 ppm (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 197.0, 169.0, 168.0, 157.7, 148.5, 144.2,136.4,136.1, 135.9, 133.9, 131.0, 130.9,129.6, 129.3, 129.2, 129.0, 128.4, 128.2, 128.1, 127.9, 127.8, 126.0, 66.5, 62.1, 61.9, 45.3, 41.7, 21.6, 13.6, 13.5 ppm; HRMS (ESI) *m/z* calcd for C₃₄H₃₁NO₅ (M+H)⁺ 534.2280, found 534.2320.

Experimental procedure for control experiments: Step 1 (Scheme 6, eqn 1)

To the 10 mL RB flask was added α , β -unsaturated ketone 3f (0.5 mmol), Cs₂CO₃ (10 mol%), and dimethylmalonic esters 4g (0.6 mmol) and allowed to stirred at heat at 50 °C for 3 h. It was diluted with 10 mL of dilute HCl. The reaction mixture was extraction with ethyl acetate (2 x 50 mL) and distilled water (2 x 10 mL). Finally, combined organic layer was washed with brine solution and dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product, which was purified by chromatography on silica gel using ethyl acetate/hexane as the eluent to yield the **8** as desired products.

Step 2 (Scheme 6, eqn 2)

Published on 13 October 2017. Downloaded by University of Newcastle on 13/10/2017 14:53:02

To the 10 mL RB flask was added Michael adduct **8** (0.5 mmol) and Cs_2CO_3 (15 mol%), allowed to stirred at heat at 50 °C for 3-6 h. After completion of reaction indicated by TLC, it was diluted with 10 mL of dilute HCl. The reaction mixture was extraction with ethyl acetate (2 x 50 mL) and distilled water (2 x 10 mL). Finally, combined organic layer was washed with brine solution and dried over anhydrous Na_2SO_4 and concentrated under vacuum to yield the crude product, which was purified by chromatography on silica gel using ethyl acetate/hexane as the eluent to yield the **7c** as desired products in 80% yield.

Dimethyl2-(3-oxo-1-(2-(phenylethynyl)phenyl)-3-(p-tolyl)propyl)malonate (8). Pale yellow oil; (182 mg, 80 % yield); ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.4 Hz, 2H), 7.56-7.54 (m, 2H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.36-7.34 (m, 3H), 7.32-7.30 (m, 1H), 7.23-7.16 (m, 4H), 4.80-4.73 (m, 1H), 4.28 (d, *J* = 8.0 Hz, 1H), 3.81-3.77 (m, 1H), 3.68 (s, 3H), 3.65-3.60 (m, 1H), 3.56 (s, 3H), 2.33 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 197.3, 168.8, 168.3, 143.7, 141.8, 134.2, 132.8, 131.5, 129.2, 129.1, 128.4, 128.3, 128.2, 128.2, 126.9, 123.1, 122.5, 94.6, 87.4, 55.3, 52.5, 52.4, 40.2, 39.1, 21.5 ppm; HRMS (ESI) *m/z* calcd for C₂₉H₂₆O₅ (M+H)⁺ 455.1858, found 455.1891.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

We gratefully acknowledged the USIC, University of Delhi for NMR, HRMS and X-ray crystallography facility and DST & SERB (SB/S1/OC-38B/2013), Govt. of India, for providing funding and fellowship to TC.

Notes and references

- (a) F. Klotter and A. Studer, Angew. Chem. Int. Ed. 2014, 53, 2473; (b) F. Bohlmann and C. Zdero, Phytochemisry 1977, 16, 239; (c) F. Bohlmann, C. Zdero and N. Le Van, Phytochemistry 1979, 18, 99.
- 2 J. W. Grate and G. C. Frye, in *Sensors Update, Vol. 2* (Eds: H. Baltes, W. Göpel, J. Hesse), Wiley-VCH, Weinheim, 1996, 10.
- 3 (a) M. Vieth, and D. J. Cummins, J. Med. Chem., 2000, 43, 3020; (b) C. Pe'rez, M. Pastor, R. A. Ortiz and F. Gago, J. Med. Chem., 1998, 41, 836.
- 4 C. A. Herdman, T. E. Strecker, R. P. Tanpure, Z. Chen, A. Winters, J. Gerberich, L. Liu, E. Hamel, R. P. Mason, D. J. Chaplin, M. L. Trawick and K. G. Pinney, *Med. Chem. Commun.*, 2016, **7**, 2418.
- 5 S. N. L. Bennett, A. D. Campbell, A. Hancock, C. Johnstone, P. W. Kenny, A. Pickup, A. T. Plowright, N. Selmi, I. Simpson, A. Stocker, D. P. Whalley and P. R. O. Whittamore, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 3511.
- 6 (a) A. J. Liedtke, B. C. Crews, C. M. Daniel, A. L. Blobaum, P. J. Kingsley, K. Ghebreselasie and L. Marnett, J. J. Med. Chem., 2012, 55, 2287; (b) S. Das, H. Yasmin, M. M. Masud, S. C. Roy, L. Nahar, M. M. Rahman, S. Gibbons, S. C. Bachar and S. D. Sarker, Tetrahedron 2008, 64, 8642.
- 7 (a) S.-Yi. Li, N. Jiang, S.-S. Xie. K. D. G. Wang, X.-B. Wang and L.-Y. Kong, Org. Biomol. Chem., 2014, **12**, 801; (b) M.-K. Hu, L.-J. Wu, G. Hsiao and M.-H. Yen, J. Med. Chem., 2002, **45**, 2277.
- 8 G. C. Muscia, G. Y. Buldain and S. E. Asís, *Eur. J. Med. Chem.*, 2014, **73**, 243.
- 9 (a) L. W. Deady, A. J. Kaye, G. J. Finlay, B. C. Baguley and W. A. Denny, *J. Med. Chem.*, 1997, **40**, 2040; (b) S. Catoen-Chackal, M. Facompre', R. Houssin, N. Pommery, J.-F. Goossens, P. Colson, C. Bailly and J.-P. Hénichart, *J. Med. Chem.*, 2004, **47**, 3665.
- (a) G. H. Posner, *Chem. Rev.*, 1986, **86**, 831; (b) B. Gabriele,
 R. Mancuso and L. Veltri, *Chem. Eur. J.*, 2016, **22**, 5056; (c) T.
 Chanda and M. S. Singh, *Org. Biomol. Chem.*, 2016, **14**, 8895.
- 11 (a) K. Gao and J. Wu, Org. Lett., 2008, **10**, 2251; (b) S. Ye, K. Gao, H. Zhou, X. Yang and J. Wu, Chem. Commun., 2009, 5406; c) D. Zheng, S. Li, Y. Luo and J. Wu, Org. Lett., 2011, **13**, 6402.
- 12 (a) A. M. Sanjuán, M. A. Rashid, P. García-García, A. Martínez-Cuezva, M. A. Fernández-Rodríguez, F. Rodríguez and R. Sanz, *Chem. Eur. J.* 2015, **21**, 3042; (b) A. Martínez, P. García-García, A. Manuel, M. A. Fernández-Rodríguez, F. Rodríguez and R. Sanz, *Angew. Chem. Int. Ed.* 2010, **49**, 4633.
- 13 S. Tamke, Z.-W. Qu, N. A. Sitte, U. Flörke, S. Grimme and J. Paradies, Angew. Chem. Int. Ed. 2016, 55, 4336.
- 14 (a) S. W. Peabody, B. Breiner, S. V. Kovalenko, S. Patil and I. V. Alabugin, *Org. Biomol. Chem.*, 2005, **3**, 218; (b) S. Mondal, R. K. Mohamed, M. Manoharan, H. Phan and I. V. Alabugin, *Org. Lett.* 2013, **15**, 5650; (c) R. K. Mohamed, S. Mondal, B. Gold, C. J. Evoniuk, T. Banerjee, K. Hanson, and I. V. Alabugin, *J. Am. Chem. Soc.*, 2015, **137**, 6335.
- 15 (a) A. Preinfalk, A. Misale and N. Maulide, *Chem. Eur. J.*, 2016, **22**, 14471; (b) B. Ma, Z. Wu, B. Huang, L. Liu and J. Zhang, *Chem. Commun.*, 2016, **52**, 9351.
- 16 X. Zhang, C. Feng, T. Jiang, Y. Li. L. Pan and X. Xu, Org. Lett., 2015, 17, 3576.

This journal is © The Royal Society of Chemistry 20xx

Journal Name

- 17 R. K. Saunthwal, A. K. Danodia, M Patel, S. Kumar and A. K. Verma, *Chem. Asian J.*, 2016, **11**, 3001.
- 18 Y. C. Fan and O. Kwon, Org. Lett., 2015, 17, 2058.
- 19 D. H. Dethe, G.M. Murhade and S. Ghosh, J. Org. Chem., 2015, 80, 8367.
- 20 S. Manojveer and R. Balamurugan, Org. Lett., 2015, 17, 3600.
- 21 (a) D. P. Curran and H. Liu, J. Am. Chem., Soc. 1991, 113, 2127; (b) X. Lu, J. L. Petersen and K. K. Wang, Org. Lett., 2003, 5, 3277.
- (a) N. Anand, S. Koley. B. J, Ramulu and M. S. Singh, Org. Biomol. Chem., 2015, 13, 9570; (b) S. S. Palimkar, S. A. Siddiqui, T. Daniel, R. J. Lahoti and K. V. Srinivasan, J. Org. Chem., 2003, 68, 9371.
- 23 M. Chen, N. Sun and Y. Liu, Org. Lett., 2013, 15, 5574.
- 24 M. Austin, O. J. Egan, R. Tully and A. C. Pratt, *Org. Biomol. Chem.*, 2007, **5**, 3778.
- 25 T. Xiao, L. Li, Y. Xie, Z.-W. Mao and L. Zhou, *Org. Lett.*, 2016, **18**, 1004.
- 26 H. Zhao, Y. Xing, P. Lu and Y. Wang, Chem. Eur. J., 2016, 22, 15144.
- 27 T. Y. Chaudhari, Urvashi., S. K. Ginotra, P. Yadav, G. Kumar and V. Tandon, *Org. Biomol. Chem.*, 2016, **14**, 9896.
- 28 (a) J. E. Baldwin and L. I. Kruse, J. Chem. Soc. Commun., 1977, 233; (b) J. E. Baldwin and M. J. Lusch, Tetrahedron, 1982, 38, 2939.
- 29 (a) I. V. Alabugin, K. Gilmore and M. Manoharan, J. Am. Chem. Soc. 2011, **133**, 12608; (b) K. Gilmore and I. V. Alabugin, Chem. Rev. 2011, **111**, 6513.
- 30 Crystallographic data of **5a** [CCDC number 1526254] provided in supporting information and available free of charge from www.ccdc.cam.ac.uk/data-request/cif.
- 31 (a) M. Uchiyama, H. Ozawa, K. Takuma, Y. Matsumoto, M. Yonehara, K. Hiroya, T. Sakamoto, Org. Lett., 2006, 8, 5517;
 (b) C. Kanazawa, M. Torada, Tetrahedron Lett., 2007, 48, 933;
 (c) N. G. Kundu, M. Pal and B. Nandi, J. Chem. Soc., Perkin Trans. 1, 1998, 561.
- 32 (a) F. Alonso, I. P. Beletskaya and M. Yus, *Chem. Rev.* 2004, 104, 3079; (b) H. Doucet, J. Hofer, C. Bruneau and P. H. Dixneuf, *J. Chem. Soc., Chem. Commun.*, 1993, 850.

Organic & Biomolecular Chemistry Accepted Manuscript

146x51mm (300 x 300 DPI)