Suzuki–Miyaura Cross-Coupling Approach to 3,4-Diaryl-3-pyrrolin-2-ones from Tetramic Acid Triflates

Kathryn M. Dorward, Nicolette J. Guthrie, Erin T. Pelkey*

Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY 14456, USA Fax +1(315)7813860; E-mail: pelkey@hws.edu *Received 23 March 2007*

This article is dedicated to Professor Paul Wender in honor of his 60th birthday.

Abstract: A three-step approach to 4-aryl-3-phenyl-3-pyrrolin-2ones from a readily available tetramic acid is described. The introduction of different aryl groups to the 4-position of the ring system was accomplished utilizing Suzuki–Miyaura cross-coupling reactions of the corresponding tetramic acid triflate. This strategy was successfully employed in the first synthesis of the NH lactam analogue of rofecoxib.

Key words: lactams, Suzuki–Miyaura cross-couplings, arylations, 3-pyrrolin-2-ones, tetramic acids

3-Pyrrolin-2-ones [or 1H-pyrrol-2(5H)-ones] are an important class of nitrogen heterocycles found in a variety of natural product classes including oligopyrrole plant pigments,¹ indolocarbazoles,² steroidal alkaloids,³ and the pukeleimides.⁴ Small molecule examples of 3-pyrrolin-2ones have demonstrated interesting biological activity as inhibitors of platelet aggregation,⁵ tyrosine phosphatase,⁶ and cyclooxygenase-2 (COX-2).^{7,8} With regard to the latter, a large number of diaryl heterocyclic compounds of general structure 1 have been investigated as selective inhibitors of COX-2 (Figure 1). The most notable example is furan-2-one $2a^9$ also known as rofecoxib (Vioxx[®]). Structurally related 3-pyrrolin-2-ones analogues of 2a have also been investigated including N-alkyl lactam derivatives 2b⁷ and N-aryl lactam derivatives 2c.⁸ To our knowledge, the corresponding NH lactam analogue 7f has not been previously reported. Due to their wide range of possible applications as bioactive molecules and as building blocks for more complex materials, we have on-going interest in developing novel, efficient syntheses of highly functionalized 3-pyrrolin-2-ones including N-unsubstituted derivatives.¹⁰ Herein, we report our progress directed at developing a flexible synthesis of 3,4-diaryl-3-pyrrolin-2ones 7.

We envisioned that 3-phenyltetramic acid **4a** would provide convenient access to 4-aryl-3-phenyl-3-pyrrolin-2-ones **5** through palladium-catalyzed cross-coupling reactions at the 4-position. Similar chemistry has been investigated with maleimides,¹¹ furan-2-ones,¹² and coumarins.¹³ We chose to incorporate the dimethoxyben-zyl (DMB) protecting group due to its relative ease of removal late in the synthesis under acidic conditions. Wood

Figure 1 General structures of diaryl heterocyclics 1, 2, and 7f

and co-workers had utilized DMB as a lactam protecting group in their total synthesis of the indolocarbazole natural product K-252a.¹⁴

The preparation of the tetramic acid 4a was accomplished in three steps starting from veratrylamine (3) (Scheme 1)^{14b,15} as follows: (1) an N-alkylation with ethyl bromoacetate gave a crude secondary amine intermediate; (2) an N-acylation of this with phenylacetyl chloride gave a crude tertiary amide intermediate; and (3) finally an intramolecular Dieckmann-type cyclocondensation gave 4a after an acidic work-up. Compound 4a was obtained in analytically pure form by crystallization from ethyl acetate. We initially attempted to transform the enol moiety into the corresponding vinyl halide. All of our attempts to convert 4a into the vinyl bromide (PBr₃ or CBr₄/PPh₃) or vinyl chloride (POCl₃) failed. Eventually, we obtained the cross-coupling substrate enol triflate 4b upon treatment of 4a with triflic anhydride in the presence of triethylamine. Triflate 4b proved to be a very stable entity as it remained unchanged (by ¹H NMR) even after storage at room temperature for one year. In a separate study,^{10b} we found that a structurally similar 3-unsubstituted tetramic acid triflate proved to be quite unstable.

Scheme 1

SYNTHESIS 2007, No. 15, pp 2317–2322 Advanced online publication: 12.07.2007 DOI: 10.1055/s-2007-983778; Art ID: C02007SS © Georg Thieme Verlag Stuttgart · New York

With triflate 4b in hand, we investigated the Suzuki-Miyaura cross-coupling reaction with arylboronic acids 5 (Table 1). Our initial conditions included 1.1 equivalents of the boronic acid 5, 10 mol% of tetrakis(triphenylphosphine)palladium(0), Na₂CO₃ as the base, and THF as the solvent. Initially with boronic acid 5a, these conditions proved to be fairly successful (Table 1, entry 1). A brief survey of different bases including Cs₂CO₃,¹⁶ K₃PO₄¹³ KOAc¹⁷ showed sodium carbonate to be superior. We also explored a different palladium catalyst, PdCl₂(dppf),¹⁶ and observed no change in yield (Table 1, entries 2 and 3). We then switched to using 1.5 equivalents of the boronic acid substrates 5 in order to obtain more consistent results. A survey of different solvents found our initial choice of THF to give the best yields (Table 1, entry 6). Importantly, we were able to maintain the high yield after dropping the catalyst to 5 mol% (Table 1, entry 10). Notably, a cross-coupling reaction with a structurally related tetronic acid tosylate substrate containing a phenyl group at the 3position proved to be very low yielding.¹⁸ It seems that the higher reactivity offered by the triflate might be required for cross-coupling reactions involving sterically congested (vicinal-aryl) substrates.

Table 1 Survey of Suzuki-Miyaura Reaction Conditions with 4b^a

^a Conditions: 1.1 or 1.5 equiv **5a**, 5 or 10 mol% Pd(PPh₃)₄ catalyst, 2.2 equiv base, solvent/H₂O, 40 min at r.t., then 1–6 h at reflux.

^b Isolated yields of **6a** after column chromatography.

^c 10 mol% PdCl₂(dppf); dppf = bis(diphenylphosphino)ferrocene.

With the optimized reaction conditions, we explored the generality of the cross-coupling reaction with additional arylboronic acid substrates 5 (Table 2). In each case, the expected 4-aryl-3-pyrrolin-2-ones 6 were obtained in good yields with electron-rich (5a and 5e), electron-neutral (5b), electron-poor (5c), and heterocyclic (5d) boronic acids. Removal of the DMB protecting group was then realized upon treatment of 6 with trifluoroacetic acid in the presence of the cation scavenger, veratrole.^{14b} This reaction proved to be somewhat sluggish and often required long reaction times (in some runs, heating to reflux as well) in order to push the reactions to completion. Nevertheless, the 'free' lactams 7 were obtained in good yields in all cases with the exception of the furan analogue 7d (Table 2, entry 4). We steered away from pursuing the DMB removal under oxidative conditions¹⁹ due to the possibility of oxidizing the 3-pyrrolin-2-ones to the corresponding maleimides²⁰ although we did not investigate this directly.

Table 2	Preparation	of 3,4-Diaryl-3-pyrrolin-2-ones 7
---------	-------------	-----------------------------------

4b -	Ar-B(OH) ₂ Ar	Ph vera CH; OMB	$ \xrightarrow{FA} trole Ar \qquad Pr \\ \xrightarrow{2Cl_2} \qquad N \\ H \\ 7 $	50
Entry	Ar	Substrate	Yield 6 (%) ^b	Yield 7 (%) ^b
1	4-OMeC ₆ H ₄	a	95	84
2	Ph	b	91	72
3	$4-FC_6H_4$	c	90	64
4	2-furyl	d	80	30
5	4-SMeC ₆ H ₄	e	89	62

^a Conditions: 1.5 equiv **5**, 5 mol% Pd catalyst, 2.2 equiv Na₂CO₃, THF–H₂O, 40 min at r.t., then 1–6 h at reflux.

^b Isolated yields of **6** and **7** after column chromatography.

We next turned our attention to the preparation of the rofecoxib analogue **7f** (Scheme 2). Oxidation of thioether **6e** to the corresponding the methyl sulfone **6f** was achieved in 81% yield by treatment with *m*-chloroperoxybenzoic acid (MCPBA). Removal of the DMB group then gave the desired rofecoxib analogue **7f** in 47% yield. Interestingly, using our initial DMB deprotection procedure (concentration of the volatiles followed by chromatography), **7f** was apparently obtained as the corresponding TFA salt (**7f**·TFA) based on CHN analysis. We did not observe TFA salts in our previous synthesis of 3-unsubstituted 4aryl-3-pyrrolin-2-ones,^{10a} nor did we observe it with other substrates here. Nevertheless, this was subsequently avoided by doing a basic work-up (aq NaHCO₃) of the crude material obtained after removal of TFA.

Scheme 2

In summary, we have developed a short synthetic sequence to 4-aryl-3-phenyl-3-pyrrolin-2ones **7** starting from tetramic acid **4a**. The utility of the methodology was demonstrated through the preparation of the lactam analogue **7f** of rofecoxib (**2a**). We next plan to explore the use of 3-pyrrolin-2-ones **6** as building blocks to 3,4-diarylpyrroles by reduction²¹ of the lactam and to 2,3,4-triarylpyrroles by conversion of the lactam to the triflate²² and subsequent cross-coupling. The latter would allow for a controlled, step-wise introduction of aryl groups onto the pyrrole nucleus²³ which could prove useful to the preparation of complex pyrrole natural products (i.e., lamellarins²⁴).

All reactions were performed under a positive argon atmosphere with magnetic stirring unless otherwise noted. Anhyd THF, CH₂Cl₂, and toluene were obtained by passage through a column of alumina utilizing a PureSolv 400 solvent purification system. Anhyd dioxane and DMF were purchased from commercial sources. Et₃N was distilled fresh from CaH2 immediately prior to use. Petroleum ether used refers to the fraction boiling in the range 35-60 °C. Unless otherwise indicated, all other reagents and solvents were purchased from commercial sources and were used without further purification. ¹H NMR and ¹³C NMR were run at 300 MHz and 75 MHz, respectively, utilizing an Oxford multinuclear Fourier transform instrument. Chemical shifts are reported in parts per million (δ) using the solvent's residual proton or carbon signal (CDCl₃: $\delta_{\rm H} = 7.24$, $\delta_{\rm C} = 77.3$; DMSO- d_6 : $\delta_{\rm H} = 2.50$, $\delta_{\rm C} = 39.5$) as an internal reference. Flash chromatography was performed with silica gel (230-400 mesh) and TLC was performed utilizing glass-backed silica gel plates and visualized utilizing UV (254 nm). IR spectra were measured utilizing a PerkinElmer Spectrum 100 with ATR sampler (attenuated total reflectance). All yields are for chromatographed or crystallized, isolated materials.

1-(3',4'-Dimethoxybenzyl)-4-hydroxy-3-phenyl-1*H*-pyrrol-2(5*H*)-one (4a)

A three-step reaction sequence was utilized to prepare the title product with intermediates taken on directly without purification. To a 0 °C stirred solution of veratrylamine (**3**; 10.0 g, 59.8 mmol) and Et₃N (6.35 g, 62.8 mmol) in THF (50 mL), was added a solution of ethyl bromoacetate (9.99 g, 59.8 mmol) in THF (50 mL) dropwise via addition funnel. The mixture was stirred at 0 °C for 2 h and then at r.t. for 16 h. The mixture was filtered through sintered glass and the solid was washed with Et₂O (2 × 20 mL). The combined organic layers were concentrated in vacuo giving known ethyl 2-(3',4'dimethoxybenzylamino)acetate²⁵ as an impure yellow oil (11.3 g).

¹H NMR (300 MHz, CDCl₃): $\delta = 6.77-6.95$ (m, 3 H), 4.12 (q, J = 7.2 Hz, 2 H), 3.85 (s, 3 H), 3.83 (s, 3 H), 3.71 (s, 2 H), 3.50 (s, 2 H), 3.36 (s, 1 H), 1.20-1.26 (m, 3 H).

The crude yellow oil was taken up in CH₂Cl₂ (100 mL) and the solution was cooled to 0 $^{\circ}\text{C}$ and charged with Et_3N (5.53 g, 54.7 mmol) followed by the dropwise addition of phenylacetyl chloride (7.58 g, 49.0 mmol). The mixture was stirred at 0 °C for 2 h and then at r.t. for 15 h. The mixture was washed with an aq solutions of HCl (1.0 M, 100 mL), NaHCO₃ (saturated, 100 mL), and brine (100 mL). The organic layer was dried (Na₂SO₄) and then the solvent was removed in vacuo to give crude intermediate ethyl 2-[N-(3',4'dimethoxybenzyl)-2"-phenylacetamido]acetate as an impure yellow oil (16.1 g). The last step involved a base-induced cyclization leading to the title tetramic acid.14b,15b The crude oil was taken up in THF (200 mL) and cooled to 0 °C. The resulting mixture was charged with t-BuONa (4.99 g, 52.0 mmol) and the mixture was stirred at 0 °C for 4 h then at r.t. for 2 h. The solvent was then removed in vacuo giving a yellow oil. The crude oil was taken up in enough EtOAc (~80 mL) to dissolve all of the material and aq HCl was added (50 mL). The aqueous layer was separated and further extracted with EtOAc (4×50 mL). The combined organic layers were dried (Na₂SO₄) and then partially concentrated by rotary evaporation until crystallization was observed. Repeated cycles of filtration and concentration gave the title compound 4a as an analytically pure white powder [5.36 g, 28% yield from veratrylamine (3)]; mp 187-189.5 °C. In nine other runs through this sequence where the material was not all taken forward, yields ranging from 31-50% were obtained based on 3.

IR (ATR, neat): 3011, 2836, 2428 (br), 1660, 1587, 1512, 1497, 1455, 1442, 1421, 1382, 1332, 1315, 1299, 1283, 1240, 1215, 1159, 1132, 1021, 973, 959, 887, 856, 805, 781, 763, 743, 734, 695, 672, 657 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 11.66$ (br s, 1 H), 8.01 (d, J = 7.5 Hz, 2 H), 7.33 (dd, J = 7.5, 7.5 Hz, 2 H), 7.16 (t, J = 7.5 Hz, 1 H), 6.91 (d, J = 8.1 Hz, 1 H), 6.86 (d, J = 1.8 Hz, 1 H), 6.75 (dd, J = 1.8, 8.1 Hz, 1 H), 4.47 (s, 2 H), 3.82 (s, 2 H), 3.73 (s, 6 H).

¹³C NMR (75 MHz, DMSO- d_6): $\delta = 171.0$, 167.0, 148.8, 148.0, 132.4, 130.4, 127.7, 126.7, 125.6, 119.8, 111.9, 111.6, 102.9, 55.5, 55.4, 48.6, 44.3.

Anal. Calcd for $C_{19}H_{19}NO_4$: C, 70.14; H, 5.89; N, 4.31. Found: C, 70.03; H, 5.88; N, 4.29.

1-(3',4'-Dimethoxybenzyl)-3-phenyl-4-trifluoromethanesulfonyl-1*H*-pyrrol-2(5*H*)-one (4b)

To a stirred solution of tetramic acid **4a** (3.16 g, 9.73 mmol) and Et₃N (1.31 g, 12.9 mmol) in CH₂Cl₂ (20 mL) at -15 °C was added neat trifluoromethanesulfonic anhydride dropwise via syringe. The mixture was stirred at -15 °C for 1 h and then poured into an aq solution of HCl (1.0 M, 50 mL), and H₂O (50 mL) was added. The aqueous layer was separated and extracted with CH₂Cl₂ (3 × 35 mL). The combined organic layers were washed with aq NaHCO₃ (1% w/v, 100 mL), brine (100 mL), and dried (Na₂SO₄). Removal of the solvent in vacuo gave a crude orange-brown oil. Trituration with PE (10 mL) gave the desired product **4b** as a tan powder (4.20 g, 95%); mp 85–86.5 °C; R_f = 0.20 (EtOAc–PE, 1:4).

IR (ATR, neat): 3007, 2909, 2837, 1694, 1593, 1516, 1498, 1449, 1420, 1334, 1314, 1252, 1239, 1222, 1192, 1168, 1131, 1103, 1027, 985, 959, 941, 918, 900, 842, 804, 782, 762, 753, 701, 663 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.72–7.76 (m, 2 H), 7.36–7.47 (m, 3 H), 6.82 (s, 1 H), 6.79–6.82 (m, 2 H), 4.63 (s, 2 H), 4.12 (s, 2 H), 3.86 (s, 3 H), 3.85 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 167.1, 153.2, 149.7, 149.2, 129.9, 129.0, 128.8, 127.3, 124.1, 120.9 (2C), 118.5 (q, *J* = 319 Hz), 111.55, 111.48, 56.3, 56.2, 48.7, 46.3.

Anal. Calcd for $C_{20}H_{18}F_3NO_6S$: C, 52.51; H, 3.97; N, 3.06; S, 7.01. Found: C, 52.37; H, 3.93; N, 3.05; S, 6.86.

Suzuki Cross-Coupling Reaction Leading to 3,4-Diaryl-3-pyrrolin-2-ones 6; General Procedure A

To a stirred solution of triflate **4b** (0.328 mmol) and an arylboronic acid **5** (0.492 mmol) in THF (15 mL) at r.t., was added Pd(PPh₃)₄ (0.0164 mmol) followed by an aq solution of Na₂CO₃ (0.076 g, 0.72 mmol, 2 mL of H₂O). The mixture was stirred at r.t. for 40 min and then heated to reflux for 1–6 h until TLC showed complete conversion of the starting material **4b**. The mixture was filtered through a short plug of Celite with the aid of CH₂Cl₂ and the bulk of the solvent was removed in vacuo. The crude material was taken up in CH₂Cl₂ (30 mL) and washed with H₂O (30 mL). The aqueous layer was back-extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were washed with brine (100 mL) and dried (Na₂SO₄). Removal of the solvent gave a crude solid. The desired products **6** were obtained after purification by flash chromatography [gradient: EtOAc–PE, 1:4 to 1:2).

1-(3',4'-Dimethoxybenzyl)-4-(4''-methoxyphenyl)-3-phenyl-1*H*-pyrrol-2(5*H*)-one (6a)

The title product **6a** was obtained utilizing general procedure A; yield: 95%; yellow solid; mp 163–164.5 °C; $R_f = 0.36$ (EtOAc–PE, 1:1).

IR (ATR, neat): 2961, 2915, 1676, 1635, 1604, 1590, 1573, 1510, 1471, 1452, 1422, 1393, 1364, 1312, 1299, 1250, 1231, 1194, 1175, 1142, 1106, 1042, 1016, 950, 936, 919, 845, 828, 809, 789, 765, 754, 741, 730, 714, 701, 669, 655 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.39-7.44$ (m, 2 H), 7.28–7.37 (m, 3 H), 7.16 (d, J = 6.9 Hz, 2 H), 6.87 (s, 1 H), 6.81–6.90 (m, 2 H), 6.73 (d, J = 6.9 Hz, 2 H), 4.67 (s, 2 H), 4.13 (s, 2 H), 3.86 (s, 6 H), 3.75 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 171.2, 160.5, 149.5, 148.8, 147.5, 132.7, 131.0, 130.3, 129.8, 129.2, 128.7, 128.2, 125.7, 120.9, 114.2, 111.8, 111.3, 56.3, 56.2, 55.5, 52.1, 46.5.

Anal. Calcd for $C_{26}H_{25}NO_4$: C, 75.16; H, 6.06; N, 3.37. Found: C, 74.91; H, 6.04; N, 3.33.

1-(3',4'-Dimethoxybenzyl)-3,4-diphenyl-1*H*-pyrrol-2(5*H*)-one (6b)

The title product **6b** was obtained utilizing general procedure A; yield: 91%; yellow solid; mp 55–58 °C; R_t = 0.39 (EtOAc–PE, 1:1).

IR (ATR, neat): 2932, 1674, 1591, 1512, 1446, 1403, 1359, 1258, 1232, 1138, 1072, 1025, 959, 916, 845, 810, 786, 763, 694, 672 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.44 (m, 2 H), 7.28–7.36 (m, 3 H), 7.20–7.26 (m, 5 H), 6.80–6.90 (m, 3 H), 4.68 (s, 2 H), 4.16 (s, 2 H), 3.86 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 170.9, 149.6, 148.9, 147.9, 133.4, 132.6, 132.2, 130.2, 129.8, 129.4, 128.9, 128.7, 128.4, 127.8, 121.0, 111.8, 111.4, 56.3, 56.2, 52.2, 46.6.

1-(3',4'-Dimethoxybenzyl)-4-(4''-fluorophenyl)-3-phenyl-1*H*-pyrrol-2(5*H*)-one (6c)

The title product **6c** was obtained utilizing general procedure A; yield: 90%; white solid; mp 145–147 °C; $R_f = 0.43$ (EtOAc–PE, 1:1).

IR (ATR, neat): 3062, 2921, 1673, 1603, 1509, 1456, 1418, 1402, 1363, 1283, 1265, 1236, 1215, 1180, 1152, 1123, 1097, 1074, 1033, 1003, 966, 928, 866, 841, 827, 798, 787, 766, 748, 717, 701, 676, 654 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.30–7.41 (m, 5 H), 7.16–7.22 (m, 2 H), 6.81–6.95 (m, 5 H), 4.67 (s, 2 H), 4.13 (s, 2 H), 3.86 (s, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ = 170.8, 163.2 (d, J = 250 Hz), 149.6, 148.9, 146.7, 132.6, 132.1, 130.1, 129.79, 129.77 (d, J = 8 Hz), 129.5 (d, *J* = 3 Hz), 128.8, 128.5, 121.0, 116.0 (d, *J* = 21 Hz), 111.9, 111.4, 56.3, 56.2, 52.2, 46.6.

Anal. Calcd for $C_{25}H_{22}FNO_3$: C, 74.43; H, 5.50; N, 3.47. Found: C, 74.39; H, 5.49; N, 3.46.

1-(3',4'-Dimethoxybenzyl)-4-(furan-2''-yl)-3-phenyl-1*H*-pyrrol-2(5*H*)-one (6d)

The title product **6d** was obtained utilizing general procedure A; yield: 80%; yellow solid; mp 101–104 °C; $R_f = 0.41$ (EtOAc–PE, 1:1).

IR (ATR, neat): 3107, 2933, 2835, 1669, 1592, 1514, 1482, 1451, 1405, 1352, 1307, 1259, 1232, 1136, 1077, 1026, 963, 938, 883, 848, 807, 781, 765, 734, 696, 658 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.32-7.54$ (m, 6 H), 6.80–6.89 (m, 3 H), 6.47 (d, J = 3.5 Hz, 1 H), 6.33 (dd, J = 1.7, 3.5 Hz, 1 H), 4.65 (s, 2 H), 4.21 (s, 2 H), 3.86 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 170.8, 149.6, 148.9, 148.5, 143.6, 137.3, 132.2, 130.1, 129.7, 128.7, 128.6, 120.9, 112.2, 111.7, 111.4, 111.3, 56.3, 56.2, 50.1, 46.6 (missing one aromatic).

¹³C NMR (75 MHz, DMSO- d_6): $\delta = 169.5$, 148.8, 148.1, 147.7, 144.7, 136.9, 132.1, 129.9, 129.5, 128.2, 128.1, 128.0, 120.0, 112.2, 111.9, 111.8, 111.7, 55.5, 55.4, 49.6, 45.3.

1-(3',4'-Dimethoxybenzyl)-4-[4''-(methylthio)phenyl]-3-phenyl-4-1*H*-pyrrol-2(5*H*)-one (6e)

The title product **6e** was obtained utilizing general procedure A; yield: 89%; yellow solid; mp 63–67 °C; $R_f = 0.51$ (EtOAc–PE, 1:1).

IR (ATR, neat): 2921, 1672, 1592, 1513, 1451, 1420, 1400, 1361, 1259, 1232, 1138, 1095, 1025, 959, 817, 785, 766, 744, 697 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.40-7.43$ (m, 2 H), 7.30-7.37 (m, 3 H), 7.13 (AB system, d, J = 8.9 Hz, 2 H), 7.06 (AB system, d, J = 8.9 Hz, 2 H), 6.81-6.90 (m, 3 H), 4.67 (s, 2 H), 4.13 (s, 2 H), 3.862 (s, 3 H), 3.858 (s, 3 H), 2.43 (s, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 171.0, 149.6, 148.9, 147.2, 140.7, 132.4, 132.1, 130.2, 129.8, 129.7, 128.8, 128.4, 128.1, 126.0, 121.0, 111.8, 111.3, 56.3, 56.2, 52.0, 46.6, 15.4.

Anal. Calcd for $C_{26}H_{25}NO_3S$: C, 72.36; H, 5.84; N, 3.25. Found: C, 71.65; H, 5.85; N, 3.20.

Removal of the DMB Protecting Group Leading to 3,4-Diaryl-3-pyrrolin-2-ones 7; General Procedure B

A modification of a literature procedure was utilized.^{14b} A mixture of the DMB-protected 3-pyrrolin-2-one **6** (0.200 mmol) and veratrole (2.00 mmol) was charged with TFA (10 mL). The mixture was stirred for 40 min at r.t. and then heated to reflux for 6–16 h until TLC showed complete conversion of the starting material **6**. The mixture was poured into a sat. aq solution of NaHCO₃ (100 mL). The aqueous solution was extracted with CH_2Cl_2 (2 × 100 mL). The combined organic layers were then washed with brine (100 mL) and dried (Na₂SO₄). Removal of the solvent gave a crude oil. The desired products **7** were obtained after purification by flash chromatography (gradient: EtOAc to MeOH–EtOAc, 1:19). Analytical samples were obtained by trituration with Et₂O.

4-(4'-Methoxyphenyl)-3-phenyl-1H-pyrrol-2(5H)-one (7a)

The title product **7a** was obtained utilizing general procedure B; yield: 84%; white solid; mp 193–196 °C; $R_f = 0.18$ (EtOAc–PE, 4:1).

IR (ATR, neat): 3182, 3056, 1686, 1607, 1515, 1456, 1443, 1366, 1315, 1295, 1252, 1230, 1180, 1122, 1080, 1061, 1035, 972, 892, 833, 789, 750, 708, 674 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): δ = 8.41 (br s, 1 H), 7.29–7.40 (m, 3 H), 7.24–7.28 (m, 4 H), 6.87 (d, J = 9.0 Hz, 2 H), 4.33 (s, 2 H), 3.73 (s, 3 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 172.7, 159.8, 150.0, 132.8, 130.2, 129.4, 129.0, 128.3, 127.6, 125.5, 114.0, 55.2, 47.4.

Anal. Calcd for $C_{17}H_{15}NO_2$: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.69; H, 5.71; N, 5.26.

3,4-Diphenyl-1*H*-pyrrol-2(5*H*)-one (7b)

The known²⁶ title product **7b** was obtained utilizing general procedure B; the product matched a sample (by TLC and NMR) previously prepared in our lab^{10a} utilizing a different method; yield: 72%; yellow solid; mp 180–181 °C (Lit.^{26b} mp 192–193 °C; Lit.^{10a} mp 182–183 °C); $R_f = 0.37$ (EtOAc).

¹H NMR (300 MHz, DMSO-*d*₆): δ = 8.53 (br s, 1 H), 7.25–7.36 (m, 10 H), 4.37 (s, 2 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 172.4, 150.4, 133.3, 132.4, 131.7, 129.3, 129.0, 128.6, 128.2, 127.7, 127.5, 47.5.

4-(4'-Fluorophenyl)-3-phenyl-1*H*-pyrrol-2(5*H*)-one (7c)

The title product **7c** was obtained utilizing general procedure B; yield: 64%; white solid; mp 204–207 °C; $R_f = 0.29$ (EtOAc).

IR (ATR, neat): 3184, 3060, 1682, 1603, 1512, 1493, 1442, 1408, 1363, 1343, 1226, 1162, 1105, 1059, 1015, 974, 945, 892, 837, 808, 788, 745, 715, 701, 675 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): δ = 8.53 (br s, 1 H), 7.15–7.39 (m, 9 H), 4.36 (s, 2 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 172.3, 162.3 (d, J = 246 Hz), 149.4, 132.2, 131.8, 129.83, 129.82 (d, J = 9 Hz), 129.3, 128.3, 127.8, 115.7 (d, J = 22 Hz), 47.5.

Anal. Calcd for $C_{16}H_{12}FNO$: C, 75.88; H, 4.78; N, 5.53. Found: C, 75.57; H, 4.87; N, 5.39.

4-(Furan-2'-yl)-3-phenyl-1H-pyrrol-2(5H)-one (7d)

The title product **7d** was obtained utilizing general procedure B; yield: 30%; white solid; mp 203–205 °C; $R_f = 0.38$ (EtOAc).

IR (ATR, neat): 3174, 3112, 3059, 1680, 1599, 1494, 1482, 1444, 1359, 1230, 1202, 1098, 1021, 980, 931, 884, 786, 769, 760, 742, 698, 672 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 8.42$ (br s, 1 H), 7.75 (d, J = 1.7 Hz, 1 H), 7.36–7.46 (m, 5 H), 6.63 (dd, J = 0.8, 3.5 Hz, 1 H), 6.56 (dd, J = 1.7, 3.5 Hz, 1 H), 4.34 (d, J = 1.2 Hz, 2 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 172.3, 148.0, 144.5, 138.7, 132.2, 129.4, 128.9, 127.9 (2), 112.1, 111.5, 45.3.

Anal. Calcd for $C_{14}H_{11}F_3NO_2$: C, 74.65; H, 4.92; N, 6.22. Found: C, 74.36; H, 4.87; N, 6.15.

4-[4'-(Methylthio)phenyl]-1H-pyrrol-2(5H)-one (7e)

The title product **7e** was obtained utilizing general procedure B; yield: 62%; yellow solid; mp 189–192 °C; $R_f = 0.27$ (4:1 EtOAc–PE).

IR (ATR, neat): 3167, 3056, 2899, 1680, 1594, 1501, 1491, 1446, 1430, 1405, 1366, 1343, 1274, 1225, 1200, 1131, 1098, 1079, 1061, 1032, 975, 890, 814, 783, 767, 743, 714, 697, 667 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): δ = 8.48 (br s, 1 H), 7.16–7.39 (m, 9 H), 4.34 (s, 2 H), 2.45 (s, 3 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 172.5, 149.8, 139.9, 132.5, 131.2, 129.4, 129.3, 128.3, 127.9, 127.7, 125.4, 47.3, 14.1.

Anal. Calcd for $C_{17}H_{15}NOS$: C, 72.57; H, 5.37; N, 4.98. Found: C, 72.30; H, 5.34; N, 4.96.

1-(3',4'-Dimethoxybenzyl)-3-phenyl-4-[4''-(methylsulfonyl)phenyl]-1*H*-pyrrol-2(5*H*)-one (6f)

To a stirred solution of thioether **6e** (0.500 g, 1.16 mmol) in CH₂Cl₂ (17 mL) at 0 °C, was added MCPBA (0.600 g, 3.48 mmol) and the mixture was allowed to warm to r.t. After stirring at r.t. for 2 h, the mixture was washed with H₂O (30 mL) and the aqueous layer was back-extracted with CH₂Cl₂ (2 × 30 mL). The combined organic layers were washed with brine (80 mL) and then dried (Na₂SO₄). Removal of the solvent in vacuo gave a crude solid which was purified by flash chromatography (gradient: EtOAc–PE, 1:4 to 2:1); yield: 81%; yellow solid; mp 64–66 °C; $R_f = 0.42$ (EtOAc–PE, 2:1).

IR (ATR, neat): 2924, 1675, 1593, 1513, 1451, 1400, 1359, 1304, 1281, 1260, 1233, 1146, 1089, 1027, 956, 837, 770, 698, 663 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.80 (AB system, d, *J* = 9.0 Hz, 2 H), 7.39 (AB system, d, *J* = 9.0 Hz, 2 H), 7.33–7.37 (m, 5 H), 6.82–6.90 (m, 3 H), 4.69 (s, 2 H), 4.17 (s, 2 H), 3.864 (s, 3 H), 3.861 (s, 3 H), 3.02 (s, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 170.1, 149.6, 149.0, 145.2, 140.8, 138.9, 135.6, 131.3, 129.74, 129.68, 129.1, 129.0, 128.8, 128.0, 121.0, 111.9, 111.4, 56.3, 56.2, 52.0, 46.7, 44.6.

4-[4'-(Methylsulfonyl)phenyl]-1H-pyrrol-2(5H)-one (7f)

The title product **7f** was obtained utilizing general procedure B; yield: 47%; white powder; mp 197–200 °C; $R_f = 0.27$ (EtOAc–PE, 4:1).

IR (ATR, neat): 3182, 3058, 3011, 2995, 2918, 1677, 1633, 1597, 1492, 1447, 1404, 1363, 1337, 1303, 1285, 1226, 1182, 1147, 1090, 1060, 1022, 961, 918, 890, 834, 790, 770, 737, 715, 694, 664 cm⁻¹.

¹H NMR (300 MHz, DMSO-*d*₆): δ = 8.69 (br s, 1 H), 7.87 (d, *J* = 8.4 Hz, 2 H), 7.56 (d, *J* = 8.4 Hz, 2 H), 7.35–7.38 (m, 3 H), 7.26–7.30 (m, 2 H), 4.41 (s, 2 H), 3.23 (s, 3 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 171.9, 148.8, 140.7, 138.5, 133.9, 131.6, 129.3, 128.5, 128.4, 128.1, 127.2, 47.6, 43.2.

Anal. Calcd for $C_{17}H_{15}NO_3S;\,C,\,65.16;\,H,\,4.82;\,N,\,4.47.$ Found: C, 64.46; H, 4.82; N, 4.29.

Acknowledgment

Financial support of this research provided by the Camille & Henry Dreyfus Foundation, the Research Corporation, the Patchett Foundation, and Hobart and William Smith Colleges is greatly appreciated.

References

- (a) Jacobi, P. A.; Adel Odeh, I. M.; Buddhu, S. C.; Cai, G.; Rajeswari, S.; Fry, D.; Zheng, W.; DeSimone, R. W.; Guo, J.; Coutts, L. D.; Hauck, S. I.; Leung, S. H.; Ghosh, I.; Pippin, D. Synlett 2005, 2861. (b) Chen, Q.; Huggins, M. T.; Lightner, D. A.; Norona, W.; McDonagh, A. F. J. Am. Chem. Soc. 1999, 121, 9253. (c) Falk, H. The Chemistry of Linear Oligopyrroles and Bile Pigments; Spinger-Verlag: Vienna, 1989.
- (2) (a) Sánchez, C.; Méndez, C.; Salas, J. A. *Nat. Prod. Rep.* **2006**, *23*, 1007. (b) Santos, M. M. M.; Lobo, A. M.;
 Prabhakar, S.; Marques, M. M. B. *Tetahedron Lett.* **2004**, *45*, 2347. (c) Eils, S.; Winterfeldt, E. *Synthesis* **1998**, 275.
- (3) Borbone, N.; De Marino, S.; Iorizzi, M.; Zollo, F.; Debitus, C.; Esposito, G.; Iuvone, T. J. Nat. Prod. 2002, 65, 1206.
- (4) (a) Haase, C.; Langer, P. Synlett 2005, 453. (b) Cardellina,
 J. H. II; Moore, R. E. Tetrahedron Lett. 1979, 20, 2007.
- (5) Shiraki, R.; Sumino, A.; Tadano, K.-i.; Ogawa, S. J. Org. Chem. 1996, 61, 2845.
- (6) Alvi, K. A.; Casey, A.; Nair, B. G. J. Antibiot. 1998, 51, 515.

- (7) (a) Chen, X.-H.; Bai, J.-Y.; Shen, F.; Bai, A.-P.; Guo, Z.-R.; Cheng, G.-F. *Acta Pharmacol. Sin.* **2004**, *25*, 927. (b) Shen, F.; Bai, A.-P.; Guo, Z.-R.; Cheng, G.-F. *Acta Pharmacol. Sin.* **2002**, *23*, 762. (c) Bai, A.-P.; Guo, Z.-R.; Hu, W. H.; Shen, F.; Cheng, G.-F. *Chin. Chem. Lett.* **2001**, *12*, 775.
- (8) (a) Pattabiraman, V. R.; Padakanti, S.; Veeramaneni, V. R.; Pal, M.; Yeleswarapu, K. R. *Synlett* **2002**, 947. (b) Bosch, J. R.; Catena, J.; Lllorens, O.; Perez, J.; Lagunas, C.; Fernandez, A. G.; Miguel, I.; Fernandez-Serrat, A.; Ferrerons, C. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1745.
- (9) (a) Thérien, M.; Gauthier, J. Y.; Leblanc, Y.; Léger, S.; Perrier, H.; Prasit, P.; Wang, Z. Synthesis 2001, 1778.
 (b) Prasit, P.; Wang, Z.; Brideau, C.; Chan, C.-C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Léger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Thérien, M.; Vickers, P.; Wong, E.; Xu, L.-J.; Young, R. N.; Zamboni, R. *Bioorg. Med. Chem. Lett.* 1999, *9*, 1773.
- (10) (a) Coffin, A. R.; Roussell, M. A.; Tserlin, E.; Pelkey, E. T. *J. Org. Chem.* **2006**, *71*, 6678. (b) Yoon-Miller, S. J. P.; Opalka, S. M.; Pelkey, E. T. *Tetrahedron Lett.* **2007**, *48*, 827.
- (11) Neel, D. A.; Jirousek, M. R.; McDonald, J. H. III *Bioorg. Med. Chem. Lett.* **1998**, 8, 47.
- (12) (a) Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z. J. Org. Chem. 2003, 68, 670. (b) Yao, M.-L.; Deng, M.-Z. J. Org. Chem. 2000, 65, 5034. (c) Grigg, R.; Savic, V.; Thornton-Pett, M. Tetrahedron 1997, 53, 10633.
- (13) Beletskaya, I. P.; Ganina, O. G.; Tsvetkov, A. V.; Yu, A.; Federov, A. Y.; Finet, J.-P. *Synlett* **2004**, 2797.
- (14) (a) Wood, J. L.; Petsch, D. T.; Stoltz, B. M.; Hawkins, E. M.; Elbaum, D.; Stover, D. R. *Synthesis* **1999**, 1529. (b) Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J.; Pflum, D. A.; Petsch, D. J. *J. Am. Chem. Soc.* **1997**, *119*, 9641.

- (15) (a) Evans, K. A.; Chai, D.; Graybill, T. L.; Burton, G.; Sarisky, R. T.; Lin-Goerke, J.; Johnston, V. K.; Rivero, R. A. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2205. (b) King, J. A.; McMillan, F. H. J. Am. Chem. Soc. **1950**, *72*, 1236.
- (16) Steinhuebel, D.; Baxter, J. M.; Palucki, M.; Davies, I. W. J. Org. Chem. 2005, 70, 10124.
- (17) Lee, C.-W.; Chung, Y. J. Tetrahedron Lett. 2000, 41, 3423.
- (18) Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z. J. Org. Chem. 2003, 68, 670.
- (19) Heinze-Krauss, I.; Angehrn, P.; Charnas, R. L.; Gubernator, K.; Gutknecht, E.-M.; Hubschwerlen, C.; Kania, M.; Oefner, C.; Page, M. G. P.; Sogabe, S.; Specklin, J.-L.; Winkler, F. *J. Med. Chem.* **1998**, *41*, 3961.
- (20) (a) Reddy, L. R.; Corey, E. J. *Tetrahedron Lett.* 2005, *46*, 927. (b) Link, J. T.; Danishefsky, S. J. *Tetrahedron Lett.* 1994, *35*, 9135.
- (21) Verniest, G.; Boterberg, S.; Bombeke, F.; Stevens, C. V.; De Kimpe, N. Synlett 2004, 1059.
- (22) Fürstner, A.; Grabowski, J.; Lehmann, C. W. J. Org. Chem. 1999, 64, 8275.
- (23) Banwell, M. G.; Goodwin, T. E.; Ng, S.; Smith, J. A.; Wong, D. J. Eur. J. Org. Chem. 2006, 3043.
- (24) Handy, S. T.; Zhang, Y. Org. Prep. Proced. Int. 2005, 37, 411.
- (25) Kruijtzer, J. A. W.; Hofmeyer, L. V. G.; Heerma, W.; Versluis, C.; Liskamp, R. M. J. *Chem. Eur. J.* **1998**, 1570.
- (26) (a) Babu, P. R.; Balasubramanian, T. R. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1987, 26, 63.
 (b) Yakushijin, K.; Kozuka, M.; Furukawa, H. Chem. Pharm. Bull. 1980, 28, 2178. (c) Ito, K.; Yakushijin, K. Heterocycles 1978, 9, 1603. (d) Rio, G.; Bernard, S. Bull. Soc. Chim. Fr. 1976, 1491.