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Pd-Catalyzed Reductive Heck Reaction of Olefins with Aryl 

Bromides for Csp2-Csp3 Bond Formation 

Liqun Jin, *a,b Jiaxia Qian,a  Nan Sun,a Baoxiang Hu,a Zhenlu Shen,a and Xinquan Hu *a,b 

We developed a Pd-catalyzed intermolecular reductive Heck 

reaction to construct Csp2-Csp3 bonds between aryl bromides and 

olefins. Various styrene derivatives, acyclic and cyclic alkenes, were 

well tolerated to couple with varied aryl bromides in linear 

selectivity. Kinetic and deuterium labeling experiments suggested 

that i-PrOH provide a hydride through E-H elimination. 

Pd-catalyzed Heck reactions are one of the most efficient and 

powerful tools for construction of structurally sophisticated 

alkenes, which have been widely applied in modern organic 

synthesis.1 Such transformations generally involve coupling of 

olefins, the alkenyl source, with aryl or vinyl electrophiles. 

Mechanistically, the syn migratory insertion of olefin into Ar-Pd 

bond and the subsequent E�H elimination are considered to be 

the key elementary steps in the whole catalytic cycle.2 It is, 

however, inescapable that the migratory insertion delivers a V-

Pd-alkyl intermediate. The interception of the V-Pd-alkyl 

species as the dominant quenching step leads to a Csp3-

centered compound but this transformation remains 

challenging.3 In addition, directly utilizing olefins, which are 

extensive, stable, inexpensive and of great diversity, as the Csp3 

synthons is more synthetically practical and attractive, 

compared to conventional alkylmetallic reagents or alkyl 

halides.4 

Reductive Heck (rH) reactions, initially disclosed by Cacchi 

and coworkers, referred to the conjugate addition of Ar-Pd-X to 

olefins and then reductive cleavage to deliver the desired aryl-

alkyl product.5 Although these reactions have achieved 

delightful progress, some limitations and challenges still exist.6 

First, rH-type cyclizations in an intramolecular fashion to 

construct Csp3 related cyclic molecules dominate in this area.7 

In sharp contrast, the intermolecular rH reactions remain much 

less studied, except for the one utilizing special cyclic and 

strained olefins as ideal substrates,8 such as norbornene 

derivatives.9 Second, olefins with electron withdrawing groups, 

such as the most commonly used conjugated enones,10 were 

employed to react with Ar-Pd-X species generated in situ from 

reaction mixtures. Third, in view of the regioselectivity, 1,2-

insertion or 2,1-insertion leading to the linear or branch desired 

product, respectively, is also problematic while employing 

inactivated olefins.11 Thus, it is of great importance to develop 

a new catalytic system that exhibits wider tolerance for simple 

olefins in a regioselective manner. In addition, the commonly 

used reductants are formates/bases combination performing as 

the hydride donor. V��Ç� ����v�oÇU� E�l�}[�� �v�� �µ�ZÁ�o�[��

groups independently employed a Pd/Cu/Si-H synergistic 

catalysis in these rH transformations, in which branch rH 

products were obtained when vinylarenes were utilized,12 while 

a Ni/silane system was reported by Liu13 and Zhu14. Moreover, 

Zhu and coworkers found a Pd/H2O system for enantioselective 

rH reactions.15 Nevertheless, simple reductive systems are still 

worthy to develop. 

In the present work, we report a Pd-catalyzed rH reaction of 

olefins with aryl bromides in an intermolecular fashion. This 

reaction provides an efficient strategy for construction of Csp2-

Csp3 bonds with linear selectivity. The bidentate geometry-

constrained iminopyridyl (CImPy) ligand plays an important role 

in stabilization of the catalytically active palladium center. 

Scheme 1. Pd-catalyzed coupling of 4-methylstyrene with 

bromobenzene in alcohols. 
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Entry Olefin Product 
Yield 

(%)b 

1  

 

58% 

(3:1) 

2 
 

 

59% 

(6:1) 

3  

 

51% 

(6:1) 

4 
  32%c 

5 
  

72%d 

6 
 

 

67% 

(17:1) 

7 
cyclopentane 

1r  
48% 

8 cyclohexene 1s 
 

16% 

9 Cyclooctene 1t 
 

<5% 

a Reaction conditions: [PdCImPy*] (2 mol%), olefin (1 mmol), 2b 

(1.5 mmol), KOH (2.5 mmol), 75 oC, 12 h. i-PrOH (7.0 mL). b 

Isolate yields of 3 and ï[ were obtained. The ratios of 3 and ï[ in 

parentheses were determined by 1H NMR after column 

chromatography. c KOH (3.5 mmol). d NMR yield was obtained 

using 1,2-dibromoethane as the internal standard. 

 
For the potential mechanism of this Pd-catalyzed rH reaction, 

three possible pathways were proposed (Scheme 2). Alkene 

insertion to Ar-Pd-X species produces the key intermediate I, 

which is prone to release H-Pd-X species. Subsequently, the 

normal Heck product is obtained through the facile E-H 

elimination step. If the resulted Heck product is reduced under 

the Pd/i-PrOH conditions, the targeted saturated rH product will 

be generated (Scheme 2, Path a).10e, 21 The second possible 

route involves that the intermediate I undergoes direct 

protonolysis in the presence of i-PrOH to give the desired 

product (Scheme 2, Path b).22 The third possibility involves that 

the alcoholysis of the intermediate I under strongly basic 

environment followed by E-H elimination results in the 

formation of Csp3-Pd-H species III, which will finally undergo 

reductive elimination to produce the reductive hydroarylation 

product (Scheme 2, Path c).23 To evaluate the above mentioned 

three possible pathways, further experiments were carried out.  

The Heck product was always observed either changing olefin 

and aryl bromide or modification of the reaction conditions, 

Path a seems like the most possible pathway. Under the 

standard conditions, the reaction of 1a with 2a (eq 1) was 

carefully investigated. As shown in Figure 1 (A), the normal Heck 

product 4a was accumulated in a small amount accompanied by 

the formation of the rH product 3aa. Meanwhile, the reduction 

of 4a under the same conditions with eq 1 was also performed. 

The experimental results showed only trace amount of 3aa 

formed. These observations strongly supported to rule out the 

possibility of Path a.  

 
Scheme 2. Possible pathways of the Pd-catalyzed rH reactions. 
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Figure 1 . Mechanism experiments. (A) Kinetic profiles of eq (1) 

and eq (2). (B) Deuterium labeling experiment. 

Moreover, a deuterium labeling experiment applying 1a and 

2i in (CD3)2CDOD was carried out, providing 3ai-d in 63% yield 

with 98% deuterium incorporation. In contrast, no reaction 

occurred when t-BuOH was used as the solvent. Furthermore, 

when the reaction was performed in (CH3)2CHOD, 3ai without 

deuterium incorporation was obtained in 67% yield (Figure 1, B). 

These results exclude the possibility that the solvent serves as 

proton source (Path b). Therefore, Path c is the most plausible 

pathway for this reaction, in which i-PrOH is a reductant serving 

as a hydride donor through the E-H elimination process. It is 

noteworthy that slightly higher temperature (90 oC) and 

extended reaction time (18 h) were needed for the deuterium 

labeling experiment, revealing that the alcoholysis by alcohol or 

the following E-H elimination is likely the rate-limiting step in 

the catalytic cycle. 

In conclusion, we have developed an efficient protocol to 

construct Csp2-Csp3 bonds through a Pd-catalyzed 

intermolecular reductive Heck reaction, in which inactivated 

olefins and aryl bromides are reductive coupled using i-PrOH as 

the reductant. The geometry-constrained iminopyridyl ligand 
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plays an important role in stabilization of the catalytically active 

Pd centers. Various substituents on styrene derivatives exhibit 

good tolerance to react with varied aryl bromides with excellent 

linear selectivity. Aliphatic olefins are also suitable partners 

while giving the mixtures of linear and branched isomers. 

Mechanistic studies suggest that i-PrOH is the reductant 

providing a hydride through E-H elimination. Further 

investigations via modifying ligands for improving this strategy 

are ongoing in our group. 
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