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Abstract: A series of novel, potent and selective pyrido[1,2-a]pyrazine dopamine D 4 receptor antagonists are 
reported including CP-293,019 (D 4 K i = 3.4 nM, D 2 K i > 3,310 nM), which also inhibits apomorphine-induced 
hyperlocomotion in rats after oral dosing. © 1998 Elsevier Science Ltd. All rights reserved. 

The discovery of the dopamine D 4 receptor subtype in 1991 and the higher affinity of the atypical 

antipsychotic clozapine for D 4 relative to D 2 sparked a flurry of interest in developing a new class of 

antipsychotic agents. 1-4 Using structural elements common to known neuroleptics, a subset of 4,500 

compounds was culled from a much larger compound library, and screening this subset for D 2 and D 4 receptor 

binding uncovered several distinct yet related series with potency and selectivity for the D 4 receptor. The lead 

compound in one family, 3a ((+)-CP-88,703), had been prepared several years earlier as a buspirone-haloperidol 

hybrid, and was an attractive lead structure for the D 4 receptor antagonist program with D 4 K i = 4.1 nM and D 2 

K i = 66 nM. Although 3a had minimal D 4 selectivity, the conformationally rigid pyrido[1,2-a]pyrazine 

template offered unique possibilities for manipulating the receptor binding profile through stereocontrol and 

substituent manipulation. Building on previous experience with the synthesis, pharmacology, and 

pharmacokinetics of  3a-related compounds led to 10j (CP-293,019) as a potential new therapy for the treatment 

of schizophrenia. 
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Scheme 1. Refs 5 and 6. (a) 2-Cl-pyrimidine, Na2CO3, water, reflux or 2-Br-pyridine, Na2CO3, i-amyl 
alcohol, reflux; (b) (-)-tartaric acid, MeOH; (c) ArlOH, Ph3P, DEAD, THF; (d) Boc20, CH2C12; (e) i. 
SO3/pyr, ii. Na2CO3, MeOH, iii. NaBH 4, MeOH; (f) HC1, CHC13. 

Target compounds c/s-3 and trans-lO are all prepared from racemic intermediate diamine (_)-1, which is 

in turn derived from pyridine 2,5-dicarboxylic acid in five steps. 5 N-Arylation with 2-chloropyrimidine gives 

racemic 2a, which is resolved with (-)-tartaric acid to (7S,9aS)-2a in 99% ee (Scheme 1). Mitsunobu coupling 

with phenols (Ar1-OH) then gives target compounds 3. Because the racemic trans isomer of 2 can not be 

efficiently resolved, cis-N-Boc derivative 4 is resolved instead followed by inversion of C7 oxidation to the 

aldehyde, equilibration to the thermodyamically favored trans isomer, and reduction to optically active trans-N- 

Boc-5 in 27% overall yield. Though somewhat inelegant in derivation, the versatile key intermediate (7R,9aS)-5 

commands a pivotal position in the synthetic development of this series. 6 That is, deprotection of 5 and N- 

arylation allows for easy Ar ! analoging, again using standard Mitsunobu conditions, or conversely, initial O- 

arylation of 5 followed by deprotection to 9 enables flexible analoging at N-Ar 2. N-Pyrimidyl and N-pyridyl 

analogs are available by heating the appropriate aryl halide with base, N-phenyl analogs require a three-step 

process of nucleophilic aromatic substitution with 2- or 4-fluoro-nitrobenzene, reduction to the aniline and diazo 

de-amination with amyl nitrite. During the course of this work, direct nickel-catalyzed N-arylation methods 

became available which condensed preparation of N-phenyl analogs into a single step. 7 Thus, the two-pronged 

synthetic sequence from 5 facilitates rapid construction of an Arl /Ar  2 structure-activity matrix. 

Comparing binding affinities for the unsubstituted racemic cis and trans compounds 3a and 10a indicates 

that both isomers maintain equally high affinity for D 4, but trans-lOa is significantly weaker at D 2 resulting in 

greater selectivity (D2/D 4 = 49, Table 1). Similarly, the resolved isomer trans-lOb with 9aS absolute 
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configuration has superior selectivity relative to cis-3b except that 10b has an unexpectedly high D 2 K i = 1,140 

nM resulting in a dramatic improvement in selectivity (D2/D 4 = 326). In fact, trans-(7R,9aS) configuration is the 

key factor inducing D 4 potency and selectivity in this series. 

Probing phenyl ether SAR with a range of para-PhO substituents proved quite narrow in scope. For 

example, 4-F analog 10e is equivalent to the parent 10b, but nearly all other analogs have higher D 4 K i or lower 

selectivity or both (Table 1). Compounds 10d-g are a representative sample exhibiting no discernible trend based 

on lipophilic, electronic, or H-bonding properties, suggesting a restrictive steric constraint at the 4-X-(C6H4)-O 

position of the D 4 receptor pharmacophore allowing for only very small groups such as H and F. Intermediate 7, 

lacking the phenyl ether, is inactive at D 2 and D 4 receptors. As for the N-aryl substituent, the parent 2- 

pyrimidyl 10b, 2-pyridyl 10h and phenyl 10i all have high D 4 affinity, but there is a consistent downward trend 

in D 2 K i and a corresponding erosion in D2/D 4 selectivity for this trio. Thus, this phase of SAR investigation 

shows that the original phenyl ether and 2-pyrimidyl appendages are nearly optimum, and identifies the 

superior D2/D 4 selectivity of  the 7R,9aS configuration. 

As for metabolic stability, the 2-pyrimidyl-piperazine of 

buspirone is metabolized into the 5-hydroxy-pyrimidine in vivo 

(Figure 1), 8 and blocking this metabolic pathway with 5-F- 

pyrimidyl improves the in vivo performance of BMY 14802 

relative to its unsubstituted counterpart.9,10 Similarly, 5-F- 

pyrimidyl also improves the in vitro metabolic stability of D 4 

antagonists: the unsubstituted 10b and mono-fluoro 10c are rapidly 

metabolized in human liver microsomes (Yl/2 = 3 min and 3.6 min, 

Figure 1. 
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respectively) whereas di-fluoro 10j has in vitro half-life of 12.2 min. Furthermore, 10j displays very good in 

vivo pharmacokinetics: mean plasma TI/2 = 4.5 h, mean Cmax = 0.73 ktg/mL at about 1 h, and 93% mean 

absolute bioavailability after oral dosing in rat (10 mg/kg in water, N = 4). 

The N-(5-F-pyrimidyl) substituent not only improves metabolic stability, but it also decreases D 2 

affinity while maintaining D 4 potency (compare D 2 Ki for 10c and 10j). In fact, decreasing D 2 affinity and 

improving D2/D 4 selectivity by N-aryl halogenation is a trend that applies to all three N-aryl groups: compare 

D 2 Ki's for pyrimidines 10b and 10j, pyridines 10h and 10k, and phenyls 10i to 101. In other words, the high 

D 4 potency and selectivity arising from the trans-7R,9aS configuration is enhanced by 2-pyrimidyl and para-F 

as independent variables. The additive combination of these features in 10j (CP-293,019) produces high D 4 

potency, lO00-fold D2/D4 selectivity (D 2 K i > 3,310 nM, D 4 K i = 3.4 nM), and functional antagonist activity 

in D 4 receptor-transfected CHO cells in vitro (K i = 2.4 nM vs. agonist quinpirole when measuring inhibition of 
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Table 1. In vitro dopamine receptor binding. 

~'%-~" O ~ a  S ~'~'i"" 0 / " " ~ , ~  aS 

( , v  NAr 2 k ,~  NAr 2 

Compound R Ar 2 7,9a- D 2 K i D 4 K i D2/D 4 
Stereo (nM) a (nM) b 

3 a (CP-88,703) H N, , ,~  (+)-cis 66 

10 a H " (+)-trans 185 
3 b  H " S,S 38 
10 b H " R,S 1,140 

4.1 16 

3.8 49 
1.7 22 
3.5 326 

10 ¢ F " R,S 1,196 2.8 427 
10d OMe " R,S 918 18 51 
10 e t-Bu " R,S 1,720 20 86 
10 f CO2Me " R,S 254 127 2 
10 ~ NHAc " R,S 948 316 3 

10h H ~ R,S 187 1.7 110 

10 i H x ~  R,S 44 1.6 28 

10 j (CP-293,019) F N/..~'-. F R,S > 3,310 3.4 > 1,000 

10 k F ~"~" cl R,S 1,880 3.2 588 

10 I F " ~  F R,S 206 5.3 39 

10 m F N ~  F S,R 195 106 1.8 

3e  F " S,S 68 2.0 34 
3 d F " R,R 980 39 26 

L-745,870 11 
PNU-101,387 12 

clozapine 
haloperidol 

1,210 3.4 356 
1,820 29 63 
155 47 3.3 
0.84 3.3 0.25 

a CHO cells expressing D2S receptor vs. 3H-spiperone. 
b CHO cells expressing D4. 4 receptor vs. 3H-spiperone. 
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forskolin-stimulated adenylate cyclase activity). CP-293,019 is also selective relative to D 3 (K i > 2,000 nM) as 

well as a variety ofadrenergic, histamine, and serotonin receptors (all IC50 > 1,000 nM), and has weak affinity 

for 5HTIA (IC50 = 180 nM) and 5HT2A (IC50 = 500 nM). 

In vivo, 10j inhibits the hyperactivity produced by apomorphine (APO) in habituated rats with IDs0 = 

10 mg/kg sc and 13.3 mg/kg po (vs. 1.78 mg/kg APO sc), but has no significant effect on spontaneous locomotor 

activity when given alone to nonhabituated rats (IDs0 > 56 mg/kg po, Figure 2). D 2 antagonists such as 

haloperidol also inhibit APO-induced hyperactivity, but display a markedly different profile than D 4 

Figure 2. Inhibition of 
APO-induced locomotion (rat) 
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Dose CP-293,019 (mg/kg po) 
responsive to antipsychotic drugs, yet lacking activity in 

two measures of  EPS. How well this exceptional preclinical profile translates into clinical efficacy is not known, 

but another D 4 antagonist (L-745,870) had no effect on the symptoms of schizophrenia in one clinical trial.17,18 

Be that as it may, the results of  pending clinical trials with other selective D 4 receptor antagonists should help 

clarify the role of  the D 4 receptor in the etiology of  schizophrenia and related disorders. 

antagonists such as 10j. 13 The selective D 4 antagonists L- 

745,870 and PNU-101,387 are inactive at lower doses in 

similar behavioral models of schizophrenia.12,14 Compound 

10j also inhibits APO-induced blockade of prepulse 

inhibition at 17.8 mg/kg sc. 15 Finally, 10j resembles the 

atypical antipsychotic clozapine in that it fails to antagonize 

APO-induced stereotypy and does not produce catalepsy 

(ID50 > 56 mg/kg po), two endpoints that may be predictive 

of extrapyramidal side effects (EPS). 16 

Starting from lead compound CP-88,703 (3a), a 

combination of des!gn, diligence, fortuitous events and 

seemingly small structural changes led to CP-293,019 (10j), 

a potent, selective, D 4 receptor antagonist with excellent 

pharmacokinetic properties and activity in an in vivo model 
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