

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. Kitchin, K. Konstas, M. L. Czyz, P. Valente, C. J. Sumby, M. R. Hill, A. Polyzos and C. J. Doonan, *Chem. Commun.*, 2015, DOI: 10.1039/C5CC05181A.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Published on 03 August 2015. Downloaded by West Virginia University Libraries on 05/08/2015 02:36:02

Continuous Flow Synthesis of a Carbon-Based Molecular Cage

Melanie Kitchin,^{a,c} Kristina Konstas,^a Christopher J. Sumby,^c Milena Czyz,^a Peter Valente,^c Matthew

Macrocycle via a Three-Fold Homocoupling Reaction

R. Hill,*^{a,c} Anastasios Polyzos,*^{a,b} and Christian J. Doonan.*^{a,c}

ROYAL SOCIETY OF CHEMISTRY

Journal Name

Received 00th January 20xx,

Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

COMMUNICATION

ChemComm Accepted Manuscript

The facile synthesis of the cage molecule $(C_{110}H_{56}Br_2)$ via a remarkable three-fold homo-coupling macrocyclization reaction using continuous flow methodology is reported. Synthesis via continuous flow chemistry improves the residence time, safety, and environmental profile of this synthetically challenging reaction. Further, the new cage possesses halogen atoms at its apex that serve to expand the potential reaction space of these, intrinsically porous, all carbon-carbon bonded molecular cage molecules.

Shape-persistent cage molecules are of broad interest due to unique photophysical properties,^{1,2} host-guest their chemistry^{3,4} and remarkable permanent porosity.^{5,6} Such porous molecular solids have recently emerged as attractive materials for application to gas adsorption and separation science,⁷ as whilst they possess comparable porosity⁸ to extended framework materials such as metal-organic frameworks and covalent-organic frameworks, they are also soluble. This solubility facilitates processing and incorporation into extended molecular architectures⁹ such as mixed-media technologies¹⁰ and porous polymers.^{11,12} Importantly though, to fully realise the potential of these materials in emerging applications¹³ efficient synthetic protocols must be developed. We have previously reported the synthesis and characterisation of a novel cage, Cage C1 (R = OMe)¹⁴ (Scheme 1), with a molecular architecture constructed entirely from carbon-carbon bonds. Furthermore, we demonstrated that Cage C1 can be controllably processed into a solid of high surface area. To promote the use of molecular species like Cage C1 as building blocks for novel materials, however, synthetically versatile functional groups need to be incorporated into their structures to enable further elaboration. In this respect, the extensive reactivity of aryl

halides is well documented in the literature.^{15,16,17} In particular, we note the potential for transition metal-catalyzed processes such as the Sonogashira-,^{18,19} Suzuki-,^{20,21} Stille-,^{22,23} Heck-^{24,25} and Ullmann-^{26,27} type coupling reactions. Accordingly, replacement of the terminal methoxy group with a halogen would allow access to reactive halides, thereby increasing the potential utility of Cage **C1** as a molecular building block. We were therefore encouraged to pursue the synthesis of Cage **C2** (Br), a bromo-terminated analogue of Cage **C1**, *via* a three-fold oxidative homocoupling macrocyclization.²⁸

The exploration of chemically robust cage materials is usually limited by low-yielding transformations,²⁹ and in connection with Cages **C1** and **C2**, this synthetic challenge is due to the irreversible nature of C-C covalent bond formation that favours kinetically driven reaction products. Thus, in cases where the desired 3-dimensional macrocycle is ultimately formed by a multifold cross- or homocoupling step, the reactions are performed under high dilution conditions to minimize the production of oligomers and polymeric species.³⁰ As such, in addition to decorating the cage with functional groups, a general synthetic methodology that affords significant quantities of the cage product in a facile manner, and in a workable reaction volume, is highly desirable.

Scheme 1. General scheme for the preparation of molecular cage macrocycles.

J. Name., 2013, 00, 1-3 | 1

^{a.} CSIRO Manufacturing Flagship, Bayview Avenue, Clayton, VIC, 3168, Australia.

^b School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia.

^c Centre for Advanced Nanomaterials and the School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.

Sinversity of Adelaide, Adelaide, SA, 5005,

^{*} Email: christian.doonan@adelaide.edu.au

⁺ Electronic Supplementary Information (ESI) available: Materials and

instrumentation, synthetic procedures, NMR spectra, IR spectra and crystallographic data are reported. This material is available free of charge via the Internet at http://pubs.rcs.org. See DOI: 10.1039/x0xx00000x

DOI: 10.1039/C5CC05181A Journal Name

COMMUNICATION

Continuous flow chemistry was recently demonstrated to be an effective strategy for substantially improving the yield of the final Glaser-Hay coupling step in the formation of carbon-based macrocycles.^{31, 32} Similar benefits were realised for a macrocyclization utilising an azide-acetylene cycloaddition reaction at high temperature, which did not proceed under batch conditions.³³ To our knowledge, however, there have been no reports to date regarding the use of continuous flow chemistry in two- or three-fold homocoupling macrocyclizations. On the basis of the precise control of reagent concentration, mixing *via* static mixing devices and efficient heat and mass transfer achievable in flow microreactors, we contend that continuous flow macrocyclization reactions.^{15,7}

Here we demonstrate the development of a three-fold oxidative homocoupling macrocyclization under both batch and continuous flow conditions for the preparation of a new molecular cage derivative, Cage **C2**. We assert that continuous flow synthesis can be successfully employed as a strategy to dramatically increase the efficiency of multifold carbon-carbon bond coupling reactions and, as a result, greatly expand the field of porous molecular solids.

As a control, Cage **C2** was synthesised under traditional batch synthesis conditions *via* the homocoupling of Half-Cage **HC2**. High dilution conditions and a large excess of copper coupling reagents were required in order to minimise oligomer formation, with the reaction proceeding in a 20% yield. The formation of Cage **C2** was confirmed by ¹H NMR and ¹³C NMR spectroscopy, the latter showing aromatic resonances consistent with the cage molecule appearing in the range 7.15-7.76 ppm, with the alkyne peak of the brominated half cage notably absent at 3.09 ppm. Electrospray ionization mass spectrometry (ESI-MS) revealed a peak for the parent ion at m/z 1537, and a peak isotope pattern that corresponds to an ionized dibromo cage. Promisingly, in terms of further modifications, Cage **C2** was found to be soluble in common organic solvents, such as dichloromethane and chloroform.

The limiting step for the synthesis of Cage **C2** is the final homocoupling reaction of the rigid, alkyne-terminated precursors. Under traditional $Glaser^{34}$ and $Eglinton^{35}$

conditions, the coupling reaction was unsuccessful. Rather, the Breslow modification³⁶ to the Glaser-Eglinton conditions were the only conditions found to lead to any product. The rotational flexibility of the tetraphenylmethane backbone of the half cage (Scheme 1, Half Cage HC2) allows for oligomer formation and therefore, in order to promote the formation of the cage, the reactants must be present at very low concentrations. Additionally, in batch conditions, a large excess of copper(II)/(I) reagents are required to facilitate the coupling reaction thereby maximising the probability of cage formation with respect to oligomers (Fig. 2, Table S1). As a result, performing these reactions on large scales in a laboratory setting represents a significant operational challenge. The rapid and efficient heat and mass transfer offered by the laminar flow of reagents under continuous flow conditions allows for shorter reaction times that, in this reaction, should favour the desired kinetic product.³⁷ With respect to the above dimerization, the continuous flow of reactants would also enable the synthesis of large quantities of product whilst maintaining the high dilution factor of half cage and a large excess of copper species.

Flow synthesis conditions were chosen based on the reaction time and concentration of half cage required for the batch synthesis. However, the molar ratio of copper reagents was significantly reduced, to 32% of Cu(OAc)₂, and 71% of CuCl used in the traditional batch synthesis to ensure solubility. Two separate reagent streams were used, that were combined at a T-mixing piece before entering the first of two 10 mL, 1.0 mm inner diameter (ID) perfluoroalkoxypolymer (PFA) microreactor coils. The first flow stream contained a pre-mixed solution of anhydrous $Cu(OAc)_2$ (21 eq.) and CuCl (32 eq.) in dry pyridine. The second flow stream contained a 1 mmol solution of Half Cage HC2 in dry pyridine. The solutions were continuously pumped through two reaction coils, which were heated to 70 °C. The most successful flow rate was found to be 0.6 mL min⁻¹, equating to a residence time of 33.3 min, and which produced Cage C2 in a yield comparable to batch chemistry (20% batch chemistry vs. 21% flow chemistry). This represents a significant decrease (92.5%) in reaction times when compared with the corresponding batch synthesis. (Fig 2, Table S1). The observed decrease in residence time gave rise to an appreciable increase in the space-time yield (STY) of Cage C2. STY is a concept gaining increasing traction in industrial and process chemistry, and gives a measure of the mass of product per m³ of reaction mixture per day.^{38, 39} For Cage **C2**, the STY achieved under flow conditions amounted to 104.6 g m⁻³ day⁻¹. A limitation of the flow method relative to batch howver, relates to the increased dilution of Half Cage HC2 and copper reagents (c.a. 4-fold solvent increase for Half Cage HC2 and 2-fold for copper.

Published on 03 August 2015. Downloaded by West Virginia University Libraries on 05/08/2015 02:36:02

ChemComm Accepted Manuscript

Figure 2. A comparison of the reaction conditions required for the synthesis of Cage **C2** *via* Flow Chemistry (0.6 mL min⁻¹) vs. Traditional Batch Chemistry. The conditions for traditional batch chemistry have been normalised for clarity.

The increase in solvent-to-reagent ratio was necessary to ensure complete solubilisation of the reagents in pyridine, thereby avoiding potential blocking of the flow apparatus. It is clear however, that the increase in dilution is compensated by the higher throughput and reduced reaction times of the flow method relative to batch. Finally, it should be noted that any unwanted oligomerization products, were removed during the purification process and analysis of the crude ¹HNMR did not reveal the presence of de-halogenated cage products.

Crystals of Cage C2 suitable for X-ray diffraction were grown from diffusion of petroleum spirits into a benzene solution of the cage. Single crystals grown under these conditions, and a variety of others, were very weakly diffracting; even for the best quality crystals obtained, using synchrotron X-ray sources, diffraction data was only obtained to $2\theta = 37.32^{\circ}$. As such only basic structural parameters will be described. Nonetheless, the formation of the bromofunctionalised cage could be readily confirmed. Cage C2 crystallises in the tetragonal space group $I4_1/acd$ with half a cage molecule in the asymmetric unit. As it possesses an identical carbon-bonded backbone, the cage adopts a very similar structure (Fig. 3a) to that encountered for the previously reported, methoxy-derivatised cage C1,¹⁴ with similar bond lengths, angles and internal dimensions to the previously reported entity. Viewed down the axis of the cage the phenyl rings of the tetraphenylmethane head groups are eclipsed with subtle twists of the alkyne arms; interestingly two are twisted in one direction and the third in the opposite direction which attests to the flexibility of the tetraphenylmethane moiety. Cage C2 packs to form an open, potentially porous structure that is filled with disordered solvent. Due to the lack of functional groups, packing interactions are dominated by numerous weak C-H… π and π stacking interactions. Despite the presence of a halogen, no halogen bonding interactions are observed in the crystal packing and the bromine moiety extends into the void of an adjacent cage entity.

Figure 3. a) Space-filling depiction of Cage **C2**, carbon and bromine atoms are pale grey and yellow, respectively. b) A view of the crystal packing of Cage C2, a single cage molecule is highlighted in a space-filling representation. In a) and b) hydrogen atoms have been omitted for clarity.

In summary, we have developed a new process to access the novel porous organic cage compound, Cage C2, through continuous flow technology via a three-fold oxidative homocoupling macrocyclization. A benefit of our approach derives from the inherent scalability of continuous flow synthesis, in which the macrocyclization can be readily scaled in the laboratory without the impracticality associated with scaling macrocyclization reactions via traditional batch techniques. Furthermore, although we have demonstrated a reduction in the use of Cu(OAc)₂ and CuCl reagents relative to batch synthesis, we believe that this will be further reduced to sub-stoichiometric amounts through the use of immobilised copper species. This approach is currently being investigated. As such, we have shown that continuous flow methods offer a realistic, feasible and economic route to the scaling-up of shape-persistent organic cage synthesis. This work demonstrates the potential for using flow chemistry methods to readily and rapidly generate multi-gram quantities of complex molecules that are of interest in contemporary technologies such as polymer chemistry, and microelectronics where materials synthesised via multifold carbon coupling reactions are common. Furthermore, the Br-substituted cage is now a synthetic starting point of efforts to understand the role capping substituents play in the packing of these carbonbonded cage molecules.

Notes and references

§ ACKNOWLEDGMENT

C.J.D. and C.J.S. would like to acknowledge the Australian Research Council for funding (DP120103909 (C.J.D.), FT100100400 (C.J.D.), and FT0991910 (C.J.S.)). A.P would like to acknowledge CSIRO OCE Julius Award for funding. Parts of this work were funded by the Science Industry and Endowment Fund. Aspects of this research were undertaken on the MX1 beamline at the Australian Synchrotron, Victoria, Australia. Dr Campbell Coghlan is thanked for collecting and solving X-ray crystallographic data on Cage **C2**.

 S. Sulaiman, J. Zhang, T. Goodson and R. M. Laine, J. Mater. Chem., 2011, 21, 11177-11187. Published on 03 August 2015. Downloaded by West Virginia University Libraries on 05/08/2015 02:36:02

DOI: 10.1039/C5CC05181A

- 2. J. C. Furgal, J. H. Jung, T. Goodson and R. M. Laine, J. Am. Chem. Soc., 2013, **135**, 12259-12269.
- J. R. Holst, A. Trewin and A. I. Cooper, Nat. Chem., 2010, 2, 915-920.
- M. J. Bojdys, M. E. Briggs, J. T. A. Jones, D. J. Adams, S. Y. Chong, M. Schmidtmann and A. I. Cooper, *J. Am. Chem. Soc.*, 2011, **113**, 16566-16571.
- 5. T. Hassell, S. Y. Chong, K. E. Jelfs, A. J. Adams and A. I. Cooper, *J. Am. Chem. Soc.*, 2012, **134**, 588-598.
- M. W. Schneider, I. M. Oppel and M. Mastalerz, *Chem. Eur. J.*, 2012, **18**, 4156-4160.
- T. Mitra, K. E. Jelfs, M. Schmidtmann, A. Ahmed, A. Y. Chong, D. J. Adams and A. I. Cooper, *Nat. Chem.*, 2013, 5, 276-281.
- G. Zhang, O. Pesty, F. White, I. M. Oppel and M. Mastalerz, Angew. Chem. Int. Ed., 2014, 53, 1516-1520.
- Y. Jin, Q. Wang, P. Taynton and W. Zhang, Acc. Chem. Res., 2014, 47, 1575-1586.
- A. F. Bushell, P. M. Budd, M. P. Attfield, J. T. A. Jones, T. Hassell, A. I. Cooper, P. Bernardo, F. Bazzarelli, G. Clarizia and J. C. Janse, *Angew. Chem. Int. Ed.*, 2013, **52**, 1253-1256.
- J. D. Evans, D. M. Huang, M. R. Hill, C. J. Sumby, A. W. Thornton and C. J. Doonan, J. Phys. Chem. C, 2014, 118, 1523-1529.
- Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble and W. Zhang, *Chem. Sci.*, 2012, **3**, 874-877.
- 13. A. G. Slater and A. I. Cooper, Science, 2015, 348, aaa8075.
- A. Avallaneda, P. Valente, A. Burgun, J. D. Evans, A. W. Markwell-Heys, D. Rankine, D. J. Nielsen, M. R. Hill, C. J. Sumby and C. J. Doonan, *Angew. Chem. Int. Ed.*, 2013, 52, 3746-3749.
- Y. Qiu, Y. Liy, K. Yang, W. Hong, Z. Li, A. Wang, Z. Yao and S. Jiang, Org. Lett., 2011, 13, 3556-3559.
- D. W. Old, J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc., 1998, 120, 9722-9723.
- 17. A. Klappers and S. L. Buchwald, J. Am. Chem. Soc., 2002, **124**, 14844-14845.
- K. Sonogashira, Y. Tohda and N. Hagihara, *Tet. Lett.*, 1975, 16, 4467-4470.
- 19. K. Sonogashira, J. Org. Chem., 2002, 653, 46-49.
- N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun., 1981, 11, 513-519.
- 21. A. Suzuki, J. Org. Chem., 1999, 576, 147-168.
- 22. J. K. Stille, Angew. Chem. Int. Ed., 2003, 25, 508-524.
- 23. P. Espinet and A. M. Echavarren, Angew. Chem. Int. Ed., 2004, **43**, 4704-4734.
- 24. R. F. Heck, J. Am. Chem. Soc., 1968, 90, 5518-5526.
- 25. A. d. Meijere and F. E. Meyer, Angew. Chem. Int. Ed., 1994, **33**, 2379-2411.
- 26. F. Ullmann and J. Bielecki, Chemische Berichte, 1901, 34, 2174-2185.
- 27. P. E. Fanta, Synthesis, 1974, 1, 9-21.
- 28. A. R. Bogdan and K. James, Chem. Eur. J., 2010, 16, 14506-14512.
- G. Zhang and M. Mastalerz, Chem. Soc. Rev., 2014, 43, 1934-1947.
- K. Matsui, Y. Segawa, T. Namikawa, K. Kamada and K. Itami, Chem. Sci., 2013, 4, 84-88.

- T. P. Peterson, A. Polyzos, M. O'Brien, T. Ulven, I. R. Baxendale and S. V. Ley, *Chem. Sus. Chem.*, 2012, 5, 274-277.
- 33. J. Bogdan, Chem. Eur. J., 2010, 16, 14506-14512.
- 34. A. Palmieri, S. Ley, K. Hammond, A. Polyzos and I. R. Baxendale, *Tet. Lett.*, 2009, **50**, 3287-3298.
- 35. A. S. Hay, J. Org. Chem., 1960, 25, 1275-1276.
- D. O'Krongly, A. R. Denmeade, M. Y. Chiang and R. Breslow, J. Am. Chem. Soc., 1985, 107, 5544-5545.
- 37. H. Seyler, S. Haid, T. H. Kwon, D. J. Jones, P. Baurle, A. B. Holmes and W. W. H. Wong, *Aust. J. Chem.*, 2013, **66**, 151-156.
- 38. J. Chen, K. Przyuski, R. Roemmele and R. P. Bakale, Org. Process. Res. Dev., 2011, 15, 1063-1072.
- M. Rubio-Martinez, M. P. batten, A. Polyzos, K. C. Carey, J. I. Mardel, K. S. Lim and M. R. Hill, *Sci. Rep.*, 2014, 4, 5443.

This journal is © The Royal Society of Chemistry 20xx

A. C. Bedard, S. Regnier and S. K. Collins, *Green Chem.*, 2013, 15, 1962-1966.