Original Russian Text Copyright © 2002 by Aronova, Ginak.

BRIEF COMMUNICATIONS

Efficient Synthesis of 3-Acyl-5-arylmethylene-4-oxothiazolidine-2-thiones

E. B. Aronova and A. I. Ginak

St. Petersburg State Technological Institute, St. Petersburg, Russia

Received June 27, 2001

Abstract—An efficient procedure was suggested for preparing 3-acyl-5-arylmethylene-4-oxothiazolidine-2-thiones.

3-Acyl-5-arylmethylene-4-oxothiazolidine-2-thiones are intermediates in synthesis of practically important substances: pesticides, drugs, dyes, vulcanizing agents, antioxidants, etc. [1]. These compounds are prepared in solutions by reactions of appropriate acyl chlorides with 5-arylmethylene-4-oxothiazolidine-2-thiones in the presence of bases [2, 3]. The reactions are accompanied by hydrolysis with ring cleavage, which decreases the yield of the target products by 25-40% and complicates their isolation from reaction mixtures. Synthesis of 3-acyl-5-arylmethylene-4-oxothiazolidine-2-thiones by cyclization from appropriate amides and carbon disulfide [4] is multistage and gives poor yields. Therefore, we suggest in this paper a procedure for preparing 3-acyl-5-arylmethylene-4-oxothiazolidine-2-thiones by direct acylation of solid alkali metal salts of 5-arylmethylene-4-oxothiazolidine-2-thiones with vapors of appropriate acyl chlorides (see table). It is known [5] that nucleophilic substitution reactions

of solid ambident substrates with gaseous electrophiles are selective and are not complicated by degradation

The reaction was performed in a tubular reactor (1 cm in diameter, 10 cm high) equipped with controllable (70–250°C) electric heating. Acyl chloride vapor mixed with an inert gas (nitrogen, argon) was passed through a substrate bed. The reaction progress was monitored by TLC. After reaction completion, excess acyl chloride was removed in a vacuum.

The acylation pathway was judged from the hydrolysis products. Addition of the acyl group to the nitrogen atom in the heterocycle follows from formation of the initial 5-arylmethylene-4-oxothiazolidine-2-thione in hydrolysis, according to the scheme

$$R-C \begin{array}{c} O \\ Cl \end{array} + \begin{array}{c} Na N-C=O \\ S-C \\ C=CHC_6H_4 R \end{array}$$

Yields after recrystallization Y, decomposition points T_{dec} , and elemental analyses of oxothiazolidinethiones Ia-Ij

Compound	Y, %	T _{dec} , °C	Found, %/Calculated, %		Farmula
			N	S	- Formula
Ia	66.2	132–132.5	5.40/5.32	23.24/24.35	$C_{12}H_0NO_2S_2$
Ib	74.5	154–155	4.31/4.35	19.99/19.71	$C_{17}^{12}H_{11}^{11}NO_{2}S_{2}$
Ic	71.1	147-148	3.88/3.94	18.47/18.04	$C_{18}H_{13}NO_3S_2$
Id	72.8	137-138	4.04/4.08	19.48/18.68	$C_{17}H_{10}NO_2S_2F$
Ie	73.6	176–177	4.36/4.13	18.13/18.89	$C_{18}H_{13}NO_2S_2$
If	76.7	155–156	3.83/4.13	18.15/18.89	$C_{18}H_{13}NO_2S_2$
Ig	69.2	184-185	4.16/3.94	18.02/18.04	$C_{18}H_{13}NO_3S_2$
Ih	74.5	211–212	4.05/3.89	16.92/17.82	$C_{16}H_{10}NO_2S_2Cl$
Ii	67.2	219–220	7.97/7.60	17.97/17.40	$C_{19}H_{16}N_2O_2S_2$
Ij	68.1	215–216	7.12/7.56	17.01/17.31	$C_{17}H_{10}N_2O_4S_2$

$$\xrightarrow{-\text{NaCl}} \begin{array}{c} \overset{O}{\underset{N=C-N-C=O}{\overset{}{\text{-N-C=O}}}} \\ \overset{R-C-N-C=O}{\underset{S=C-C=CHC_6H_4R'}{\overset{}{\text{-}}}} \xrightarrow{\overset{H^+}{\underset{H_2O}{\overset{}{\text{-}}}}} R-C \overset{O}{\underset{OH}{\overset{}{\text{-}}}} \\ & \text{Ia-Ij} \\ & \overset{HN-C=O}{\underset{S=C-C=CHC_6H_4R'}{\overset{}{\text{-}}}}, \end{array}$$

where R = Me, R' = H (a); R = Ph, R' = H (b); R = $p\text{-}CH_3OC_6H_4$, R' = H (c); R = $p\text{-}FC_6H_4$, R' = H (d); R = $p\text{-}CH_3C_6H_4$, R' = H (e); R = Ph, R' = $p\text{-}CH_3$ (f); R = Ph, R' = $p\text{-}CH_3O$ (g); R = Ph, R' = p-Cl (h); R = Ph, R' = $p\text{-}N(CH_3)_2$ (i); and R = Ph, R' = $p\text{-}NO_2$ (j).

The structure of hydrolysis products was confirmed by independent synthesis [6] and TLC (Silufol UV-254, acetone–hexane–acetic acid, 1:2:0.01 [7]), and the structure of **Ia–Ij**, by coincidence of their UV and IR spectra with those of the known compounds [8].

REFERENCES

- 1. Brown, T.S., *Chem. Rev.*, 1961, vol. 61, no. 5, pp. 463–521.
- 2. Granacher, C., *Helv. Chim. Acta*, 1920, vol. 3, no. 2, pp. 150–158.
- 3. Sytnik, Z.P., Natanson, S.V., Deichmeister, M.V., and Zhilina, L.D., *Zh. Obshch. Khim.*, 1952, vol. 22, no. 4, pp. 705–711.
- 4. Campbell, N. and McKail, J.E., *J. Chem. Soc.*, 1948, no. 10, pp. 1248–1255.
- 5. Ginak, A.I., V'yunov, K.A., and Ramsh, S.M., *Zh. Org. Khim.*, 1983, vol. 19, no. 1, pp. 209–212.
- 6. Ginak, A.I., V'yunov, K.A., and Sochilin, E.G., *Khim. Geterotsikl. Soedin.*, 1971, no. 3, p. 858.
- 7. Bolliger, H.R., Brenner, M., and Gänshirt, H., *Dünnschicht Chromatographie*. *Ein Laboratoriumshandbuch*, Stahl, E., Ed., Berlin: Springer, 1962.
- 8. V'yunov, K.A., Ginak, A.I., and Sochilin, E.G., *Zh. Prikl. Spektrosk.*, 1972, vol. 16, no. 6, pp. 1037–1042.