MANGANESE(III) ACETATE INITIATED OXIDATIVE FREE RADICAL REACTION BETWEEN BENZOYLINDOLES AND DIMETHYL MALONATE¹

Sheow-Fong Wang and Che-Ping Chuang*

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, 70101, R.O.C.

Abstract - A free radical reaction between benzoylindoles and dimethyl malonate initiated by manganese(III) acetate is described. This free radical reaction provides a new method for the synthesis of indolo[1,2-b]isoquinolines and benzo[b]carbazoles. With meta substituent on benzoyl group, this reaction shows unusual high regioselectivity.

The carbon-centered radical initiated reaction is currently being used in organic synthesis as a valuable method for C-C bond formation.² Electrophilic radicals produced from the manganese(III) acetate oxidation of 1,3-dicarbonyl compounds undergo efficient addition to a C-C double bond.^{3,4} The free radical addition of a carbon radical to aryl and heteroaryl rings has been reported.^{5,6} We report here our results of manganese(III) initiated oxidative free radical reaction between benzoylindoles and dimethyl malonate.

We began our studies with the reaction shown in Scheme 1. 1-Benzoylindoles (2) were prepared from indoles (1) and benzoyl chloride in the presence of triethylamine and dimethylaminopyridine. Thus, treatment of 2a and dimethyl malonate with manganese(III) acetate in glacial acetic acid at 80 °C gave 3a in 83% yield. The generalities of this reaction are shown in Table 1 (Entries a - i). With R_1 =CO₂Me, it gave best results (Entries a, b and c). The results illustrate that this oxidative free radical reaction of indoles

Entry			Product		
		R1	R2	R3	(Yield)
а	2a	CO2Me	н	Н	3a (83%)
b	2 b	CO ₂ Me	OMe	Н	3b (74%)
с	2 c	CO ₂ Me	Ph	Н	3c (81%)
d	2d	CN	Н	Н	3d (59%)
e	2e	CN	Me	н	3e (57%)
f	2 f	CN	OMe	Н	3f (62%)
g	2 g	COMe	Н	Н	3 g(48%)
h	2h	COMe	Me	Н	3h (52%)
i	2 i	COMe	Ph	Н	3i (42%)
j	2j	CN	Н	Me	3j (72%)
k	2 k	CO ₂ Me	Н	Me	3k (80%)
1	21	COMe	Н	Me	3I (57%)
m	2m	CN	Н	Cl	3m (59%)
n	2 n	CO ₂ Me	Н	Cl	3n (82%)
0	20	COMe	Н	Cl	3o (49%)
p	2 p	CN	Н	Br	3p (65%)
q	2 q	CO ₂ Me	Н	Br	3 q(84%)

 Table 1: The Free Radical Reaction between 1-Benzoylindoles (2) and Dimethyl Malonate

(2) proceeds efficiently for the formation of isoquinolines (3).

A possible mechanism for this free radical annulation reaction is shown in Scheme 2. Initiation occurs with the manganese(III) acetate oxidation of dimethyl malonate followed by addition and oxidation to produce

malonate (5a). Malonyl radical (6a) produced by the manganese(III) oxidation of malonate (5a) undergoes intramolecular cyclization and oxidation to give 3a.

With meta substituent on benzoyl group, the regioselectivity of this reaction was also examined. Presumably, two possible products (3) and (8) could be obtained. When 2j was treated with dimethyl malonate and manganese(III) acetate surprisingly only one product 3j was isolated in 72% yield and no trace of 8j could be found. The structure of 3j was determined by the ¹H NMR spectral analysis. The ¹H NMR spectrum clearly shows three signals at δ 7.58 (dd, J=8.2, 1.4 Hz), δ 7.65 (d, J=8.2 Hz) and δ 8.22 (d, J=1.4 Hz) corresponding to the aromatic protons on benzoyl group. Examples are summarized in Table 1 (Entries j - q). In all cases, only one product was obtained. The ¹H NMR spectral data are listed in Table 2. This high regioselectivity can be ascribed to the steric effect between tertiary malonyl radical (9) and substituent R3.

 Table 2: The ¹H NMR Spectral Data of Isoquinolines (3)

Entry		Substr	ate	H ₁	H ₂	Н3
		R1	R3			
а	 3j	CN	Me	7.65(d, J=8.2 Hz)	7.58(dd, J=8.2, 1.4 Hz)	8.22(d, J=1.4 Hz)
b	3k	CO ₂ Me	Me	8.04(d, J=8.2 Hz)	7.45-7.59(m)	8.28(br s)
с	31	COMe	Me	8.14(d, J=8.2 Hz)	7.48-7.56(m)	8.27(br s)
d	3m	CN	Cl	7.70-7.	76(m)	8.37-8.40(m)
e	3 n	CO ₂ Me	Cl	8.13(d, J=8.7 Hz)	7.68(dd, J=8.7, 2.4 Hz)	8.44(d, J=2.4 Hz)
f	30	COMe	Cl	8.22(d, J=8.6 Hz)	7.68(dd, J=8.6, 2.4 Hz)	8.43(d, J=2.4 Hz)
g	3 p	CN	Br	7.64(d, J=8.5 Hz)	7.88(dd, J=8.5, 2.2 Hz)	8.56(d, J=2.2 Hz)
h	3q	CO ₂ Me	Br	8.06(d, J=8.6 Hz)	7.83(dd, J=8.6, 2.3 Hz)	8.60(d, J=2.3 Hz)

We also studied this manganese(III) initiated free radical reaction with 3-benzoylindoles (11). 3-Benzoylindoles (11) were prepared from the Friedel-Crafts reaction of 10 with benzoyl chloride in the presence of aluminum chloride.⁷ The reaction of 11a with dimethyl malonate and manganese(III) acetate under the same condition as the reactions above resulted in the formation of 12a in 43% yield. Other examples of this reaction were shown in Table 3. Lower yields were observed than in the corresponding reactions of 1-benzoylindoles (2). This reaction gave better results with R₁=Ms. This reaction presumably proceeds via similar mechanism shown in Scheme 2. The regioselectivity of this reaction with meta substituted 3-benzoylindoles (11) was also studied. The results are also summarized in Table 3 (Entries i - n). In all cases, only one product was obtained. The NMR spectral for protons on benzoyl group are listed in Table 4.

Table 3: The Free Radical Reaction between 3-Benzoylindoles (11) and Dimethyl Malonate

Entry			Product		
		R1	R2	R3	(Yield)
а	11a	Me	Н	Н	12a (43%)
b	11b	Ms	Н	H	12b(54%)
с	11c	Me	Me	Н	12c(40%)
đ	11d	Ms	Me	Н	1 2d (69%)
e	11e	Me	Cl	Н	12e(27%)
f	11 f	Ms	Cl	Н	12f(36%)
g	11g	Ms	Br	Н	12g (41%)
h	11h	Ms	OMe	Н	12h(52%)
i	11i	Me	Н	Me	12i (54%)
j	11j	Ms	Н	Me	1 2j (56%)
k	11k	Me	Н	Cl	12k(52%)
1	111	Ms	Н	Cl	12I (53%)
m	11m	Me	Н	Br	12m (41%)
n	11n	Ms	Н	Br	1 2 n(72%)

In conclusion, the malonyl radical produced by the manganese(III) acetate oxidation undergoes addition followed by cyclization effectively with benzoylindoles. This oxidative free radical reaction provides a novel method for the synthesis indolo[1,2-b]isoquinolines and benzo[b]carbazoles from readily available

benzoylindoles and dimethyl malonate. With meta substituent on benzoyl group, this reaction shows unusual high regioselectivity.

Table 4: The ¹H NMR Spectral Data for Benzo[*b*]carbazoles (12)

Entry		Subst	rate	H	H ₂	Н3
		R1	R3			
	12i	Me	Me	7.68(d, J=8.1 Hz)	7.37-7.47(m)	8.25(br s)
b	12j	Ms	Me	8.32(d, J=8.3 Hz)	7.49(dm, J=8.3 Hz)	8.20(br s)
c	12k	Me	Cl	7.74(d, J=8.5 Hz)	7.56(dd, J=8.5, 2.4 Hz)	8.40(d, J=2.4 Hz)
d	1 2	Ms	Cl	8.42(d, J=8.7 Hz)	7.64(dd, J=8.7, 2.4 Hz)	8.36(d, J=2.4 Hz)
e	12m	Me	Br	7.67(d, J=8.5 Hz)	7.72(dd, J=8.5, 2.2 Hz)	8.56(d, J=2.2 Hz)
f	12n	Ms	Br	8.34(d, J=8.7 Hz)	7.79(dd, J=8.7, 2.3 Hz)	8.52(d, J=2.3 Hz)

EXPERIMENTAL

Melting points are uncorrected. NMR spectra were recorded on Bruker Ac-200 or Bruker AMX-400 spectrometer. Elemental analyses were performed with a Heraeus CHN-Rapid Analyzer. All reactions were carried out under a nitrogen atmosphere. Analytical thin layer chromatography was performed by precoated silica gel 60 F-254 plates (0.25 mm thick) of EM Laboratories and visualized either by UV or by spraying with 5% phosphomolybdic acid in ethanol following by heating. The reaction mixture was purified by column chromatography over EM Laboratories silica gel (230-400 Mesh).

Typical experimental procedure: A solution of 130 mg (0.47 mmol) of **2a**, 255 mg (1.93 mmol) of dimethyl malonate and 749 mg (2.79 mmol) of manganese(III) acetate dihydrate in 10 mL of glacial acetic acid was heated in an 80 °C oil bath for 24 h. The reaction mixture was diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 25-mL portions of water, dried (Na2SO4) and concentrated in vacuo. The residue was chromatographed over 20 g of silica gel (eluted with dichloromethane-hexane, 3:1) followed by recrystallization (chloroform-hexane) to give 158 mg (83%) of **3a**.

6-Oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11,12-tricarboxylic acid trimethyl ester (3a): mp 248-249 °C; IR (CHCl₃) 3030, 2950, 1780, 1705, 1365, 1330, 1150 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.61 (s, 6H, OCH₃), 3.95 (s, 3H, OCH₃), 7.44-7.54 (m, 2H, ArH), 7.62 (td, J=

7.7, 0.7 Hz, 1H, ArH), 7.73 (td, J= 7.7, 1.3 Hz, 1H, ArH), 8.18 (dd, J= 7.7, 0.7 Hz, 1H, ArH), 8.21-8.26 (m, 1H, ArH), 8.48 (dd, J= 7.7, 1.3 Hz, 1H, ArH), 8.75-8.85 (m, 1H, ArH); ^{13}C NMR (CDCl3, 100.6 MHz) δ 51.4(q), 53.6(q), 57.5(s), 111.4(s), 116.9(d), 121.5(d), 125.2(s), 125.4(d), 125.9(d), 126.8(s), 127.8(d), 129.3(d), 129.5(d), 133.1(s), 134.3(d), 134.6(s), 139.5(s), 159.7(s), 164.7(s), 166.3(s); Anal. Calcd for C22H17NO7: C, 64.86; H, 4.21; N, 3.44. Found: C, 64.89; H, 4.24; N, 3.41.

9-Methoxy-6-oxo-6,11-dihydroindolo[**1,2-***b*]isoquinoline-**11,11,12-tricarboxylic** acid trimethyl ester (**3b**): mp 246-247 °C; IR (CHCl₃) 3030, 2955, 1780, 1700, 1610, 1455, 1365, 1330, 1240 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.61 (s, 6H, OCH₃), 3.94 (s, 6H, OCH₃), 7.11 (dd, J= 8.8, 2.5 Hz, 1H, ArH), 7.43-7.51 (m, 2H, ArH), 7.64 (d, J= 2.5 Hz, 1H, ArH), 8.22 (dm, J= 6.6 Hz, 1H, ArH), 8.40 (d, J= 8.8 Hz, 1H, ArH), 8.81 (dm, J= 7.9 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 100.6 MHz) δ 51.4(q), 53.6(q), 55.9(q), 57.4(s), 110.9(s), 112.1(d), 116.2(d), 116.9(d), 118.0(s), 121.5(d), 125.2(d), 125.8(d), 126.8(s), 131.5(d), 134.6(s), 135.3(s), 139.8(s), 159.6(s), 164.3(s), 164.7(s), 166.3(s); Anal. Calcd for C23H19NO8: C, 63.16; H, 4.38; N, 3.20. Found: C, 63.16; H, 4.36; N, 3.24.

6-Oxo-9-phenyl-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11,12-tricarboxylic acid trimethyl ester (3c): mp 233-234 °C; IR (CHCl₃) 3030, 2955, 1785, 1700, 1610, 1455, 1365, 1330, 1290 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.62 (s, 6H, OCH₃), 3.96 (s, 3H, OCH₃), 7.40-7.53 (m, 5H, ArH), 7.68 (dm, J= 7.7 Hz, 2H, ArH), 7.83 (dm, J= 8.2 Hz, 1H, ArH), 8.25 (dm, J= 6.3 Hz, 1H, ArH), 8.40 (br s, 1H, ArH), 8.52 (dm, J= 8.2 Hz, 1H, ArH), 8.83 (dm, J= 7.6 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 100.6 MHz) δ 51.4(q), 53.6(q), 57.5(s), 111.3(s), 116.9(d), 121.5(d), 123.8(s), 125.4(d), 125.9(d), 126.0(d), 126.9(s), 127.4(d), 128.1(d), 128.8(d), 129.0(d), 129.8(d), 133.5(s), 134.6(s), 138.7(s), 139.5(s), 147.1(s), 159.6(s), 164.6(s), 166.3(s); Anal. Calcd for C28H21NO7: C, 69.56; H, 4.38; N, 2.90. Found: C, 69.30; H, 4.48; N, 2.71.

12-Cyano-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3d): mp 195-196 °C; IR (CHCl₃) 3025, 2960, 2230, 1750, 1710, 1455, 1360, 1330, 1230 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.88 (s, 6H, OCH₃), 7.44-7.55 (m, 2H, ArH), 7.61-7.69 (m, 1H, ArH), 7.74-7.82 (m, 3H, ArH), 8.42 (dm, J= 8.1 Hz, 1H, ArH), 8.67 (dm, J= 7.2 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 100.6 MHz) δ 54.3(q), 59.5(s), 95.3(s), 113.1(s), 117.0(d), 119.3(d), 125.5(s), 125.7(d), 127.1(d), 127.6(s), 128.6(d), 129.2(d), 129.8(d), 133.0(s), 133.7(s), 134.3(d), 138.2(s), 159.2(s), 166.4(s); Anal. Calcd for C21H14N2O5: C, 67.38; H, 3.77; N, 7.48. Found: C, 67.33; H, 3.76; N, 7.48.

12-Cyano-9-methyl-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3e): mp 207-209 °C; IR (CHCl3) 3030, 2960, 2230, 1745, 1710, 1455, 1360, 1330, 1230 cm⁻¹; ¹H NMR (CDCl3, 400 MHz) δ 2.52 (s, 3H, CH3), 3.89 (s, 6H, OCH3), 7.42-7.57 (m, 4H, ArH), 7.78 (d, J= 7.7 Hz, 1H, ArH), 8.31 (d, J= 8.0 Hz, 1H, ArH), 8.68 (d, J= 7.7 Hz, 1H, ArH); ¹³C NMR (CDCl3, 100.6 MHz) δ 22.0(q), 54.3(q), 59.5(s), 95.0(s), 113.2(s), 117.1(d), 119.3(d), 123.0(s), 125.6(d), 127.0(d), 127.6(s), 128.9(d), 129.3(d), 130.9(d), 133.0(s), 133.8(s), 138.4(s), 145.7(s), 159.2(s), 166.6(s); Anal. Calcd for C22H16N2O5: C, 68.04; H, 4.15; N, 7.21. Found: C, 68.05; H, 4.10; N, 7.26.

12-Cyano-9-methoxy-6-oxo-6,11-dihydroindolo[1,2-b]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3f): mp 200-201 °C; IR (CHCl3) 3010, 2955, 2230, 1745, 1705, 1610, 1455,

1355, 1330, 1275, 1245 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.88 (s, 6H, OCH₃), 3.91 (s, 3H, OCH₃), 7.13 (dm, J= 8.8 Hz, 1H, ArH), 7.18-7.21 (m, 1H, ArH), 7.43-7.53 (m, 2H, ArH), 7.77 (dm, J= 7.8 Hz, 1H, ArH), 8.35 (dm, J= 8.8 Hz, 1H, ArH), 8.66 (dm, J= 8.6 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 54.4(q), 55.8(q), 59.6(s), 94.9(s), 113.2(s), 113.6(d), 115.8(d), 117.0(d), 118.2(s), 119.2(d), 125.5(d), 127.0(d), 127.5(s), 131.6(d), 133.7(s), 135.1(s), 138.3(s), 158.9(s), 164.3(s), 166.4(s); Anal. Calcd for C₂₂H₁₆N₂O₆: C, 65.35; H, 3.99; N, 6.93. Found: C, 65.28; H, 3.92; N, 6.90.

12-Acetyl-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3g): mp 213°C (decomp); IR (CHCl₃) 3030, 1780, 1760, 1705, 1455, 1350, 1330 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.76 (s, 3H, CH₃), 3.59 (s, 6H, OCH₃), 7.47-7.54 (m, 2H, ArH), 7.60 (td, J= 7.8, 1.1 Hz, 1H, ArH), 7.71 (td, J= 7.8, 1.5 Hz, 1H, ArH), 7.94-8.01 (m, 1H, ArH), 8.25 (dd, J= 7.8, 1.1 Hz, 1H, ArH), 8.45 (dd, J= 7.8, 1.5 Hz, 1H, ArH), 8.86-8.93 (m, 1H, ArH); 1³C NMR (CDCl₃, 100.6 MHz) δ 31.2(q), 53.4(q), 58.0(s), 117.6(d), 118.9(s), 120.2(d), 125.2(s), 125.4(d), 125.6(d), 126.4(s), 128.1(d), 129.1(d), 129.5(d), 133.0(s), 134.4(d), 135.0(s), 159.9(s), 165.9(s), 195.6(s); Anal. Calcd for C₂₂H₁₇NO₆: C, 67.52; H, 4.38; N, 3.58. Found: C, 67.58; H, 4.35; N, 3.56.

12-Acetyl-9-methyl-6-oxo-6,11-dihydroindolo[**1,2-***b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3h): mp 240 °C (decomp); IR (CHCl₃) 3030, 1780, 1760, 1705, 1530, 1455, 1350, 1330 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.49 (s, 3H, CH₃), 2.76 (s, 3H, CH₃), 3.58 (s, 6H, OCH₃), 7.40 (dm, J= 8.0 Hz, 1H, ArH), 7.46-7.53 (m, 2H, ArH), 7.95-8.01 (m, 1H, ArH), 8.03 (br s, 1H, ArH), 8.33 (d, J= 8.0 Hz, 1H, ArH), 8.87-8.93 (m, 1H, ArH); ¹³C NMR (CDCl₃, 100.6 MHz) δ 22.0(q), 31.2(q), 53.3(q), 57.8(s), 117.5(d), 118.6(s), 120.1(d), 122.6(s), 125.2(d), 125.4(d), 126.3(s), 128.1(d), 129.1(d), 130.6(d), 132.9(s), 135.0(s), 140.1(s), 145.8(s), 160.0(s), 165.9(s), 195.5(s); Anal. Calcd for C23H19NO6: C, 68.14; H, 4.72; N, 3.45. Found: C, 68.09; H, 4.64; N, 3.44.

12-Acetyl-6-oxo-9-phenyl-6,11-dihydroindolo[**1,2-***b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3i): mp 206 °C (decomp.); IR (CHCl₃) 3030, 1780, 1760, 1705, 1610, 1455, 1350, 1330 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.79 (s, 3H, CH₃), 3.61 (s, 6H, OCH₃), 7.40-7.55 (m, 5H, ArH), 7.68 (dm, J= 6.8 Hz, 2H, ArH), 7.83 (dd, J= 8.4, 1.7 Hz, 1H, ArH), 7.98-8.03 (m, 1H, ArH), 8.50 (d, J= 1.7 Hz, 1H, ArH), 8.51 (d, J= 8.4 Hz, 1H, ArH), 8.90-8.97 (m, 1H, ArH); ¹³C NMR (CDCl₃, 100.6 MHz) δ 31.2(q), 53.5(q), 57.4(s), 117.6(d), 118.9(s), 120.2(d), 123.8(s), 125.4(d), 125.6(d), 126.4(d), 127.4(d), 128.1(d), 128.8(d), 129.0(d), 129.7(d), 133.5(s), 135.0(s), 138.8(s), 140.0(s), 147.2(s), 159.8(s), 165.9(s), 195.6(s); Anal. Calcd for C₂₈H₂1NO₆: C, 71.94; H, 4.53; N, 3.00. Found: C, 71.65; H, 4.49; N, 2.93.

12-Cyano-8-methyl-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3j): mp 215-216 °C; IR (CHCl₃) 3030, 2955, 2230, 1750, 1710, 1455, 1355, 1325, 1230, 1210 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.49 (s, 3H, CH₃), 3.88 (s, 6H, OCH₃), 7.45-7.55 (m, 2H, ArH), 7.58 (dd, J= 8.2, 1.4 Hz, 1H, ArH), 7.65 (d, J= 8.2 Hz, 1H, ArH), 7.78 (dm, J= 8.0 Hz, 1H, ArH), 8.22 (d, J= 1.4 Hz, 1H, ArH), 8.66 (d, J= 8.0 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 21.0(q), 54.3(q), 59.3(s), 95.2(s), 113.1(s), 117.0(d), 119.3(d), 125.2(s), 125.6(d), 127.0(d), 127.6(s), 128.5(d), 129.4(d), 130.1(s), 133.7(s), 135.3(d), 138.4(s), 140.2(s), 159.4(s), 166.6(s); Anal. Calcd for C22H16N2O5: C, 68.04; H, 4.15; N, 7.21. Found: C, 68.05; H, 4.20; N, 7.32.

8-Methyl-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11,12-tricarboxylic acid trimethyl ester (3k): mp 244-245 °C; IR (CHCl₃) 3030, 2955, 1780, 1755, 1700, 1450, 1360, 1330, 1290, 1230, 1180, 1150 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.49 (s, 3H, CH₃), 3.60 (s, 6H, OCH₃), 3.95 (s, 3H, OCH₃), 7.45-7.59 (m, 3H, ArH), 8.04 (d, J= 8.2 Hz, 1H, ArH), 8.17-8.27 (m, 1H, ArH), 8.28 (br s, 1H, ArH), 8.80-8.87 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 21.0(q), 51.5(q), 53.5(q), 57.2(s), 111.2(s), 116.9(d), 121.5(d), 124.9(s), 125.4(d), 125.9(d), 126.9(s), 127.7(d), 129.4(d), 130.3(s), 134.6(s), 135.3(d), 139.7(s), 139.9(s), 159.9(s), 164.8(s), 166.4(s); Anal. Calcd for C23H19NO7: C, 65.56; H, 4.54; N, 3.32. Found: C, 65.51; H, 4.51; N, 3.43.

12-Acetyl-8-methyl-6-oxo-6,11-dihydroindolo[**1,2-***b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (**3**): mp 227 °C (decomp.); IR (CHCl₃) 3010, 2955, 1780, 1755, 1705, 1530, 1450, 1350, 1330, 1180 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.48 (s, 3H, CH₃), 2.77 (s, 3H, CH₃), 3.60 (s, 6H, OCH₃), 7.48-7.56 (m, 3H, ArH), 7.97-8.03 (m, 1H, ArH), 8.14 (d, J= 8.2 Hz, 1H, ArH), 8.27 (br s, 1H, ArH), 8.88-8.95 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 21.0(q), 31.3(q), 53.4(q), 57.6(s), 117.5(d), 118.7(s), 120.1(d), 124.9(s), 125.3(d), 125.5(d), 126.3(s), 127.9(d), 129.2(d), 130.1(s), 135.0(s), 135.4(d), 139.8(s), 140.1(s), 160.1(s), 166.0(s), 195.5(s); Anal. Calcd for C23H19NO6: C, 68.14; H, 4.72; N, 3.45. Found: C, 68.11; H, 4.67; N, 3.48.

8-Chloro-12-cyano-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3m): mp 224-225 °C; IR (CHCl₃) 3020, 2955, 2230, 1745, 1715, 1455, 1360, 1330, 1255, 1230 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.89 (s, 6H, OCH₃), 7.48-7.58 (m, 2H, ArH), 7.70-7.76 (m, 2H, ArH), 7.80 (dm, J= 7.4 Hz, 1H, ArH), 8.37-8.40 (m, 1H, ArH), 8.65 (dd, J= 7.4, 1.2 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 54.6(q), 59.2(s), 95.9(s), 113.0(s), 117.1(d), 119.5(d), 126.0(d), 127.0(s), 127.4(d), 127.6(s), 129.0(d), 130.3(d), 131.2(s), 133.7(s), 134.4(d), 136.5(s), 137.6(s), 158.1(s), 166.2(s); Anal. Calcd for C21H13N2O5Cl: C, 61.70; H, 3.21; N, 6.85. Found: C, 61.69; H, 3.24; N, 6.81.

8-Chloro-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11,12-tricarboxylic acid trimethyl ester (3n): mp 247 °C (decomp); IR (CHCl₃) 3030, 2955, 1780, 1755, 1705, 1365, 1330, 1280, 1230, 1180, 1150 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.62 (s, 6H, OCH₃), 3.96 (s, 3H, OCH₃), 7.46-7.55 (m, 2H, ArH), 7.68 (dd, J= 8.7, 2.4 Hz, 1H, ArH), 8.13 (d, J= 8.7 Hz, 1H, ArH), 8.20-8.24 (m, 1H, ArH), 8.44 (d, J= 2.4 Hz, 1H, ArH), 8.76-8.80 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 51.6(q), 53.8(q), 57.3(s), 111.9(s), 116.9(d), 121.7(d), 125.7(d), 126.2(d), 126.80(s), 126.83(s), 129.0(d), 129.6(d), 131.4(s), 134.4(d), 134.6(s), 136.3(s), 139.0(s), 158.6(s), 164.7(s), 166.0(s); Anal. Calcd for C₂₂H₁₆NO7Cl: C, 59.81; H, 3.65; N, 3.17. Found: C, 59.92; H, 3.62; N, 3.07.

12-Acetyl-8-chloro-6-oxo-6,11-dihydroindolo[**1,2-***b*]isoquinoline-**11,11-dicarboxylic** acid dimethyl ester (**3o**): mp 239 °C (decomp); IR (CHCl₃) 3010, 2955, 1780, 1760, 1710, 1455, 1370, 1350, 1330, 1230 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.78 (s, 3H, CH₃), 3.61 (s, 6H, OCH₃), 7.51-7.58 (m, 2H, ArH), 7.68 (dd, J= 8.6, 2.4 Hz, 1H, ArH), 7.97-8.03 (m, 1H, ArH), 8.22 (d, J= 8.6 Hz, 1H, ArH), 8.43 (d, J= 2.4 Hz, 1H, ArH), 8.85-8.92 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 31.3(q), 53.6(q), 57.7(s), 117.5(d), 119.2(s), 120.3(d), 125.6(d), 125.8(d), 126.3(s), 126.7(s), 128.7(d), 129.8(d), 131.3(s), 134.4(d), 134.9(s), 136.2(s), 139.2(s), 158.8(s), 165.6(s), 195.6(s); Anal. Calcd for C₂₂H₁₆NO₆Cl: C, 62.05; H, 3.79; N, 3.29. Found: C, 61.96; H, 3.86; N, 3.35.

8-Bromo-12-cyano-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11-dicarboxylic acid dimethyl ester (3p): mp 235-236 °C; IR (CHCl3) 3010, 2955, 2230, 1750, 1715, 1455, 1355, 1330, 1225 cm⁻¹; ¹H NMR (CDCl3, 400 MHz) δ 3.88 (s, 6H, OCH3), 7.50-7.60 (m, 2H, ArH), 7.64 (d, J= 8.5 Hz, 1H, ArH), 7.80 (dm, J= 8.0 Hz, 1H, ArH), 7.88 (dd, J= 8.5, 2.2 Hz, 1H, ArH), 8.56 (d, J= 2.2 Hz, 1H, ArH), 8.67 (d, J= 7.8 Hz, 1H, ArH); ¹³C NMR (CDCl3, 50.3 MHz) δ 54.6(q), 59.3(s), 95.9(s), 113.0(s), 117.1(d), 119.5(d), 124.5(s), 126.1(d), 127.2(s), 127.4(d), 127.6(s), 130.4(d), 131.8(s), 132.0(d), 133.7(s), 137.3(d), 137.6(s), 158.0(s), 166.2(s); Anal. Calcd for C21H13N2O5Br: C, 55.65; H, 2.89; N, 6.18. Found: C, 55.59; H, 2.92; N, 6.25.

8-Bromo-6-oxo-6,11-dihydroindolo[1,2-*b*]isoquinoline-11,11,12-tricarboxylic acid trimethyl ester (3q): mp 248-249 °C; IR (CHCl₃) 3035, 2955, 1780, 1760, 1700, 1455, 1365, 1330, 1280, 1150 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.62 (s, 6H, OCH₃), 3.95 (s, 3H, OCH₃), 7.47-7.55 (m, 2H, ArH), 7.83 (dd, J= 8.6, 2.3 Hz, 1H, ArH), 8.06 (d, J= 8.6 Hz, 1H, ArH), 8.20-8.25 (m, 1H, ArH), 8.60 (d, J= 2.3 Hz, 1H, ArH), 8.77-8.81 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 51.6(q), 53.8(q), 57.3(s), 111.8(s), 116.9(d), 121.6(d), 124.2(s), 125.6(d), 126.1(d), 126.8(s), 126.9(s), 129.6(d), 131.86(s), 131.94(d), 134.5(s), 137.2(d), 138.9(s), 158.4(s), 164.7(s), 165.9(s); Anal. Calcd for C22H₁₆NO7Br: C, 54.34; H, 3.32; N, 2.88. Found: C, 54.43; H, 3.39; N, 2.72.

5-Methyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12a): mp 233-234 °C; IR (CHCl3) 3010, 2955, 1765, 1645, 1475, 1235 cm⁻¹; ¹H NMR (CDCl3, 200 MHz) δ 3.67 (s, 6H, OCH3), 3.84 (s, 3H, NCH3), 7.34-7.50 (m, 3H, ArH), 7.52-7.70 (m, 2H, ArH), 7.76-7.88 (m, 1H, ArH), 8.40-8.50 (m, 1H, ArH), 8.50-8.62 (m, 1H, ArH); ¹³C NMR (CDCl3, 50.3 MHz) δ 31.5(q), 53.9(q), 58.6(s), 109.7(d), 112.9(s), 122.4(d), 123.1(d), 124.1(s), 124.4(d), 126.9(d), 127.6(d), 129.1(d), 131.8(d), 132.3(s), 134.3(s), 138.5(s), 142.0(s), 167.6(s), 179.5(s); Anal. Calcd for C21H17NO5: C, 69.41; H, 4.72; N, 3.85. Found: C, 69.34; H, 4.73; N, 3.85.

5-Methanesulfonyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12b): mp 270 °C (decomp.); IR (CHCl₃) 3035, 2955, 1785, 1760, 1720, 1660, 1370, 1250, 1220, 1175 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.36 (s, 3H, SO₂CH₃), 3.75 (s, 6H, OCH₃), 7.51-7.59 (m, 2H, ArH), 7.61 (td, J= 7.7, 1.1 Hz, 1H, ArH), 7.67-7.74 (m, 1H, ArH), 7.94-8.00 (m, 1H, ArH), 8.41 (dd, J= 7.7, 1.6 Hz, 1H, ArH), 8.46 (dd, J= 7.7, 1.1 Hz, 1H, ArH), 8.63-8.70 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 40.6(q), 53.9(q), 58.4(s), 112.8(d), 117.3(s), 123.3(d), 125.2(d), 125.4(s), 126.76(d), 126.83(d), 128.7(d), 129.4(d), 131.1(s), 133.1(d), 133.5(s), 135.7(s), 144.1(s), 166.7(s), 180.6(s); Anal. Calcd for C₂₁H₁₇NO₇S: C, 59.01; H, 4.01; N, 3.28. Found: C, 59.08; H, 3.99; N, 3.28.

5,8-Dimethyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12c): mp 270 °C (decomp); IR (CHCl₃) 3010, 2955, 1765, 1640, 1610, 1470, 1450, 1210 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 2.47 (s, 3H, CH₃), 3.68 (s, 6H, OCH₃), 3.83 (s, 3H, NCH₃), 7.34-7.50 (m, 4H, ArH), 7.58 (s, 1H, ArH), 8.33 (d, J= 8.0 Hz, 1H, ArH), 8.50-8.60 (m, 1H, ArH); ¹3C NMR (CDCl₃, 50.3 MHz) δ 21.8(q), 31.4(q), 53.9(q), 58.4(s), 109.7(d), 112.9(s), 122.5(d), 123.0(d),

124.2(s), 124.4(d), 126.9(d), 127.9(d), 130.0(s), 130.2(d), 134.3(s), 138.4(s), 142.0(s), 142.6(s), 167.7(s), 179.7(s); Anal. Calcd for C₂₂H₁₉NO₅: C, 70.02; H, 5.07; N, 3.71. Found: C, 70.04; H, 5.05; N, 3.75.

5-Methanesulfonyl-8-methyl-11-oxo-6,11-dihydrobenzo[*b***]carbazole-6,6-dicarboxylic acid dimethyl ester (12d): mp 267 °C (decomp); IR (CHCl3) 3030, 2955, 1785, 1760, 1725, 1660, 1610, 1455, 1430, 1370, 1250, 1170 cm⁻¹; ¹H NMR (CDCl3, 200 MHz) \delta 2.51 (s, 3H, CH3), 3.34 (s, 3H, SO₂CH₃), 3.74 (s, 6H, OCH₃), 7.41 (dd, J= 8.4, 0.9 Hz, 1H, ArH), 7.46-7.60 (m, 2H, ArH), 7.89-8.00 (m, 1H, ArH), 8.23 (d, J= 0.9 Hz, 1H, ArH), 8.29 (d, J= 8.4 Hz, 1H, ArH), 8.59-8.71 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) \delta 22.1(q), 40.5(q), 53.8(q), 58.3(s), 112.8(d), 117.3(s), 123.3(d), 125.1(d), 125.4(s), 126.6(d), 126.8(d), 128.8(s), 128.9(d), 130.4(d), 133.6(s), 135.7(s), 144.0(s), 144.1(s), 166.7(s), 180.5(s); Anal. Calcd for C₂₂H₁9NO₇S: C, 59.86; H, 4.34; N, 3.17. Found: C, 59.76; H, 4.42; N, 3.09.**

8-Chloro-5-methyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12e): mp 261 °C (decomp); IR (CHCl3) 3010, 2955, 1765, 1745, 1645, 1590, 1470, 1450, 1225 cm⁻¹; ¹H NMR (CDCl3, 200 MHz) δ 3.73 (s, 6H, OCH3), 3.84 (s, 3H, NCH3), 7.35-7.49 (m, 3H, ArH), 7.57 (dd, J= 8.5, 2.0 Hz, 1H, ArH), 7.79 (d, J= 2.0 Hz, 1H, ArH), 8.38 (d, J= 8.5 Hz, 1H, ArH), 8.47-8.58 (m, 1H, ArH); ¹³C NMR (CDCl3, 50.3 MHz) δ 31.7(q), 54.2(q), 58.6(s), 109.8(d), 112.8(s), 122.5(d), 123.3(d), 124.0(s), 124.7(d), 127.7(d), 128.4(d), 129.6(d), 131.0(s), 135.8(s), 138.2(s), 138.6(s), 141.7(s), 167.2(s), 178.4(s); Anal. Calcd for C21H16NO5Cl: C, 63.40; H, 4.05; N, 3.52. Found: C, 63.39; H, 4.09; N, 3.43.

8-Chloro-5-methanesulfonyl-11-oxo-6,11-dihydrobenzo[b]carbazole-6,6-dicarboxylic acid dimethyl ester (12f): mp 282 °C (decomp); IR (CHCl3) 3030, 2955, 1785, 1760, 1720, 1660, 1430, 1370, 1250, 1175 cm⁻¹; ¹H NMR (CDCl3, 200 MHz) δ 3.36 (s, 3H, SO₂CH₃), 3.78 (s, 6H, OCH₃), 7.45-7.63 (m, 3H, ArH), 7.88-8.02 (m, 1H, ArH), 8.34 (d, J= 8.5 Hz, 1H, ArH), 8.45 (d, J= 2.0 Hz, 1H, ArH), 8.58-8.71 (m, 1H, ArH); ¹³C NMR (CDCl3, 50.3 MHz) δ 40.6(q), 54.1(q), 58.4(s), 112.8(d), 117.1(s), 123.3(d), 125.2(s), 125.3(d), 126.9(d), 128.3(d), 128.8(d), 129.6(s), 130.0(d), 135.0(s), 135.7(s), 139.6(s), 143.7(s), 166.3(s), 179.5(s); Anal. Calcd for C₂₁H₁₆NO₇ClS: C, 54.61; H, 3.49; N, 3.03. Found: C, 54.54; H, 3.43; N, 3.02.

8-Bromo-5-methanesulfonyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12g): mp 282 °C (decomp); IR (CHCl3) 3030, 2955, 1785, 1760, 1730, 1660, 1585, 1425, 1370, 1250, 1175 cm⁻¹; ¹H NMR (CDCl3, 200 MHz) δ 3.36 (s, 3H, SO₂CH₃), 3.78 (s, 6H, OCH₃), 7.47-7.62 (m, 2H, ArH), 7.75 (dd, J= 8.4, 1.8 Hz, 1H, ArH), 7.88-8.02 (m, 1H, ArH), 8.26 (d, J= 8.4 Hz, 1H, ArH), 8.61 (d, J= 1.8 Hz, 1H, ArH), 8.58-8.71 (m, 1H, ArH); ¹3C NMR (CDCl₃, 50.3 MHz) δ 40.6(q), 54.1(q), 58.3(s), 112.8(d), 117.1(s), 123.3(d), 125.2(s), 125.3(d), 126.9(d), 128.2(s), 128.3(d), 130.0(s), 131.6(d), 133.0(d), 135.0(s), 135.7(s), 143.7(s), 166.3(s), 179.7(s); Anal. Calcd for C₂₁H₁₆NO₇BrS: C, 49.82; H, 3.18; N, 2.77. Found: C, 49.89; H, 3.21; N, 2.70.

5-Methanesulfonyl-8-methoxy-11-oxo-6,11-dihydrobenzo[b]carbazole-6,6-dicarboxylic acid dimethyl ester (12h): mp 294 °C (decomp); IR (CHCl3) 3010, 2955, 1780, 1760, 1720, 1650, 1605, 1435, 1370, 1260, 1170 cm⁻¹; ¹H NMR (CDCl3, 200 MHz) δ 3.34 (s, 3H, SO₂CH₃), 3.75 (s, 6H, OCH₃), 3.94 (s, 3H, OCH₃), 7.11 (dd, J= 8.8, 2.5 Hz, 1H, ArH), 7.44-7.59 (m, 2H, ArH), 7.87-8.00 (m, 1H, ArH), 7.96 (d, J= 2.5 Hz, 1H, ArH), 8.35 (d, J= 8.8 Hz, 1H, ArH), 8.60-8.71 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 40.5(q), 53.8(q), 55.7(q), 58.4(s), 112.8(d), 113.6(d), 115.5(d), 117.2(s), 123.4(d), 124.5(s), 125.1(d), 125.5(s), 126.6(d), 128.9(d), 135.7(s), 143.6(s), 163.2(s), 166.7(s), 180.0(s); Anal. Calcd for C₂₂H₁₉NO₈S: C, 57.76; H, 4.19; N, 3.06. Found: C, 57.73; H, 4.17; N, 2.99.

5,9-Dimethyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12i): mp 255 °C (decomp); IR (CHCl₃) 3010, 2955, 1760, 1645, 1610, 1470, 1450, 1435, 1230 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.48 (s, 3H, CH₃), 3.68 (s, 6H, OCH₃), 3.83 (s, 3H, NCH₃), 7.37-7.47 (m, 4H, ArH), 7.68 (d, J= 8.1 Hz, 1H, ArH), 8.25 (br s, 1H, ArH), 8.52-8.58 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 21.1(q), 31.5(q), 53.8(q), 58.3(s), 109.7(d), 113.0(s), 122.5(d), 123.0(d), 124.1(s), 124.4(d), 127.1(d), 127.6(d), 131.5(s), 132.1(s), 132.7(d), 138.4(s), 139.2(s), 142.1(s), 167.7(s), 179.8(s); Anal. Calcd for C₂₂H₁₉NO₅: C, 70.02; H, 5.07; N, 3.71. Found: C, 70.03; H, 5.02; N, 3.75.

5-Methanesulfonyl-9-methyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12j): mp 270 °C (decomp); IR (CHCl₃) 3015, 2955, 1780, 1760, 1720, 1660, 1430, 1370, 1250, 1215, 1175 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.48 (s, 3H, CH₃), 3.35 (s, 3H, SO₂CH₃), 3.74 (s, 6H, OCH₃), 7.49 (dm, J= 8.3 Hz, 1H, ArH), 7.50-7.60 (m, 2H, ArH), 7.93-7.99 (m, 1H, ArH), 8.20 (br s, 1H, ArH), 8.32 (d, J= 8.3 Hz, 1H, ArH), 8.64-8.70 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 21.0(q), 40.5(q), 53.8(q), 58.2(s), 112.8(d), 117.4(s), 123.4(d), 125.1(d), 125.5(s), 126.7(d), 127.0(d), 128.6(d), 130.8(s), 130.9(s), 134.0(d), 135.7(s), 139.7(s), 144.2(s), 166.8(s), 180.8(s); Anal. Calcd for C₂₂H₁₉NO₇S: C, 59.86; H, 4.34; N, 3.17. Found: C, 59.80; H, 4.32; N, 3.17.

9-Chloro-5-methyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12k): mp 254-255 °C; IR (CHCl3) 3010, 2955, 1765, 1650, 1530, 1475, 1450, 1435, 1210 cm⁻¹; ¹H NMR (CDCl3, 400 MHz) δ 3.70 (s, 6H, OCH3), 3.85 (s, 3H, NCH3), 7.36-7.47 (m, 3H, ArH), 7.56 (dd, J= 8.5, 2.4 Hz, 1H, ArH), 7.74 (d, J= 8.5 Hz, 1H, ArH), 8.40 (d, J= 2.4 Hz, 1H, ArH), 8.53 (dm, J= 7.7 Hz, 1H, ArH); ¹³C NMR (CDCl3, 50.3 MHz) δ 31.7(q), 54.1(q), 58.5(s), 109.8(d), 112.8(s), 122.5(d), 123.3(d), 124.0(s), 124.7(d), 126.9(d), 129.3(d), 131.8(d), 132.5(s), 134.0(s), 135.9(s), 138.6(s), 142.0(s), 167.3(s), 178.1(s); Anal. Calcd for C21H16NO5CI: C, 63.40; H, 4.05; N, 3.52. Found: C, 63.40; H, 4.16; N, 3.28.

9-Chloro-5-methanesulfonyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12l): mp 290 °C (decomp); IR (CHCl₃) 3030, 2955, 1780, 1760, 1730, 1665, 1430, 1370, 1245, 1175 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.36 (s, 3H, SO₂CH₃), 3.75 (s, 6H, OCH₃), 7.51-7.59 (m, 2H, ArH), 7.64 (dd, J= 8.7, 2.4 Hz, 1H, ArH), 7.92-7.98 (m, 1H, ArH), 8.36 (d, J= 2.4 Hz, 1H, ArH), 8.42 (d, J= 8.7 Hz, 1H, ArH), 8.62-8.67 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 40.6(q), 54.0(q), 58.3(s), 112.9(d), 117.2(s), 123.4(d), 125.2(s), 125.3(d), 126.6(d), 127.0(d), 130.4(d), 131.7(s), 132.6(s), 132.9(d), 135.8(s), 136.4(s), 144.1(s), 166.4(s), 179.3(s); Anal. Calcd for C21H₁6NO7ClS: C, 54.61; H, 3.49; N, 3.03. Found: C, 54.62; H, 3.51; N, 2.99.

357

9-Bromo-5-methyl-11-oxo-6,11-dihydrobenzo[*b*]carbazole-6,6-dicarboxylic acid dimethyl ester (12m): mp 261-262 °C; IR (CHCl₃) 3010, 2955, 1765, 1645, 1470, 1450, 1435, 1230 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.70 (s, 6H, OCH₃), 3.85 (s, 3H, NCH₃), 7.40-7.50 (m, 3H, ArH), 7.67 (d, J= 8.5 Hz, 1H, ArH), 7.72 (dd, J= 8.5, 2.2 Hz, 1H, ArH), 8.51-8.55 (m, 1H, ArH), 8.56 (d, J= 2.2 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 31.7(q), 54.1(q), 58.5(s), 109.8(d), 112.8(s), 122.5(d), 123.3(d), 123.98(s), 124.02(s), 124.7(d), 129.5(d), 129.9(d), 133.0(s), 134.1(s), 134.7(d), 138.6(s), 141.9(s), 167.2(s), 177.9(s); Anal. Calcd for C₂₁H₁₆NO₅Br: C, 57.03; H, 3.65; N, 3.17. Found: C, 57.02; H, 3.62; N, 3.14.

9-Bromo-5-methanesulfonyl-11-oxo-6,11-dihydrobenzo[b]carbazole-6,6-dicarboxylic acid dimethyl ester (12n): mp 295 °C (decomp); IR (CHCl₃) 3030, 2955, 1780, 1760, 1730, 1660, 1430, 1370, 1245, 1175 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.36 (s, 3H, SO₂CH₃), 3.75 (s, 6H, OCH₃), 7.51-7.59 (m, 2H, ArH), 7.79 (dd, J= 8.7, 2.3 Hz, 1H, ArH), 7.93-7.98 (m, 1H, ArH), 8.34 (d, J= 8.7 Hz, 1H, ArH), 8.52 (d, J= 2.3 Hz, 1H, ArH), 8.62-8.67 (m, 1H, ArH); ¹³C NMR (CDCl₃, 50.3 MHz) δ 40.6(q), 54.0(q), 58.3(s), 112.9(d), 117.1(s), 123.4(d), 124.5(s), 125.2(s), 125.3(d), 127.0(d), 129.7(d), 130.6(d), 132.2(s), 132.7(s), 135.7(s), 135.9(d), 144.0(s), 166.4(s), 179.2(s); Anal. Calcd for C₂₁H₁₆NO7BrS: C, 49.82; H, 3.18; N, 2.77. Found: C, 49.82; H, 3.13; N, 2.67.

ACKNOWLEDGEMENT

The authors wish to thank the National Science Council, R.O.C. for financial support (NSC 86-2113-M006-009).

REFERENCES

- 1. Preliminary communication: C. -P. Chuang and S. -F. Wang, Tetrahedron Lett., 1994, 35, 1283.
- D. J. Hart, Science (Washington, D. C.), 1984, 223, 883; W. P. Neumann, Synthesis, 1987, 665; D. P. Curran, Synthesis, 1988, 417 and 489; G. G. Melikyan, Synthesis, 1993, 833; J. Iqbal, B. Bhatia, and N. K. Nayyar, Chem. Rev., 1994, 94, 519.
- E. I. Heiba, R. M. Dessau, and W. J. Koehl, J. Am. Chem. Soc., 1968, 90, 5905; G. I. Nikishin and M. G. Vinogradov, J. Chem. Soc., Chem. Commun., 1973, 693; M. Okano and T. Aratani, Bull. Chem. Soc. Jpn., 1976, 49, 2811; E. J. Corey and M. C. Kang, J. Am. Chem. Soc., 1984, 106, 5384; J. R. Peterson, H. D. Do, and I. B. Surjasasmita, Synth. Commun., 1988, 18, 1985.
- B. B. Snider, R. Mohan, and S. A. Kates, J. Org. Chem., 1985, 50, 3659; J. E. Merritt, M. Sasson, S. A. Kates, and B. B. Snider, *Tetrahedron Lett.*, 1988, 29, 5209; H. Oumar-Mahamat, C. Moustrou, J. -M. Surzur, and M. P. Bertrand, J. Org. Chem., 1989, 54, 5684; B. B. Snider, B. Y. F. Wan, B. O. Buckman, and B. M. Foxman, J. Org. Chem., 1991, 56, 328.
- A. Citterio, R. Sebastiano, and A. Marion, J. Org. Chem., 1991, 56, 5328; A. Citterio, R. Sebastiano, and M. C. Carvayal, J. Org. Chem., 1991, 56, 5335; D. R. Artis, I. -S. Cho, and J. M. Muchowski, Can. J. Chem., 1992, 70, 1838; A. Citterio, R. Sebastiano, and M. Nicolini, Tetrahedron, 1993, 49, 7743; E. Baciocchi and E. Muraglia, J. Org. Chem., 1993, 58, 7610; C. -P. Chuang and S. -F. Wang, Heterocycl. Commun., 1996, 2, 57; C. -P. Chuang and S. -F. Wang, Heterocycles, 1996, 43, 2215.

- 6. W. R. Bowman, H. Heaney, and B. M. Jordan, *Tetrahedron*, 1991, 47, 10119; F. E. Ziegler and L. O. Jeronic, J. Org. Chem., 1991, 56, 3479; C. -P. Chuang, *Tetrahedron Lett.*, 1992, 33, 6311.
- D. M. Ketcha and G. W. Gribble, J. Org. Chem., 1985, 50, 5451; D. M. Ketcha, B. M. Lieurance,
 D. M. J. Horman, and G. W. Gribble, J. Org. Chem., 1989, 54, 4350.

Received, 11th November, 1996