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Alkylation of Ketones: The First Alkyl-Group
Transfer from Trialkylamines to the a-C Atom
of Ketones**
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Homogeneous ruthenium-catalyzed organic reactions have
been introduced for a wide variety of organic transformations
and syntheses.[1] In the course of our continuing studies on
transition metal-catalyzed synthesis of N-heterocyclic com-
pounds, we recently developed and reported a ruthenium-
catalyzed synthetic approach for the formation of indoles[2]

and quinolines[3] by alkyl-group transfer from trialkylamines
to anilines (amine-exchange reaction[4]). While studying the
ruthenium-catalyzed heteroannulation between 4-aminoace-
tophenone and triallylamine, we found unexpectedly that
careful analysis of the crude reaction mixture revealed a small
amount of 1-(2-ethyl-3-methylquinolin-6-yl)pentan-1-one
(2 %) in addition to the expected product 1-(2-ethyl-3-
methylquinolin-6-yl)ethanone [Eq. (1); dppm� bis(diphe-
nylphosphanyl)methane].[3a] Presumably, the former quino-

line was formed by alkylation of the latter.[5] These observa-
tions led us to seek a general method for the ruthenium-
catalyzed a-alkylation of ketones with trialkylamines. In sharp
contrast to the aforementioned amine-exchange reaction, alkyl-
group transfer from trialkylamines to the a-carbon atom of
ketones is unprecedented. Here we report on a general method
for alkyl-group transfer from trialkylamines to the a-carbon
atom of ketones in the presence of a ruthenium catalyst.

First, we examined the alkylation of acetophenone (1 a)
with tributylamine (2 a) with various ruthenium catalyst
precursors [Eq. (2)]. Typically, 1 a was treated with an
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equimolar amount of 2 a in dioxane in the presence of a
ruthenium catalyst precursor (5 mol%) at 180 8C for 40 h to
afford 1-phenylhexan-1-one (3 a). Table 1 shows that RuCl3 ´
nH2O/PPh3 and [RuCl2(PPh3)3] are the systems of choice for

effective alkylation (entries 1 and 3). The difference between
conversion and product yield could be due to reductive
amination of the ketone to give a secondary amine as side
product.

Given these results, several ketones and amines were
screened with these catalysts (Table 2). Alkyl aryl ketones 1 a
and 1 b were readily alkylated with a variety of trialkylamines
2 a ± 2 e to afford a-alkylated ketones 3 a ± 3 f in moderate to
good yields. No a,a-dialkylation was observed.[6] A fivefold
excess of amine relative to the substrate was required for the
reaction of 1 b, in which case the reaction became slower and
the yield was lower.[7] Higher reaction rate and yield were
observed with the benzo-fused cyclic ketone 1-indanone (1 c).

To test for regioselectivity, dialkyl ketones 1 d and 1 e were
employed, and alkylation took place exclusively at the less
hindered methyl group.[8] The reaction of 4-phenylcyclohex-
anone (1 f) with 2 a gave not only 2-butyl-4-phenylcyclohex-
anone (3 p) but also a small amount of 2,6-dibutyl-4-phenyl-
cyclohexanone (13 % yield). The reaction of a,b-unsaturated
ketones such as trans-4-phenyl-3-buten-2-one with 2 a gave no
alkylated product, and the starting material was recovered.

Replacing amines with imines as alkylating agent was
successful and gave the expected products [Eqs. (3) and (4)].

Here both yields and the type of the product depend upon the
imine employed. For instance, imines 4 gave a single
alkylation product, while imine 5 yielded two products (3 a
and 3 e) that resulted from the transfer of the alkyl or the
alkylidene substituent on nitrogen. The formation of 3 e may
be explained by the generation of (benzyl)(butyl)amine by
reduction of the PhC�N bond under the reaction conditions
employed. In fact, in a separate experiment the alkylation of
1 a with N-butylbenzylamine afforded 3 a and 3 e in 11 % and
38 % yields, respectively.

In summary, we have developed a novel ruthenium-
catalyzed highly regioselective a-alkylation of ketones with
an array of trialkylamines and imines. The present ruthenium-
catalyzed alkylation is a first example of alkyl-group transfer
from trialkylamines and imines to the a-carbon atom of
ketones. The reaction mechanism[9, 10] and synthetic applica-
tions are currently under investigation.

Experimental Section

Typical procedure: 1a (0.24 g, 2.0 mmol), 2 a (0.37 g, 2.0 mmol), RuCl3 ´
nH2O (0.026 g, 0.10 mmol), PPh3 (0.079 g, 0.30 mmol), and dioxane
(10 mL) were placed in a 50-mL autoclave and allowed to react under
argon at 180 8C for 40 h. The reaction mixture was filtered through a short
silica gel column (CHCl3), washed with 50 mL of 5 % HCl and dried over
Na2SO4. Removal of the solvent left an oil, which was purified by column
chromatography (ethyl acetate:hexane 1:15) to give 1-phenylhexan-1-one
(3a) in 61% yield.
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Table 1. Ruthenium-catalyzed a-butylation of 1 a with 2a [Eq. (2)].[a]

Entry Catalyst precursor Conversion [%]
of 1a[b]

Yield [%]
of 3 a[b]

1 RuCl3 ´ n H2O/3PPh3 77 70
2 RuCl3 ´ n H2O/1.5dppm[c] 32 19
3 [RuCl2(PPh3)3] 90 69
4 [RuH2(PPh3)4] 23 10
5 [Ru3(CO)12] 25 4
6 [Cp*RuCl2(CO)][d] 4 3
7 [Cp*RuCl(CO)(PEt3)][d] 1 0

[a] Reaction conditions: 1 a (1 mmol), 2a (1 mmol), ruthenium catalyst
(5 mol %), 1,4-dioxane (10 mL), 180 8C, 40 h, under Ar. [b] Determined by
GLC. [c] dppm� bis(diphenylphosphanyl)methane. [d] Cp*�h5-C5Me5.

Table 2. Ruthenium-catalyzed a-alkylation of ketones 1 with trialkyl-
amines 2.[a]

Ketone R3N Product Yield
[%][b]

2a R�Bu 3 a R�Bu 61
2b R� hexyl 3 b R� hexyl 73
2c R� iBu 3 c R� iBu 77
2d R� isopentyl 3 d R� isopentyl 67
2e R� benzyl 3 e R� benzyl 30

2a 3 f 32[c]

2a 3 g R�Bu 83
2b 3 h R� hexyl 89
2c 3 i R� iBu 83
2d 3 j R� isopentyl 88

2a 3 k R�Bu 70
2b 3 l R� hexyl 78
2c 3 m R� iBu 75
2d 3 n R� isopentyl 78

2a 3 o 81[d]

2a 3 p 48[e,f]

[a] Reaction conditions: 1 (2 mmol), 2 (2 mmol), RuCl3 ´ nH2O (5 mol %),
PPh3 (15 mol %), 1,4-dioxane (10 mL), 180 8C, 40 h, under Ar. [b] Yield of
isolated product. [c] Carried out in a molar ratio of 2a :1 b� 5:1. [d] Yield
determined by GLC. [e] Mixture of diastereoisomers (1:5). [f] 2,6-Dibutyl-
4-phenylcyclohexanone (isomer ratio 81:13:6) was also isolated in 13%
yield.
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Well-defined organometallic complexes were recently re-
ported to be single-site catalysts for the polymerization of
various monomers.[1] While enolate complexes of zirconi-
um,[2±5] yttrium,[6] and samarium,[7, 8] as well as aluminum
enolate complexes with Schiff base[9] or porphyrin[10] ligands,
have been reported to be active initiators for the polymer-
ization of polar olefinic monomers such as methyl acrylate
(MA) and methyl methacrylate (MMA), enolate complexes
of other transition metals have not been utilized. We sought a
new metal enolate complex that can initiate polymerization of
these polar monomers. Since Group 5 metals tolerate polar
functional groups and are less oxophilic than the metals of
Groups 3 and 4, we chose half-metallocene complexes of
tantalum, cationic alkyl and alkylidene derivatives of which
have already been applied in the living polymerization of
ethylene[11] and stereoselective ring-opening metathesis poly-
merization of norbornene[12] . Here we report a novel tantalum
initiator system and a new approach to generating catalyti-
cally active enolate species from monomer-coordinated com-
plexes. We prepared and characterized new half-metallocene
complexes of tantalum with MMA and 1,4-diaza-1,3-buta-
diene (DAD)[13, 14] ligands, and the tantalum ± MMA com-
plexes, upon addition of one equivalent of AlMe3, were found
to be catalysts for the polymerization of MMA.

Scheme 1 shows the preparation of tantalum ± MMA com-
plexes from [Cp*TaCl4] (1; Cp*� h5-C5Me5). Reduction of 1
with sodium amalgam in toluene followed by addition of
MMA afforded the MMA complex [Cp*TaCl2(h4-supine-
MMA)] (2), which was alternatively prepared by treatment
of the dinuclear TaIII complex [{Cp*TaCl2}2] (3)[15] with MMA.
The structure of 2[16] (Figure 1) is essentially the same as that
of [Cp*TaCl2(h4-supine-MA)].[17] Reaction of 2 with one
equivalent of the dilithium salt of 1,4-bis(p-methoxyphenyl)-
1,4-diaza-1,3-butadiene (p-MeOC6H4-DAD) or the dilithium
salt of 1,4-dicyclohexyl-1,4-diaza-1,3-butadiene (Cy-DAD) in
THF afforded the half-sandwich DAD complexes of tantalum
4 and 5, respectively. The 1H NMR spectra of 4 and 5
displayed two doublets at d� 6.67 and 6.84 (J� 3.4 Hz) for 4
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