View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: L. F. Zeng, L. Wang and J. L. Ferguson, *Org. Biomol. Chem.*, 2015, DOI: 10.1039/C5OB01659B.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Published on 02 October 2015. Downloaded by University of Prince Edward Island on 04/10/2015 09:06:21

ROYAL SOCIETY OF CHEMISTRY

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Palladium-Catalyzed Direct Coupling of 2-Vinylanilines and Isocyanides: An Efficient Synthesis of 2-Aminoquinolines

^a Lijie Wang,^a Jamie Ferguson,^b Fanlong Zeng^a*

Palladium-catalyzed oxidative coupling of 2-vinylanilines and isocyanides constitutes a direct, facile, and efficient approach to 2-aminoquinolines. The procedure, employing palladium acetate and silver carbonate, is attractive in terms of assembly efficiency, functional group tolerance, and operational simplicity. A variety of 2-aminoquinolines were prepared in good to excellent yields.

Introduction

The2-Aminoquinoline derivatives represent an important class of heterocyclic motifs exhibiting a broad spectrum of biological and medicinal activities. For instance, Imiquimod (1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine) is marketed under the trade name Aldara to treat genital warts, actinic keratosis and superficial skin cancers.¹ Recently, 2-aminoquinoline scaffolds have been developed to be adenosine A2A receptor antagonists,² *B*-secretase (BACE) inhibitor,³ and melaninconcentrating hormone (MCH) antagonist.⁴ They are also frequently employed in molecular recognition processes as the core structure.⁵ Thus, intensive research efforts have been devoted to the preparation of 2-aminoquinolines, and several synthetic routes are known: (i) direct α -amination of quinolines with sodium or potassium amide, named commonly as the Chichibabin reaction;⁶ (ii) substitution of 2haloquinolines with ammonia or amines under high temperature and pressure⁷ or *via* transition-metal-catalyzed cross-coupling amination;⁸ (iii) activation of quinolines to the corresponding N-oxides, followed by either displacement of nucleophiles⁹ or transition-metal-catalyzed dehydrogenative amination;¹⁰ (iv) condensation of 2-aminobenzaldehyde or analogoues with appropriate nitrile derivatives¹¹ and (V) direct cyclization of 2-vinylphenyl (thio)ureas or 2vinylphenylcarbodiimides.¹² Many of these procedures suffer from harsh reaction conditions, poor regioselectivities, limited functional group tolerance, and low yields. Hence, exploring new approaches to 2-aminoquinolines is still a highly desirable goal.

Isocyanide is isoelectronic with carbon monoxide, and thus

it can be considered to have similar reactivity toward transition-metal catalysts and undergo analogous fundamental transformations (e.g., insertion into M-C bond).¹³ However, compared to carbonylation reactions, which have been well established for generating carbonyl-containing compounds,14 transition-metal-catalyzed reactions using isocyanides as C1 building blocks are much less explored. Recently, they have begun to emerge as practical and powerful tools to construct nitrogen- (or carbonyl-) containing compounds, carrying several distinct advantages over reactions with carbon monoxide, such as operational simplicity, non-toxicity, and the ability to employ the isocyanide reagent stoichiometrically.¹⁵ So far, isocyanides are predominantly employed in the synthesis of amidines and imidates.¹⁶ Inspired by Alper's work,¹⁷ we herein disclose a straightforward and efficient strategy to synthesize 2-aminoquinolines via palladiumcatalyzed direct coupling of 2-vinylanilines and isocyanides.

Results and discussion

We initially subjected 2-(1-phenyl-vinyl)aniline (1a) and tertbutyl isocyanide (2a) to a set of conditions commonly used for oxidative couplings, Pd(OAc)₂/Cu(OAc)₂ in toluene at 110 °C, and were delighted to obtain the anticipated aminoquinoline 3aa in 48% isolated yield (Table1, entry 1). Addition of CF₃CO₂H as a promoter increased the yield only slightly (55%). The success of this transformation did depend significantly, however, on the nature of the oxidant, and reaction with the best performer, Ag₂CO₃, furnished quinoline 3aa in 90% yield (entries 3-7). The choice of solvent also had a dramatic impact on reactivity, and dioxane proved to be the optimal choice, generating 3aa in 92% yield (entries 7 and 10-13). Unfortunately, the catalyst loading could not be decreased (from 10 mol %) without observing significant sacrifice to yield. Running the reaction at a lower loading of palladium precursor, for instance 7 mol % and 5 mol %, hampered the reaction efficiency (table 1 entries 8, 9 and 14). Various other combinations of palladium precursor and oxidant were tested

^{a.} College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, P. R. China 710127

E-mail: <u>fzena@nwu.edu.cn</u>, Cell: (+86)18602997831, Fax: (+86)2981535037 ^{b.} Department of Chemistry, Emory & Henry College, Emory, VA 24327

Electronic Supplementary Information (ESI) available: Experimental details, characterization data and NMR spectra for the starting materials and products. See DOI: 10.1039/x0xx00000x

ARTICLE

(Table 1, entries 15-19). However, none offered results superior to $Pd(OAc)_2/Ag_2CO_3$ (Table 1, entry 13). It is noteworthy that the rhodium complex $[Cp*RhCl_2]_2$ showed acceptable catalytic activity in this transformation.

Table 1. Optimization of Reaction Conditions Using theReaction of 2-(1-Phenyl-vinyl)aniline with tert-ButylIsocvanide^a

Ph	+	⊖ ≡N- ^t Bu	conditions	
1a		2a		3aa

entry	catalyst (mol %)	oxidant	solvent	yield (%) ^b
1	Pd(OAc) ₂ (10)	Cu(OAc) ₂	PhMe	48
2 ^c	Pd(OAc) ₂ (10)	Cu(OAc) ₂	PhMe	55
3 ^d	Pd(OAc) ₂ (10)	Cu(OAc) ₂ /O ₂	PhMe	44
4 ^e	Pd(OAc) ₂ (10)	Cu(OAc) ₂ /O ₂	PhMe	73
5 ^f	Pd(OAc) ₂ (10)	BQ	PhMe	38
6	Pd(OAc) ₂ (10)	AgOAc	PhMe	0
7	Pd(OAc) ₂ (10)	Ag ₂ CO ₃	PhMe	90
8	$Pd(OAc)_2(5)$	Ag ₂ CO ₃	PhMe	63
9	Pd(OAc) ₂ (7)	Ag ₂ CO ₃	PhMe	80
10	Pd(OAc) ₂ (10)	Ag ₂ CO ₃	CH₃CN	55
11	Pd(OAc) ₂ (10)	Ag ₂ CO ₃	DCE ^g	60
12	Pd(OAc) ₂ (10)	Ag ₂ CO ₃	DME ^h	86
13	Pd(OAc) ₂ (10)	Ag ₂ CO ₃	dioxane	92
14	$Pd(OAc)_2(5)$	Ag ₂ CO ₃	dioxane	62
15	Pd(TFA) ₂ (10)	Ag ₂ CO ₃	dioxane	71
16	Pd(Cl) ₂ (10)	Ag ₂ CO ₃	dioxane	66
17	Pd(OAc) ₂ (10)	Ag ₂ O	dioxane	88
18	Pd(OAc) ₂ (10)	PhI(OAc)₂	dioxane	0
19	[Ru] (5) ⁱ	Ag ₂ CO ₃	PhMe	0
20	[Cp*RhCl ₂] ₂ (5)	Ag ₂ CO ₃	PhMe	39

^a All reactions were carried with 0.5 mmol **1a**, 1.0 mmol of **2a**, 10 mol% of Pd(OAc)₂, 2.4 equiv of $[Ag^+]$ or $[Cu^{2+}]$, 5 mL of solvent, sealed flask, 110 °C, 12 h. ^b isolated yield. ^c 0.5 equiv of CF₃COOH. ^d 1.0 equiv of $[Cu^{2+}]$, 1.0 atm of O₂. ^e 2.0 equiv of $[Cu^{2+}]$, 1.0 atm of O₂. ^f 2.4 equiv of BQ. ^g DCE = dichloroethane. ^h DME = dimethoxyethane. ⁱ [Ru] = [Ru(p-cymene)Cl₂]₂.

With the optimal reaction conditions established, the generality of this reaction was explored by the reaction of tertbutyl isocyanide with a variety of 2-vinylanilinic substrates. The results are summarized in Table 2. Both electron-donating and -withdrawing groups, e.g., methyl (1b), methoxy (1c), chloro (1d), and bromo (1e), para to the nitrogen were well tolerated. The tolerance of halogen is especially interesting because the halogen atom offers a further avenue for structural elaboration. Steric crowding, by introduction of a substituent, such as Me and Cl, ortho to the amino group of the aniline, depressed the yields of 3fa and 3ga. The properties of R₂ have a significant effect on the efficiency of this reaction. When R₂ were p-Cl-phenyl, phenyl, and p-Me-phenyl, the corresponding products 3ha, 3ba, and 3ia were obtained in 72%, 80%, and 94% yields, respectively, indicating that direct correlation exists between the yields and the electron density of the phenyl group. Using methyl group instead of aromatic groups decreased the yields slightly (3ja-3ma). The substrate without substitution on the vinyl group only formed the desired product 3na in 48% yield. This was not due to its susceptibility to polymerization at elevated temperatures, because most of unreacted starting material was recovered. Gratifyingly, the transformation tolerates substituents on the other side of the double bond. When R_3 was Me instead of H (Table 2, entry 15; E/Z = 1:1), the product **3oa** was isolated in 76% with only trace amount of **1o** left. The substrates with endocyclic C=C bonds **1p** and **1q** also gave the desire products **3pa** and **3qa** in moderate yields (Table 2, entries 16 and 17). The substrate **1r** with strongly electron- withdrawing group NO₂ also produced the target product **3ra** in acceptable yield (entry 18). It is noteworthy that 2-(2-propen-1-yl)aniline (**1s**) only provided 20% of the anticipated product **3sa**, demonstrating that the conjugation of the vinyl group to the aryl moiety plays a key role in this transformation.¹⁸

 Table 2. Synthesis of 2-tert-Butylaminoquinolines Using tert-Butyl Isocyanide^a

entry	1	R ₁	R ₂	R_3	product	yield (%) ^b
1	1a	Н	Ph	Н	3aa	92
2	1b	4-Me	Ph	н	3ba	80
3	1c	4-MeO	Ph	н	3ca	72
4	1d	4-Cl	Ph	н	3da	87
5	1e	4-Br	Ph	н	3ea	65
6	1f	6-Me	Ph	н	3fa	58
7	1g	6-Cl	Ph	н	3ga	37 ^c
8	1h	4-Me	p-Cl-Ph	н	3ha	72
9	1i	4-Me	p-tolyl	н	3ia	94
10	1j	н	Me	н	3ja	73
11	1k	5-Cl	Me	н	3ka	63
12	11	5-F	Me	н	3la	61
13	1m	4-Me	Me	н	3ma	73
14	1n	н	н	н	3na	48
15	10	н	Ph	Me	3oa	76
16	1p	4-Me	-(CH ₂)	3-	Зра	58
17	1q	4-Me	- (CH ₂),	4-	3qa	60
18	1r	4-NO ₂	Ph	н	3ra	32

^a All reactions were carried with 0.5 mmol of **1**, 1.0 mmol of **2a**, 10 mol % of Pd(OAc)₂, 1.2 equiv of Ag_2CO_3 , 5 mL of dioxane, sealed flask, 110 °C, 12 h. ^b isolated yield. ^c determined by 1H NMR spectroscopy.

The scope of isocyanides was further investigated by the reaction of several isocyanides with 2-(1-phenyl-vinyl)aniline (Scheme 1). The results demonstrate that the substitution of isocyanide plays a key role in this transformation and the *tert*-butyl group is certainly the best of all functional groups tested. The secondary aliphatic group, *iso*-propyl, gave the anticipated products **3ab** in moderate yield (48%). The primary aliphatic group, *n*-Hexyl, gave a rather poor yield of product **3ac** (24%). Phenyl group only gave a trace amount of product **3ad**. It was very interesting that 2,6-diisopropylphenyl provided single-insertion product **3ae** and 2,4,6-trimethylphenyl offered the double-insertion product **3af**, albeit both in low yields.

DOI: 10.1039/C5OB01659B ARTICLE

There are three possible pathways for this ring-closing process: (i) oxidative heck-reaction pathway;¹⁷ (ii) direct C-H bond activation (concerted metalation-deprotonation pathway) (Scheme 3, 8'); and (iii) intramolecular nucleophilic attack of the conjugated alkene on the electrophilic palladium(II), followed by deprotonation process (Scheme 3, 8 and 9). The E/Z isomer of 2-(1-phenylprop-1-en-1-yl)aniline (10, E/Z = 1:1) gave the product **30a** in 76% isolated yield with only a trace amount of **10** left under the standard conditions, which favors the pathway (iii) (Table 1, entry 15). The substrate 1p and 1q offered the product 3pa and 3qa in 58% and 60% isolated yield, respectively, which eliminates the heck-reaction pathway. If via heck-reaction pathway, cisinsertion step only gives the intermediate 1p-b, with H_a opposite to the palladium atom (Scheme 2). The following ciselimination step provides the product 1p-c or 1p-d instead of **3pa**. Neither**1p-c** or **1p-d** was observed by NMR spectroscopy.

Scheme 1. Insertion of Isocyanides to vinylaniline 1a⁴

^a All reactions were carried with 0.5 mmol of 1a, 1.0 mmol of 2, 10 mol% of Pd(OAc)₂, 1.2 equiv of Ag₂CO₃, 5 mL of dioxane, sealed flask, 110 °C, 12 h. ^b isolated yield.

Scheme 2.

Based on the preliminary results, a possible mechanism for the formation of 2-aminoquinoline 3 is depicted in Scheme 3 with 1a and 2a as the model substrates. Initially, the nitrogen atom of aniline 1a adds to Pd(II) species 4 to give palladium complex 5, with elimination of acetic acid. Isocyanide 2a

coordinates to the palladium centre of 5, and then inserts to Pd-N bond leading to imidoyl-palladium complex 7, which is converted to intermediate 9 by an intramolecular nucleophilic attack of the conjugated alkene on the electrophilic palladium(II) followed by deprotonation process (path A, Scheme 3, 8 and 9; it is a N-assisted dearomatizationrearomatization process; If the C=C bond is not conjugated with anillinic moiety, the efficiency of this transformation is rather poor¹⁸) or by a carboxylate-assisted direct $C(sp^2)$ -H bond activation pathway (Scheme 3, 8')¹⁹ (path B). Reductive elimination produces 3aa, along with palladium(0) species 10. Complex 10 may then be re-oxidized by an oxidant to the palladium(II) species 4.

Scheme 3. Possible Reaction Mechanism

Conclusions

A new strategy for the synthesis of 2-aminoquinoline derivatives has been developed based on the palladiumcatalyzed direct coupling of 2-vinylanilines and isocyanides. This procedure constitutes a straightforward, efficient and practical access to a synthetically interesting and biologically active class of products. To our knowledge, it is the first oxidative coupling of anilines and terminal alkenes involving isocyanides, and thus expands the methodological scope of palladium-catalyzed migratory insertion of isocyanides.

Experimental section

General procedures for the Pd-catalyzed synthesis of 2aminoquinoline 3

A mixture of Pd(OAc)₂ (0.05 mmol), Ag₂CO₃ (0.6 mmol), 1 (0.5 mmol), 2 (1.0 mmol), and 1,4-dioxane (5 mL) were added sequentially to a heavy glass flask. The resulting mixture was stired and heated at 110 °C for 12 h. After cooling to room temperature, the solvent was removed under reduced pressure, and then the residue was purified by flash

ARTICLE

chromatography with a gradient of hexane to ethyl acetate/hexane (solvent ratios varied with product polarities) as the eluant to afford the products.

N-*tert*-**butyl**-**4**-**phenyl**-**2**-**aminoquinoline**, **3aa**: yellow solid, m.p. = 125.7-127.7 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75 (d, *J* = 8.4 Hz, 1 H), 7.61 (d, *J* = 8 Hz, 1 H), 7.44-7.54 (m, 6 H), 7.14 (t, *J* = 6.8 Hz, 1 H), 6.55 (s, 1 H), 4.68 (s, 1 H), 1.57 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.2, 148.9, 148.7, 138.8, 129.4, 129.3, 128.5, 128.1, 127.1, 125.7, 122.0, 121.9, 113.0, 51.6, 29.6. HRMS (ESI) m/z calcd for C₁₉H₂₀N₂ (M+H)⁺ 277.1700, found 277.1694.

N-*tert*-**butyl**-**6**-methyl-**4**-phenyl-**2**-aminoquinoline, **3b**a: ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.66 (d, *J* = 8.8 Hz, 1 H), 7.46-7.49 (m, 5 H), 7.35-7.37 (m, 2 H), 6.52 (s, 1 H), 4.62 (br s, 1 H), 2.36 (s, 3 H), 1.56 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) *δ* ppm 155.8, 148.5, 147.0, 139.0, 131.4, 131.2, 129.5, 128.5, 128.1, 126.8, 124.7, 121.9, 113.0, 51.5, 29.7, 21.5. HRMS (ESI) m/z calcd for $C_{20}H_{22}N_2$ (M+H)⁺ 291.1856, found 291.1854.

N-*tert*-**butyl**-6-methoxy-4-phenyl-2-aminoquinoline, 3ca: pale yellow solid, m.p. = 85.1-86.2 °C; ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.93 (d, *J* = 8.8 Hz, 1 H), 7.73 (s, 6 H), 7.45-7.51 (m, 1 H), 6.79 (s, 1 H), 4.79 (s, 1 H), 3.98 (s, 3 H), 1.80 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) *δ* ppm 155.2, 154.8, 148.1, 144.3, 138.9, 129.3, 128.6, 128.4, 128.1, 122.2, 120.2, 113.3, 105.4, 55.6, 51.5, 29.7. HRMS (ESI) m/z calcd for $C_{20}H_{22}N_2O$ (M+H)⁺ 307.1805, found 307.1805.

N-*tert*-**butyl**-**6**-**chloro**-**4**-**phenyl**-**2**-**aminoquinoline**, **3da**: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.67 (d, J = 8.8 Hz, 1 H), 7.56 (d, J= 2.4 Hz, 1 H), 7.42-7.53 (m, 6 H), 6.52 (s, 1 H), 4.66 (br s, 1 H), 1.56 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.2, 148.1, 147.2, 138.1, 129.8, 129.3, 128.7, 128.6, 128.4, 127.1, 124.5, 122.7, 113.9, 51.7, 29.5. HRMS (ESI) m/z calcd for C₁₉H₁₉ClN₂ (M+H)⁺ 311.1310, found 311.1309.

N-*tert*-butyl-6-bromo-4-phenyl-2-aminoquinoline, 3ea: ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.71 (d, *J* = 2.0 Hz, 1 H), 7.55-7.62 (m, 2 H), 7.47-7.53 (m, 3 H), 7.42-7.45 (m, 2 H), 6.51 (s, 1 H), 4.67 (br s, 1 H), 1.56 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) *δ* ppm 156.3, 148.1, 147.5, 138.0, 132.4, 129.3, 128.9, 128.7, 128.4, 127.7, 123.4, 114.9, 113.8, 51.8, 29.5. HRMS (ESI) m/z calcd for $C_{19}H_{19}BrN_2$ (M+H)⁺ 355.0805, found 355.0809.

N-*tert*-**butyl**-**8**-**methyl**-**4**-**phenyl**-**2**-**aminoquinoline**, **3f**a: yellow solid, m.p. = 84.1-85.7 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.40-7.49 (m, 7 H), 7.01-7.05 (m, 1 H), 6.44 (s, 1 H), 4.51 (br s, 1 H), 2.72 (s, 3 H), 1.61 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 154.9, 149.2, 147.5, 139.2, 134.8, 129.5, 128.4, 128.0, 123.6, 121.6, 121.4, 113.1, 51.7, 29.1, 19.0. HRMS (ESI) m/z calcd for $C_{20}H_{22}N_2 (M+H)^+$ 291.1856, found 291.1858.

N-*tert*-**butyl**-8-chloro-4-phenyl-2-aminoquinoline, 3ga: white solid, m.p. = 83.5-84.9 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.65 (d, *J* = 8.0 Hz, 1 H), 7.42-7.51 (m, 6 H), 7.01 (t, *J* = 8.0 Hz, 1 H), 6.51 (s, 1 H), 4.76 (br s, 1 H), 1.64 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.9, 149.3, 144.9, 138.4, 131.1, 129.3, 128.5, 128.3, 124.7, 123.3, 121.3, 113.8, 51.9, 29.1; HRMS (ESI) m/z calcd for C₁₉H₁₉ClN₂ (M+H)⁺ 311.1310, found 311.1311.

N-tert-butyl-4-(4-chlorophenyl)-6-methyl-2-aminoquinoline,

3ha: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.65 (d, J = 8.4 Hz, 1 H), 7.30-7.48 (m, 6 H), 6.47 (s, 1 H), 4.60 (br s, 1 H), 2.36 (s, 3 H), 1.55 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.7, 147.2, 147.0, 137.4, 134.1, 131.5, 131.4, 130.7, 128.8, 127.0, 124.4, 121.6, 112.9, 51.6, 29.6, 21.5. HRMS (ESI) m/z calcd for C₂₀H₂₁ClN₂ (M+H)⁺ 325.1467, found 325.1466.

N-tert-butyl-6-methyl-4-(4-methylphenyl)-2-aminoquinoline,

3ia: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.65 (d, J = 8.4 Hz, 1 H), 7.30-7.40 (m, 6 H), 6.53 (s, 1 H), 4.70 (br s, 1 H), 2.47 (s, 3 H), 2.36 (s, 3 H), 1.55 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.9, 148.5, 147.0, 137.9, 136.1, 131.3, 131.2, 129.3, 129.2, 126.8, 124.8, 122.0, 112.8, 51.5, 29.7, 21.5, 21.4. HRMS (ESI) m/z calcd for C₂₁H₂₄N₂ (M+H)⁺ 305.2013, found 305.2016.

N-*tert*-**butyl**-**4**-**methyl**-**2**-**aminoquinoline**, **3ja**: white solid, m.p. = 83.5-84.9 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, J = 8.4 Hz, 1 H), 7.67 (d, J = 8.4 Hz, 1 H), 7.50 (t, J = 7.2 Hz, 1 H), 7.20 (t, J = 7.2 Hz, 1 H), 6.46 (s, 1 H), 4.55 (br s, 1 H), 2.53 (s, 3 H), 1.53 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.5, 148.1, 144.2, 129.1, 127.0, 123.5, 123.4, 121.7, 113.1, 51.4, 29.7, 18.9. HRMS (ESI) m/z calcd for C₁₄H₁₈N₂ (M+H)⁺ 215.1543, found 215.1543.

N-*tert*-**butyl**-**7**-**chloro**-**4**-**methyl**-**2**-**aminoquinoline**, **3ka**: yellow solid, m.p. = 80.3-81.8 °C; ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.61-7.67 (m, 2 H), 7.13 (d, *J* = 8.8 Hz, 1 H), 6.38 (s, 1 H), 4.57 (br s, 1 H), 2.48 (s, 3 H), 1.52 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) *δ* ppm 157.0, 149.0, 143.8, 134.7, 126.1, 124.8, 122.1, 121.8, 113.4, 51.6, 29.5, 18.8. HRMS (ESI) m/z calcd for C₁₄H₁₇ClN₂ (M+H)⁺ 249.1154, found 249.1151.

N-*tert*-**butyl**-**7**-fluoro-4-methyl-2-aminoquinoline, 3la: pale yellow solid, m.p. = 62.0-63.7 °C; ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.66-7.70 (m, 1 H), 7.29 (dd, *J* = 11.0 Hz, 2.4 Hz, 1 H), 6.92-6.97 (m, 1 H), 6.37 (s, 1 H), 4.58 (br s, 1 H), 2.50 (s, 3 H), 1.52 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) *δ* ppm 163.5 (d, *J* = 244 Hz), 157.2, 149.7 (d, *J* = 13 Hz), 143.9, 125.3 (d, *J* = 10.4 Hz), 120.3, 112.4 (d, *J* = 2.1 Hz), 111.0 (d, *J* = 43.1 Hz), 110.9 (d, *J* = 1.5 Hz), 51.6, 29.6, 18.9. HRMS (ESI) m/z calcd for $C_{14}H_{17}FN_2$ (M+H)⁺ 233.1449, found 233.1448.

N-*tert*-**butyl**-**4**,**6**-**dimethyl**-**2**-**aminoquinoline**, **3ma**: yellow solid, m.p. = 108.7-109.9 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 8.4 Hz, 1 H), 7.51 (s, 1 H), 7.34 (dd, *J* = 8.4 Hz, 1.6 Hz, 1 H), 6.46 (s, 1 H), 4.53 (br s, 1 H), 2.52 (s, 3 H), 2.46 (s, 3 H), 1.52 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.1, 146.3, 143.7, 131.0, 130.9, 126.8, 123.3, 122.9, 113.0, 51.3, 29.8, 21.6, 18.9. HRMS (ESI) m/z calcd for C₁₅H₂₀N₂ (M+H)⁺ 229.1700, found 229.1698.

N-*tert*-**butyl**-2-**aminoquinoline, 3na**: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.51 (d, J = 8 Hz, 1 H), 7.07-7.23 (m, 4 H), 5.72 (d, J = 17.6 Hz, 1 H), 5.29 (d, J = 11.2 Hz, 1 H), 1.41 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 138.5, 135.5, 132.8, 131.7, 128.7, 126.1, 124.8, 124.0, 115.0, 57.5, 31.8. HRMS (ESI) m/z calcd for C₁₃H₁₆N₂ (M+H)⁺ 201.1387, found 201.1389.

N-tert-butyl-3-methyl-4-phenyl-2-aminoquinoline, 30a:

yellow solid, m.p. = 93.5-95.8 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.76-7.78 (d, *J* = 8.4 Hz, 1 H), 7.46-7.53 (m, 5 H), 7.24 (s, 1 H), 7.04-7.13 (m, 2 H), 4.54 (br s, 1 H), 1.96 (s, 3 H), 1.66 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.2, 146.4, 145.9, 138.4, 129.6, 128.5, 128.1, 127.5, 126.7, 126.2, 123.2, 121.5, 117.2, 51.9, 29.5, 14.9. HRMS (ESI) m/z calcd for C₂₀H₂₂N₂ (M+H)⁺ 291.1856, found 291.1850.

N-tert-butyl-2,3-dihydro-5-methyl-1H-cyclopenta[c]-9-

aminoquinoline, 3pa: yellow solid, m.p. = 108.1-109.2 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.66-7.68 (d, J = 8.4 Hz, 1 H), 7.30-7.34 (m, 2 H), 4.14 (br s, 1 H), 3.15 (t, J = 15.2 Hz, 7.6 Hz, 2 H), 2.76 (t, J = 14.8 Hz, 7.2 Hz, 2 H), 2.47 (s, 3 H), 2.23-2.29 (m, 2 H), 1.60(s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 153.6, 148.3, 146.1, 130.8, 129.9, 126.9, 125.5, 123.2, 121.7, 51.7, 31.4, 30.5, 29.6, 23.7, 21.5; HRMS (ESI) m/z calcd for C₁₇H₂₂N₂ (M+H)⁺ 255.1856, found 255.1873.

Journal Name

N-tert-butyl-5-methyl-7,8,9,10-tetrahydro-9-

aminophenanthridine, 3qa: yellow solid, m.p. = 97.7-98.8 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.61-7.63 (d, *J* = 8.4 Hz, 1 H), 7.51 (s, 1 H), 7.30-7.32 (d, *J* = 8.0 Hz, 1 H), 4.32 (br s, 1 H), 2.98 (s, 2 H), 2.47 (s, 3 H), 2.42 (s, 2 H), 1.89 (s, 4 H), 1.59 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 154.5, 144.1, 139.7, 130.6, 129.6, 127.0, 122.7, 121.7, 118.5, 51.6, 29.5, 25.5, 24.5, 22.5, 22.1, 21.7; HRMS (ESI) m/z calcd for C₁₈H₂₄N₂ (M+H)⁺ 269.2012, found 269.2007.

N-*tert*-**butyl**-6-nitro-4-phenyl-2-aminoquinoline, 3ra: yellow solid, m.p. = 217.6-219.9 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.54 (s, 1 H), 8.28 (d, *J* = 8.8 Hz, 1 H), 7.72 (d, *J* = 9.2 Hz, 1 H), 7.42-7.51 (m, 5 H), 6.58 (s, 1 H), 5.01 (s, 1 H), 1.59 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 157.9, 152.5, 150.2, 141.9, 137.1, 129.2, 129.9, 127.8, 123.4, 123.1, 120.7, 114.8, 52.4, 29.3. HRMS (ESI) m/z calcd for $C_{19}H_{19}N_3O_2$ (M+H)⁺ 322.1550, found 322.1556.

N-*tert*-butyl-3,4-dihydro-3-methylene-2-aminoquinoline, 3sa: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.16-7.17 (d, *J* = 4.4 Hz, 3 H), 7.05-7.07 (m, 1 H), 5.94-6.04 (m, 1 H), 5.02-5.06 (m, 2 H), 3.43-3.45 (d, *J* = 6.4 Hz, 2 H), 1.40 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 139.1, 137.0, 135.9, 133.9, 130.1, 127.3, 124.8, 123.7, 115.7, 57.3, 36.0, 31.7; HRMS (ESI) m/z calcd for C₁₄H₁₈N₂ (M+H)⁺ 215.1543, found 215.1548.

N-isopropyl-4-phenyl-2-aminoquinoline, 3ab: ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.73 (d, *J* = 8.4 Hz, 1 H), 7.62 (d, *J* = 8 Hz, 1 H), 7.47-7.55 (m, 6 H), 7.12-7.16 (m, 1 H), 6.56 (s, 1 H), 4.67 (d, *J* = 7.2 Hz, 1 H), 4.20-4.25 (m, 1 H), 1.30 (d, *J* = 6.4 Hz, 6 H); ¹³C NMR (101 MHz, CDCl₃) *δ* ppm 156.1, 149.38, 148.9, 138.7, 129.6, 129.4, 128.5, 128.2, 126.5, 125.8, 122.4, 122.0, 111.2, 43.0, 23.3. HRMS (ESI) m/z calcd for C₁₈H₁₈N₂ (M+H)⁺ 263.1543, found 263.1538.

N-*n*-hexyl-4-phenyl-2-aminoquinoline, 3ac: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.74 (d, *J* = 8.4 Hz, 1 H), 7.62 (d, *J* = 8.0 Hz, 1 H), 7.47-7.53 (m, 6 H), 7.12-7.16 (m, 1 H), 6.58 (s, 1 H), 4.81 (br s, 1 H), 3.46-3.51 (m, 2 H), 1.64-1.71 (m, 2 H), 1.42-1.46 (m, 2 H), 1.32-1.35 (m, 4 H), 0.89-0.92 (m, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.8, 149.8, 148.8, 138.7, 129.6, 129.4, 128.5, 128.3, 126.5, 125.9, 122.5, 122.0, 111.0, 42.1, 31.7, 29.9, 26.9, 22.7, 14.2. HRMS (ESI) m/z calcd for C₂₁H₂₄N₂ (M+H)⁺ 305.2013, found 305.2005.

N-(2,6-diisopropylphenyl)-4-phenyl-2-aminoquinoline, 3ae: pink solid, m.p. = 227.2-228.8 °C; ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.60 (d, *J* = 8.4 Hz, 1 H), 7.43-7.52 (m, 2 H), 7.23-7.34 (m, 6 H), 7.14-7.16 (m, 2 H), 7.08 (t, *J* = 7.2 Hz, 1 H), 6.90 (br s, 1 H), 6.17 (s, 1 H), 3.22-3.29 (m, 2 H), 1.07 (d, *J* = 5.2 Hz, 12 H); ¹³C NMR (101 MHz, CDCl₃) *δ* ppm 157.5, 150.7, 148.6, 148.2, 138.6, 133.0, 129.9, 129.3, 128.5, 128.4, 128.2, 126.2, 126.1, 124.2, 122.8, 122.3, 108.9, 31.1, 28.6. HRMS (ESI) m/z calcd for C₂₇H₂₈N₂ (M+H)⁺ 381.2326, found 381.2319.

5-phenyl-2,3-di-(2,4,6-trimethylphenylimino)-1H-

benzo[b]azepine, 3af: pink solid, m.p. = 192.5-193.7 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 9.59 (s, 1 H), 7.89 (d, *J* = 8.4 Hz, 1 H), 7.73 (d, *J* = 8.4 Hz, 1 H), 7.63-7.67 (m, 1H), 7.46-7.48 (m, 3 H), 7.31-7.38 (m, 3 H), 7.06 (s, 2 H), 6.87 (s, 2 H), 6.39 (s, 1 H), 2.34 (s, 3 H), 2.28 (s, 3 H), 2.27 (s, 6 H), 2.19 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 152.9, 151.2, 149.8, 147.9, 147.7, 138.5, 138.2, 136.7, 133.6, 132.0, 130.1, 129.6, 128.8, 128.7, 128.6, 128.5, 128.3, 125.8, 124.3, 124.2, 110.5, 31.1, 21.4, 20.8, 19.1, 18.8, 18.1. HRMS (ESI) m/z calcd for C₃₄H₃₃N₃ (M+H)⁺ 484.2748, found 484.2768.

Acknowledgements

We gratefully acknowledge the National Science Foundation of China (No. 21302152) and Northwest University for financial support

Notes and references

- 1 (a) K.Turner Org. Process Res. Dev. 2010, 14, 759. (b) http://www.aldara.com/
- 2 (a) J. M. Harris, B. R. Neustadt, H. Liu, J. Hao, A. W. Stamford Int. Patent WO 2009111442, 2009. (b) N. T. T. Osakada, S. Uchida, S. Ono, N.Nakazato Jpn. Patent JP 2005132834, 2005.
- 3 E. Baxter Int. Patent WO 2009097278, 2009.
- 4 (a) D. E. Clark, C. Higgs, S. P. Wren, H. J. Dyke, M. Wong, D. Norman, P. M. Lockey, A. G. Roach *J. Med. Chem.* 2004, *47*, 3962. (b) J. Jiang, M. Hoang, J. R. Young, D. Chaung, R. Eid, C. Turner, P. Lin, X. Tong, J. Wang, C. Tan, S. Feighner, O. Palyha, D. L. Hreniuk, J. Pan, A. W. Sailer, D. L. MacNeil, A. Howard, L. Shearman, S. Stribling, R. Camacho, A. Strack, L. H. T. Van der Ploeg, M. T. Goulet, R. J. DeVita *Bioorg. Med. Chem. Let.* 2006, *16*, 5270.
- 5 (a) S. Kondo, R. Takai Org. Lett. 2003, 15, 538. (b) J.-S. Li, F.-X. Chen, R. Shikiya, L. A. Marky, B. Gold J. Am. Chem. Soc. 2005, 127, 12657. (c) K. Nakatani, S. Sando, H. Kumasawa, J. Kikuchi, I. Saito J. Am. Chem. Soc. 2001, 123, 12650. (d) K. Nakatani, S. Sando, I. Saito J. Am. Chem. Soc. 2000, 122, 2172.
- 6 C. K. McGill, A. Rappa Adv. Heterocycl. Chem. 1988, 44, 1.
- 7 (a) S. R. Inglis, C. Stojkoski, K. M. Branson, J. F. Cawthray, D. Fritz, E. Wiadrowski, S. M. Pyke, G. W. Booker J. Med. Chem. 2004, 47, 5405. (b) M. A. Cinelli, H. Li, G. Chreifi, P. Martasek, L. J. Roman, T. L. Poulos, R. B. Silverman J. Med. Chem. 2014, 57, 1513. (c) S. Inglis, R. Jones, D. Fritz, C. Stojkoski, G. Booker, S. Pyke Org. Biomol. Chem. 2005, 3, 2543. (d) J.-S. Li, F.-X. Chen, R. Shikiya, L. A. Marky, B. Gold J. Am. Chem. Soc. 2005, 127, 12657.
- 8 (a) S. Ge, R. A. Green, J. F. Hartwig J. Am. Chem. Soc. 2014, 136, 1617. (b) C. W. Cheung, D. S. Surry, S. L. Buchwald Org. Lett., 2013, 15, 3734. (c) L. Nicolas, P. Angibaud, I. Stansfield, L. Meerpoel, S. Reymond, J. Cossy RSC Adv. 2013, 3, 18787. (d) D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura, S. L. Buchwald Chem. Sci. 2011, 2, 57. (e) S. Breitler, N. J. Oldenhuis, B. P. Fors, S. L. Buchwald Org. Lett. 2011, 13, 3262. (f) Q. Shen, J. F. Hartwig Org. Lett. 2008, 11, 4109. (g) Q. L. Shen, S. Shekhar, J. P. Stambuli, J. F. Hartwig Angew. Chem., Int. Ed. 2005, 44, 1371.
- 9 (a) J. Yin, B. Xiang, M. A. Huffman, C. E. Raab, I. W. Davies J. Org. Chem. 2007, 72, 4554. (b) M. Couturier, L. Caron, S. Tumidajski, K. Jones, T. D. White Org. Lett. 2006, 8, 1929. (c) T. Storz Org. Proc. Res. Dev. 2004, 8, 663. (d) Y. Miura, S. Takaku, Y. Fujimura, M. Hamana Heterocycles 1992, 34, 1055.
- 10 (a) G. Li, C. Jia, K. Sun Org. Lett. 2013, 15, 5198. (b) C. Zhu, M. Yi, D. Wei, X. Chen, Y. Wu, X. Cui Org. Lett. 2014, 16, 1840.
- 11 (a) K. Wang, E. Herdtweck, A. Domling ACS Com. Sci. 2012, 14, 316. (b) T. H. Althuis, P. F. Moore, H. J. Hess J. Med. Chem. 1979, 22, 44.
- 12 (a) K. J. Wiggall, S. K. Richardson, J. Heterocycl. Chem. 1995, 32, 867. (b) P. Molina, M. Alajarin, A. Vidal, P. Sanchez-Andrada J. Org. Chem. 1992, 57, 929. (c) G. Gast, J. Schmutz, D. Sorg, Helv. Chim. Acta, 1977, 60, 1644.
- (a) J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao Chem. Rev. 2015, 115, 5301. (b) V. Boyarskiy, N. A. Bokach, K. Luzyanin, V. Y. Kukushkin, Chem. Rev. 2015, 115, 2698. (c) T. Vlaar, B. U. W. Maes, R. V.A. Orru Angew. Chem., Int. Ed. 2013, 52, 7084. (d)

S. Lang, *Chem. Soc. Rev.* **2013**, *42*, 4867. (e) G. Qiu, Q. Ding, J. Wu *Chem. Soc. Rev.* **2013**, *42*, 5257.

- 14 For selected reviews on carbonylations, see: (a) L. Yang, H. M. Huang *Chem. Rev.* 2015, *115*, *3468.* (b) X. F. Wu, H. Neumann, M. Beller, *Chem. Rev.* 2012, *113*, 1. (c) X. F. Wu, H. Neumann, M. Beller *Chem. Soc. Rev.* 2011, *40*, 4986. (d) A. Brennführer, H. Neumann, M. Beller *Angew. Chem., Int. Ed.* 2009, *48*, 4114. (e) A. Brennführer, H.; Neumann, M. Beller *ChemCatChem* 2009, *1*, 28. (f) B. Gabriele, G. Salerno, M. Costa, G. P. Chiusoli, *Curr. Org. Chem.* 2004, *8*, 919. (g) B. Gabriele, G. Salerno, M. Costa *Costa*, G. Salerno, M. Costa *Top. Organomet. Chem.* 2006, *18*, 239. (h) R. Skoda-Földes, L. Kollár *Curr. Org. Chem.* 2002, *6*, 1097.
- 15 For selected recent examples, see: (a) U. K. Sharma, N. Sharma, J. Xu, G. Dong, E. K. Van der Eycken Chem. Eur. J. 2015, 21, 4908. (b) X. Jiang, J.-M. Wang, Y. Zhang, Z. Chen, Y.-M. Zhu, S.-J. Ji Org. Lett. 2014, 16, 3492. (c) X. Jiang, T. Tang, J.-M. Wang, Z. Chen, Y.-M. Zhu, S.-J. Ji J. Org. Chem. 2014, 79, 5082. (d) J. Wang, S. Luo, J. Huang, T. Mao, Q. Zhu Chem. Eur. J. 2014, 20, 11220. (e) T. Vlaar, L. Bensch, J. Kraakman, C. M. L. Vande Velde, B. U. W. Maes, R.V. A. Orru, E. Ruijter Adv. Synth. Catal. 2014, 356, 1205. (f) T.-H. Zhu, S.-Y. Wang, Y.-Q. Tao, T.-Q. Wei, S.-J. Ji Org. Lett. 2014, 16, 1260. (g) Q. Zheng, P. Luo, Y. Lin, W. Chen, X. Liu, Y. Zhang, Q. Ding Org. Biomol. Chem. 2015, 13, 4657. (h) Y. Oda-bachian, S. Tong, Q. Wang, M.-X. Wang, J. Zhu Angew. Chem. Int. Ed. 2013, 52, 10878. (i) T. Vlaar, P. Mampuys, M. Helliwell, B. U. W. Maes, R. V. A. Orru, E. Ruijter J. Org. Chem. 2013, 78, 6735. (j) T. Tang, X.-D. Fei, Z.-Y. Ge, Z. Chen, Y.-M. Zhu, S.-J. Ji, J. Org. Chem. 2013, 78, 3170. (k) H. Jiang, B. Liu, Y. Li, A. Wang, H. Huang, Org. Lett. 2011, 13, 1028. (I) J. Peng, L. Liu, Z. Hu, J. Huang, Q. Zhu Chem. Commun. 2012, 48, 3772. (m) T. Vlaar, R. C. Cioc, P. Mampuys, B. U. W. Maes, E. Ruijter, R. V.A. Orru Angew. Chem., Int. Ed. 2012, 51, 13058.
- 16 T. V. laar, R. V. A. Orru, B. U. W. Maes, E. Ruijter J. Org. Chem. 2013, 78, 1046.

17 (a) J. Ferguson, F. Zeng, H. Alper, *Org. Lett.* 2012, *14*, 5602. (b) J. Ferguson, F. Zeng, H. Alper *Org. Lett.* 2013, *15*, 1998.
18

(the exocyclic C=C bond was determined by *DEPT* 135, see supporting information)

19 L. Ackermann, Chem. Rev. 2011, 111, 1315.