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cyanocuprate[17] derived from 13, to yield the diol. After
cleavage of the silyl protecting groups, 14 was subjected to
NIS-induced dithiane deprotection to form the single spiro-
ketal 15 in good overall yield. Based on literature prece-
dent,[18] we anticipated spiroketal formation to be stereo-
selective in the desired sense; indeed, NOE experiments
(NOE� nuclear Overhauser enhancement) confirmed this
configuration at the spirocenter. By routine synthetic oper-
ations the protecting groups of alcohols in 15 were then
adjusted resulting in tetraol 16. The protecting groups at the
C1 and C17 primary alcohols were differentiated, and the C9
tertiary alcohol was left unprotected. Since the requisite C5
and C15 acetates were compatible with the remaining
synthetic operations, they were installed at this juncture.[19]

The C15 acetyl group was found to migrate readily to the C17
primary alcohol once the TBS protecting group was removed.
Therefore, the C17 alcohol generated from 17 was immedi-
ately subjected without purification to Dess ± Martin oxida-
tion[20] to furnish aldehyde 18.

Scheme 3 summarizes the synthesis of the trans vinyl iodide
26.[21] The key reactions used in this sequence were funda-
mentally the same as those described for the synthesis of the
C1 ± C17 segment. However, several comments are in order.
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Scheme 3. Synthesis of the C18 ± C28 fragment: a) Et3N, TBSCl, DMAP,
CH2Cl2, 90%; 1,3-dithiane, nBuLi, THF, ÿ208C, then DMPU, then
epoxide, THF, ÿ78!ÿ 208C, 83%; TBAF, THF, quant.; NaH, THF, 08C,
Ts-im, 08C, 79 %; b) CuCN, vinyllithium, ÿ788C, then 20, THF, ÿ20!08C,
85%; NaH, MeI, THF, 08C, 90%; c) Et3N, TBDPSCl, DMAP, CH2Cl2,
90%; CuCN, vinyllithium, ÿ788C, then epoxide, Et2O, ÿ30!08C, 92%;
nBuLi, Et2O, BOCÿON, THF, ÿ78!208C, 96 %; IBr, PhMe, ÿ78!08C,
78%; d) K2CO3, MeOH, 78%; imidazole, TBDPSCl, CH2Cl2, 91%; e)
tBuONa, nBuLi, pentane, 0!208C, then ÿ788C, 21, THF, ÿ788C, then 23,
THF, ÿ78!ÿ 208C, 54% and 44% recovered 23 ; f) TBAF, THF, 08C,
92%; Et3N, TBDPSCl, DMAP, CH2Cl2, 72 %; NIS, CaCO3, MeOH, 08C,
78%; imidazole, TBDPSCl, CH2Cl2, 86 %; NMO, OsO4, acetone/H2O;
NaIO4, MeOH/(pH 7 phosphate buffer), 0!208C; DAMP, tBuOK, THF,
ÿ788C, then aldehyde, THF,ÿ788C, 79% over 3 steps; g) nBu3SnH, AIBN,
toluene, 1058C, 67 %; CaCO3, NIS, THF, quant.; TBAF, THF, 92%;
iPr2NEt, MPMOCH2Cl,[36] CH2Cl2, 98%; TBAF, THF, quant.; imidazole,
TBSCl, CH2Cl2, 99%.

First, while ring-opening of 20 was accomplished with the
anion of TMS-acetylene allowing earlier incorporation of the
alkyne moiety, clean lithiation of the resultant dithiane
proved difficult. Second, deprotection of the dithiane group
(step f) resulted in a single methyl ketal, whose configuration
was tentatively assigned as indicated but was not established
experimentally. Third, the hydrostannylation of 25, followed
by NIS treatment, yielded mainly the expected product, along
with a small amount of its regio- and stereoisomers. Finally,
the C25 TBDPS protecting group was required for efficient
synthesis of 25 but the final deprotection to form altohyrtin A
(1) necessitated substitution to the more labile TBS protecting
group.

The completion of the synthesis of 32 is illustrated in
Scheme 4. The NiII/CrII-mediated coupling[12] of 26 with 18
proceeded smoothly to yield the two expected allylic alcohols,
which were oxidized to a,b-unsaturated ketone 27. After
hydrolysis to the C23 hemiketal, the crucial intramolecular
Michael cyclization was effected with Triton-B to furnish
spiroketal 28 with concomitant deprotection of the C1
methoxyacetate.[22] Out of four possible products, only one
diastereomer was isolated. ROESY data on the C1 TBS ether
of 28 clearly demonstrated the C19 stereocenter to be desired
but the C23 spirostereocenter to be undesired.[23, 24] In light of
recent work by Heathcock,[7b] the stereochemical outcome at
this spirocenter was not surprising. This stereocenter was
configurationally stable under acidic conditions with a
protected C25 alcohol, but was expected to epimerize readily
if the C25 alcohol was deprotected.[7b] Indeed, deprotection of
28 with HF ´ py in CH3CN provided a separable 1:1 mixture of
desired C23 diastereomer 30 and undesired 29, which could be
recycled efficiently under acidic conditions (HF ´ py/CH3CN
or CSA/CH2Cl2). Reprotection of the C1 and C25 alcohols
with TBSOTf proceeded without compromising the integrity
of C23 spiroketal stereocenter.

NMR (NOE) data on the C1 TBS-ether of 31 clearly
demonstrated the desired configurations at C19 and C23.[23,24]

Selective deprotection of the C1 TBS group, followed by
TPAP[25] oxidation, NaClO2

[26] oxidation, TBDPSCl protec-
tion,[27] and finally cleavage of the C28 protecting group with
DDQ[28] furnished the desired product. Interestingly, a small
amount of the C23 epimeric spiroketal was isolated during the
DDQ deprotection step. Finally, Dess ± Martin oxidation of
the C28 primary alcohol furnished 32, the ABCD unit of the
target.

Using the methods disclosed in the following communica-
tion, we completed the total synthesis of the C23 epimer of
altohyrtin A from intermediate 28 with the hope that the C23
stereocenter might be equilibrated to the natural configura-
tion. Although both altohyrtin A and its C23 epimer were
relatively stable under acidic conditions (HF ´ py/THF, CSA/
CH2Cl2, or HCl/CHCl3), there was no evidence of inversion at
the C23 stereocenter.[29] This experiment demonstrated that
the macrolactone prevents epimerization at the C23 position,
suggesting that the correct C23 configuration must be
installed prior to macrolactonization.
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Scheme 4. Synthesis of the C1 ± C28 fragment: a) NiCl2/CrCl2, (ÿ)-bispyridinyl ligand,[12c] THF, 86%; Dess ± Martin periodinane, py, CH2Cl2, 83%; b) PPTS,
acetone/H2O; Triton-B, MeOH/ MeOAc, 08C, 50 % over 2 steps; c) HF ´ py, CH3CN, 25 % (an additional 25% was obtained by equilibration of the C23
epimer 29 with CSA/CH2Cl2); d) 2,6-lutidine, TBSOTf, ÿ788C, 79%; HF ´ py/py/THF, 82%; e) TPAP, NMO, 4 � molecular sieves, CH2Cl2; NaClO2,
NaH2PO4, tBuOH/2-methyl-2-butene, 83 % over 2 steps; Et3N, TBDPSCl, CH2Cl2, 82 %; DDQ, CH2Cl2/H2O, 53 %; Dess ± Martin periodinane, py, CH2Cl2,
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Total Synthesis of Altohyrtin A
(Spongistatin 1): Part 2**
Matthew M. Hayward, Rebecca M. Roth,
Kevin J. Duffy, Peter I. Dalko, Kirk L. Stevens,
Jiasheng Guo, and Yoshito Kishi*

In the preceding communication we reported the synthesis
of the ABCD unit of altohyrtin A.[1] We will now present the
synthesis of the EF unit and the completion of a total synthesis
of altohyrtin A.

The first step in the retrosynthetic analysis of EF fragment
B was the C37 ± C38 bond disconnection. In the synthetic
direction, it was expected that this bond formation could be
realized by nucleophilic addition of glycal carbanion F to C38
aldehyde G, followed by acid-catalyzed methanolysis of the
resultant glycal. Fragment G was then disconnected into
carbanion I and glycal epoxide H, which should be available
from the corresponding glycal J.[2] We were particularly
interested in this disconnection strategy because of the
obvious structural similarity between F and J ; F and J might
be synthesized with similar chemistry or even via a common
intermediate. These glycals could be prepared from the
corresponding acyclic precursors F' and J', which contain a
typical polypropionate/acetate arrangement of functional
groups. Among the many synthetic methods known for the
preparation of polypropionates/acetates, the chemistry devel-
oped by Roush et al.[3] and by Brown et al.[4] were chosen. The
proposed carbanion I, or its synthetic precursor, contained the
novel chlorodiene functionality which, to the best of our
knowledge, had never been synthesized before. It was
anticipated that the chlorodiene moiety could be incorporated
by the addition of an organometallic species, derived from 2,3-
dichloropropene, to aldehyde L, followed by dehydration.

As illustrated in Scheme 1, the E-ring building block was
synthesized by utilizing sequential crotyl- and allyl-boronate
chemistry.[5, 6] While both the Brown and Roush methods gave
the desired adducts, the Brown methodology was superior in
terms of stereoselectivity. After protection of the C35 alcohol
of 5 and cleavage of the C33 benzyl protecting group, 6 was
transformed into glycal 7 by means of a b-ketoester to
facilitate the thermally induced elimination. Finally, glycal 7
was converted into iodoglycal 8 with the method developed by
Freisen;[7] the TIPS protecting groups at C29 and C35 were
required for clean lithiation of the glycal. Alternatively, 6 was

chloride; NCS�N-chlorosuccinimide; NIS�N-iodosuccinimide;
NMO�N-methylmorpholine N-oxide; Piv� pivaloyl; PPTS�pyri-
dinium p-toluenesulphonate; TBAF� tetrabutylammonium fluoride;
TBAI� tetrabutylammonium iodide; TBDPS� tert-butyldiphenyl-
silyl; TBS� tert-butyldimethylsilyl; Tf� triflate; TIPS� triisopropyl-
silyl; TPAP� tetrapropylammonium perruthenate; Ts-im�para-
toluenesulphonyl imidazole; Ts2O� para-toluenesulfonic anhydride.
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Scheme 1. Synthesis of the C29 ± C37 fragment: a) (ÿ)-Ipc2-(Z)-crotyl
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97%; NMO, OsO4, THF/H2O; NaIO4, MeOH/H2O, 0!208C; c) (ÿ)-Ipc2-
allyl boronate,[4a] PhMe, ÿ788C, 64% over 3 steps; d) 2,6-lutidine,
TIPSOTf, CH2Cl2, 0!208C; Li/NH3, THF, ÿ788C, 81% over 2 steps; e)
NMO, OsO4, THF/H2O; NaIO4, MeOH/H2O, 0!208C; Et3N, diketene
acetone adduct, hexanes, 708C; 1258C, 0.2 Torr, 54% over 4 steps; f) tBuLi,
THF, ÿ78!ÿ 308C, then Bu3SnCl, ÿ78!208C; K2CO3, NIS, THF, 08C,
75% over 2 steps; g) Et3N, MsCl, Et2O; HF ´ py/py/THF, 61 % over 2 steps
(an additional 15% was obtained by recycling the bis-silylated starting
material once); KOH, MeOH, 92%; sulfone,[30] nBuLi, ÿ78!208C, 87%;
Li/NH3, THF, ÿ788C, 85%.

also obtained from intermediate 13, used in the F-ring
synthesis (Scheme 2).

The same methods were used to construct the F-ring building
block 14. The TIPS protecting groups for the C38 and C41
alcohol in glycal 14 enhanced the stereoselectivity of epoxida-
tion with DMDO;[2] only epoxide 15 was detected by 1H NMR.

The synthesis of C44 ± C48 segment 18 is also included in
Scheme 2.[8] The C45 ± C46 bond was formed by cuprate
coupling between a-bromoacrolein diethyl ketal 16[9] and (R)-
TBS-glycidol 17 to afford the homoallylic alcohol. Acid
treatment in acetone allowed concomitant deprotection of the
TBS ether, formation of the acetonide, and hydrolysis of the
acetal to form the a,b-unsaturated aldehyde, which was
transformed into the allylstannane 18 in three steps.

Simple alkyl cuprate addition to a glycal epoxide was first
reported by this group.[10] The present case required the
addition of a highly functionalized allylic derivative. Although
methallyl cuprates readily added to 15, allyl cuprates bearing
the C47 and C48 functionalities exhibited greatly diminished
reactivity towards epoxide 15. Among a variety of allylstan-
nanes prepared and tested, only acetonide allylstannane 18
gave satisfactory results. While an excess of 18 was required to
drive the reaction to completion, it was readily recovered
from the crude reaction mixture. In this fashion, 19 was
obtained in good yield with high stereoselectivity. As noted
previously,[1] the C41 and C42 alcohols were masked with
identical protecting groups followed by manipulation at C47
and C48 to allow for oxidation to aldehyde 21.

Although no methodology existed to install the chloro-
diene, it was known that allylindium species prepared from
allylic halides react with aldehydes under mild conditions.[11]

Coupling of the allylindium reagent derived from 2,3-dichloro-
propene[12] with aldehyde 21 cleanly afforded the two
homoallylic alcohols, which were then dehydrated with
Martin�s sulfurane[13] to afford exclusively the trans-chloro-
diene in high overall yield. Cleavage of the C38 TBS
protecting group, followed by Swern oxidation of the primary
alcohol, furnished aldehyde 22.
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The crucial coupling of the E- and F-ring building blocks
(Scheme 3) was envisioned to arise from the addition of an E-
ring nucleophile to the highly functionalized aldehyde 22.
Studies on model compounds suggested the importance of a
chelation-controlled addition to obtain the desired config-
uration at C38.[14] Thus, the novel Grignard reagent was
prepared by treatment of 8 with tert-butyllithium, followed by
addition of magnesium dibromide, and was coupled with
aldehyde 22 to furnish the desired alcohol 23 in excellent yield
and with high stereoselectivity.[15] Attempts to form the
methyl ketal directly from glycal 23 by addition of acidic
methanol resulted in undesired Ferrier-type rearrangements.
However, a two step procedure involving iodomethanolysis[16]

and reductive dehalogenation gave a satisfactory result.
Addition of bromobenzene allowed for selective reduction
of the alkyl iodide in the presence of the chlorodiene. The
configuration of the C38 alcohol was established by modified
Mosher ester analysis on the methyl ketal of 23.[17, 18] The TIPS
protecting groups at C29, C35, C47 were switched to the more
labile TBS groups at this stage.[19] After selective cleavage of
the primary C29 TBS group, 24 was converted into phospho-
nium salt 25. The methyl ketal present at C37 was prone to
elimination to form the corresponding glycal under thermal
and acidic conditions. This side reaction was significantly
suppressed by addition of methanol.

As shown in Scheme 4, 25 and 32 (synthesis described in the
preceding communication) were coupled by utilizing a titra-

tion protocol[20] for Wittig olefination to afford the cis-olefin
26 (JH28,H29� 10.0 Hz). DDQ cleavage[21] of the C41 and C42
MPM protecting groups occurred with concomitant, but
incomplete, hydrolysis of the methyl ketal. Fluoride induced
removal of the silyl ester and macrolactonization under the
Yamaguchi conditions[22] proceeded smoothly to furnish the
desired macrolactone 27. As anticipated,[1] macrolactonization
occurred selectively at the C41 alcohol.[23] At this stage the
unhydrolyzed C37 methyl ketal could be separated from the
lactol.[24] Finally, cleavage of the three TBS protecting groups
in 27 furnished synthetic altohyrtin A (or spongistatin 1; 1).[25]

The synthetic material was found to be identical (1H NMR in
[D6]DMSO and CD3CN, MS, [a]D, TLC) with the authentic
sample kindly provided by Professor Motomasa Kobayashi at
Osaka University. In addition, the synthetic and natural
materials exhibited the same biological activity.[26,27] It is
exciting and intriguing to note that the C23 epimer of
alothyrtin A[1] also exhibits potent cytotoxicty.[26, 27]

In summary, this synthesis has firmly established the
relative and absolute configuration proposed for altohyrtin A
by the Kitagawa group. To the best of our knowledge, there
has been no direct comparison of altohyrtin A and spongi-
statin 1. However, comparison of the 1H NMR spectra for
both authentic and synthetic altohyrtin A with the spectrum
(CD3CN) of spongistatin 1 deposited in the supplementary
material by Pettit[28] presents a convincing case that they are
indeed the same compound. Thus, this work resolves the
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THF, ÿ788C, 81 %; h) Me2Cu(CN)Li2, 18, 08C, then 15, ÿ43!ÿ 158C, 70 %;[33] i) TBAF, THF, quant.; TBSCl, DMAP, CH2Cl2/Et3N, 91 %; KH, MPMCl,
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discrepancies in the configuration between altohyrtin A and
spongistatin 1, and we further speculate that configuration of
all the members in the spongipyran class of natural products is
represented by structure 1.[29]
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