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 5 

Highly functionalized oxazinanes are efficiently prepared 
through urea-catalyzed formal [3+3] cycloaddition reactions 
of nitrones and nitrocyclopropane carboxylates.  The reaction 
system is general with respect to both the nitrocyclopropane 
carboxylates and nitrones enabling the preparation of a large 10 

family of oxazinanes, typically in high yield.  This method 
affords access to enantioenriched oxazinane products through 
chirality transfer from enantioenriched nitrocyclopropane 
carboxylates. 
  15 

Formal cycloaddition reactions of donor acceptor cyclopropanes 
have emerged as useful methods to access biologically important 
heterocycles.1 More specifically, the activation of 1,1-
diestercyclopropanes (1) under Lewis acidic conditions is a 
powerful strategy to effect formal [3+2] cycloaddition reactions 20 

with partners such as imines and aldehydes to give rise to 
pyrrolidines (2, X = N) and tetrahydrofurans (2, X = O, Scheme 
1).2  Similarly, formal [3+3] cycloadditions of 1 with nitrones are 
efficiently catalyzed in the presence of Lewis acids to yield 
oxazinanes (3).3 It is surprising that reactions of 25 

nitrocyclopropane carboxylates (4), another interesting family of 
activated cyclopropanes, remain significantly less studied than 
1,1-diestercyclopropanes.4  Only a few reports exist on 
nucleophilic ring-opening reactions of nitrocyclopropane 
carboxylates5,6 and to the best of our knowledge there are no 30 

previous publications exploring formal cycloaddition reactions of 
species like 4.  
 

Scheme 1. Select reactions of activated cyclopropanes.  

 
  

 The development of cycloaddition methodology of 35 

nitrocyclopropane carboxylates (4) presents the opportunity for 
compelling investigations for at least two reasons: (1) the 
incorporation of the nitro group, an easily manipulated 
functionality for bioactive target synthesis, into the product and 
(2) the rapid buildup of molecular complexity via the direct 40 

installation of several stereocenters, including an additional 
stereocenter when compared to similar reactions of 1,1-
diestercyclopropanes.  Intrigued by the promise of developing a 
new process to access highly-functionalized building blocks in a 
single step, we became curious to identify conditions in which 45 

nitrocyclopropane 4 would react in a formal [3+3] cycloaddition 
reaction with a nitrone to generate highly functionalized 
oxazinane 5.  
 The starting point for our studies on formal cycloaddition 
chemistry of nitrocyclopropane carboxylates was inspired by the 50 

recent discovery in our laboratory that ureas7 are able to catalyze 
ring-opening reactions of nitrocyclopropane carboxylates (4) in 
the presence of strong nitrogen nucleophiles (Scheme 2).6 While 
the urea-catalyzed conversion of 4a to 7 did provide encouraging 
evidence to pursue our investigations, we were also aware this 55 

methodology was limited to strong nucleophiles. At the 
beginning of our studies we were uncertain if ureas would be 
effective catalysts to activate nitrocyclopropane carboxylates for 
reactions with less nucleophilic species, such as nitrones, imines 
and aldehydes, envisioned for participation in cycloaddition-type 60 

chemistry.   Our work in this area was initiated with testing the 
reaction of 4a and 8a to give rise to 5a (Scheme 2). 
 
Scheme 2. Urea activation of nitrocyclopropane carboxylates. 

 
 
 Gratifyingly, optimization of the reaction conditions enabled 65 

the identification of a protocol affording access to 5a in high 
yield as a 2:1 mixture of diastereomers from 4a and 8a in the 
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presence of 15 mol % urea catalyst 9a (Table 1).8   The success of 
the reaction was dependent on solvent and reaction temperature.  
Early testing with dichloromethane provided 5a in low yield 
(35%, entry 1).  Select higher boiling solvents, like toluene and 
chloroform, provided improvements in yield (91% and 79%, 5 

entries 2 and 3).  The best set of reaction conditions were 
identified as toluene at 80 °C with a urea loading of 15 mol % 
giving rise to 91% of 5a after 24 h (entry 5). Notably, 
difluoroboronate urea 9a is a highly active dual HBD catalyst for 
the activation of nitrocyclopropane carboxylates, potentially a 10 

result of enhanced urea polarization due to internal coordination 
of the urea carbonyl to the strategically placed boron.6,9,10,11 The 
difluoroboronate substituent is key as the related boronate urea 
pinacol ester (9c) afforded low yields of 5a (27%).   Conventional 
urea 9b gave rise to good yields of product while conventional 15 

thiourea 9d yielded just 9% of the desired oxazinane 5a.  
Thiourea decomposition at elevated temperatures is proposed to 
be the reason for the poor performance of catalyst 9d.12 

 

Table 1. Urea-catalyzed formal [3+3] cyloaddition optimization. 

 

entrya mol % 9a solvent temp. (oC) 5a yieldb 
1 20 mol % dichloromethane 35 35 
2 20 mol % toluene 100 91 
3 20 mol % chloroform 50 79 
4 20 mol % acetonitrile 50 36 
5 15 mol % toluene 80 91 
6 10 mol % toluene 80 74 

Select urea catalysts explored and yields under the optimized conditions 
in entry 5: 

aReactions performed using 1.5 equivalents of nitrone at a concentration 
of 0.5 M. Control experiments for entry 5 result in a 13% yield of 5a in 
the absence of the catalyst. See Supporting Information for detailed 
experimental procedures. bPercent isolated yield as a 2:1 mixture of 
diastereomers. 
 20 

 Chirality transfer was observed from an enantioenriched 
nitrocyclopropane carboxylate.  Specifically, the subjection of 
enantioenriched 4a to the optimized reaction conditions gave rise 
to 5a as a 2:1 mixture of enantioenriched (91% ee) diastereomers. 
The assignment of the relative stereochemistry of 5a' and 5a'' 25 

was achieved through x-ray crystallographic analysis of crystals 
collected from a racemic mixture (Figure 1).8 The major 
diastereomer 5a' was found to have the two aromatic rings and 
the nitro group cis while 5a'' was epimeric at the carbon bearing 

the nitro group.   30 

 

 
Figure 1. ORTEP representations of oxazinanes 5a' and 5a''. Drawn with 
50% probability displacement ellipsoids. 
 
 The identification of the two diastereomers isolated in 
combination with the observed chirality transfer, led us to a 
plausible stepwise reaction pathway for the transformation 
(Scheme 3).13 After initial activation of the nitrocyclopropane 35 

carboxylate with the urea catalyst, the nitrone undergoes 
nucleophilic addition with inversion of configuration giving rise 
to species I and II.  Evidence for inversion of configuration was 
collected by establishing the absolute configuration of the major 
enantiomer of the oxazinane 5k.8 The stereochemical outcome of 40 

the reaction may result from the cyclization of I and II through 
chair-like transition states. 
   
Scheme 3. Plausible stepwise reaction pathway. 

 
  
 A variety of substituted phenyl rings on the nitrocyclopropane 45 

were found to be well tolerated in the transformation giving rise 
to high yields of the corresponding oxazinane products (Table 2). 
Nitrocyclopropane carboxylates derived from p-chlorostyrene 
and p-bromostyrene afforded good yields of 5b and 5c (67% and 
73%, respectively, entries 2 and 3).  A near quantitative yield of 50 

oxazinane 5d was isolated when a naphthalene-derived 
nitrocyclopropane was incorporated into the process (entry 4).  
Steric hindrance resulting from substitution in the ortho position 
of the phenyl did not prevent the bond-forming event, although in 
select cases lower yields were observed. For example, the 55 

nitrocyclopropanes derived from o-methylstyrene gave rise to a 
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modest yield of 5e (41%, entry 5).  Even 2,4,6-trimethylphenyl 
substituted nitrocyclopropane 4f participated in the cycloaddition 
reaction giving rise to 5f in 47% yield (entry 6).  A good yield of 
oxazinane 5g was observed when the more nucleophilic nitrone 
derived from p-anisaldehyde was employed in the reaction (76%, 5 

entry 7).  Alkenyl substitutents on the nitrocyclopropane did not 
prevent the reaction; however, lower yields were isolated. For 
example, formal [3+3] cycloaddition of 4g and 8a afforded 5h in  
 
 Table 2. Substrate scope of nitrocyclopropane carboxylates. 

 
entrya (±)-4 5 yield (%)b 

1 

4a 5a 

91 

2 

4b 5b 

67 

3 

4c 5c 

73 

4 

4d 5d 

99 

5c 

4e 5e 

41 

6c 

4f 5f 

47 

7c,d 

4f 5g (3:1 dr) 

76 

8 

4g 5h 

25 

aReactions performed using 1.5 equiv of nitrone at a concentration of 0.5 
M in toluene at 80 oC for 24 h. See Supporting Information for detailed 
experimental procedures. bIsolated yield as a 2:1 mixture of diastereomers 
unless otherwise noted. cThe ethyl ester derivative of the 
nitrocyclopropanes was used. dThe nitrone derived from p-anisaldehyde 
was used.  

25% yield (entry 8).  The methodology is currently limited from 10 

the incorporation of electron-rich nitrocyclopropane carboxylates 
because these substrates are unstable and difficult to isolate as 
they easily rearrange to the isoxazoline N-oxide.5e,14 
  
Table 3. Substrate scope of nitrones.  

 
entrya 8 5     yield (%)b 

1 

8b 5i (3:1 dr) 

99 

2 

8c 
5j (4:1 dr) 

91 

3 

8d 5k 

87 

4 

8e 5l 

93 

5 

8f 5m (3:1 dr) 

56 

6 

8g 5n 

47 

aReactions performed using 1.5 equiv of nitrone at a concentration of 0.5 
M in toluene at 80 oC for 24 h. See Supporting Information for detailed 
experimental procedures. bIsolated yield as a 2:1 mixture of diastereomers 
unless otherwise noted.  
 15 

 The reaction of a variety of nitrones (8) with 4a led to the 
formation of variously substituted oxazinanes 5i-n, typically in 
good yield (Table 3).  The nitrone derived from p-tolualdehyde, 
afforded a quantitative yield of oxazinane 5i with 15 mol % of 
catalyst 9a (entry 1).  Oxazinane 5j was isolated in excellent yield 20 

from the nitrone containing an electron-donating methoxy 
substituent (entry 2).  An electron-withdrawing substituent on the 
nitrone derived from p-chlorobenzaldehyde was also well 
tolerated in the formal cycloaddition reaction, affording 87% of 
oxazinane 5k (entry 3).  The nitrone 8e derived from 25 
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cinnamaldehyde also performed well affording 93% of oxazinane 
5l (entry 4).  The N-p-tolyl substituted as well as a piperonal 
derived nitrones were tolerated in the reaction giving rise to 
oxazinanes 5m and 5n in 56% and 47% yields, respectively 
(entries 5 and 6).  In its present state, the reaction precludes use 5 

of nitrones derived from aliphatic aldehydes and N-alkyl 
substituents. In our attempts to incorporate nitrones from both 
acetaldehyde and isobutyraldehyde into the cycloaddition 
reaction we observed only decomposition of nitrone and 
nitrocyclopropane: no cycloaddition adducts were observed. 10 

 The highly functionalized oxazinane products present 
opportunities as building blocks in the synthesis of more complex 
nitrogen-containing target molecules.  Decarboxylation of a 2:1 
mixture of 5a was achieved in good yield in the presence of 
lithium hydroxide to give rise to 10a as a 5:1 diastereomers.8  15 

Chirality transfer from 5a was observed enabling the preparation 
of 10a' and 10a'' as an enantioenriched (95% ee) mixture of 
diastereomers.8  Subjecting 5a (2:1 dr) to mild reduction 
conditions selectively reduced the nitro group providing 
hydroxylamine 11a in excellent yield as a 3:1 mixture of 20 

diastereomers.  Treating 10a' with similar conditions selectively 
reduced the nitro group to the corresponding amine in 97% yield 
(Scheme 4). 
 
Scheme 4. Transformations of oxazinane 5a. 

 

Conclusions 25 

In summary, ureas operate as catalysts for the preparation of 
highly substituted oxazinanes produced from the reaction of 
nitrones with nitrocyclopropane carboxylates.  This is the first 
report of nitrocyclopropane carboxylates participating in formal 
[3+3] cycloaddition reactions.  The oxazinane products can be 30 

isolated in high enantiomeric access via chirality transfer of an 
enantioenriched nitrocyclopropane.  The urea-activation of 
nitrocyclopropane carboxylates fits into a larger on-going 
research program in our laboratory focused on interesting 
reactivity patterns accessed via hydrogen bond donor catalysis. 35 
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