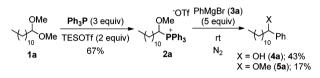
Cite this: Chem. Commun., 2011, 47, 9894–9896

www.rsc.org/chemcomm

COMMUNICATION

An unusual reaction of α -alkoxyphosphonium salts with Grignard reagents under an O_2 atmosphere[†]

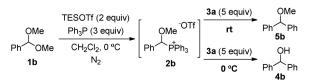

Hiromichi Fujioka,* Akihiro Goto, Kazuki Otake, Ozora Kubo, Yoshinari Sawama‡ and Tomohiro Maegawa

Received 1st July 2011, Accepted 19th July 2011 DOI: 10.1039/c1cc13919c

An unusual and novel reaction of α -alkoxyphosphonium salts, generated from *O*,*O*-acetals and Ph₃P, with Grignard reagents under an O₂ atmosphere afforded alcohols in moderate to high yields. It was clarified by isotopic labelling experiments that the reaction proceeded *via* a novel radical pathway.

The α -alkoxyphosphonium salts are good precursors of vinyl ethers for Wittig reactions, of which there are numerous applications in the total synthesis of natural products.¹ Despite the utility of α -alkoxyphosphonium salts in organic synthesis, α -alkoxyphosphonium salts are seldom used for other reactions. Only a few groups have reported the nucleophilic substitution reaction of α -alkoxyphosphonium salts,² but this reaction has not been fully investigated.

Recently, as a part of our studies about the reactivities of cationic intermediates,³ we have developed the efficient substitution reactions of the α -alkoxyphosphonium salts with various nucleophiles.⁴ The α -alkoxyphosphonium salts prepared from O,O-acetals and tris(o-tolyl)phosphine [(o-tol)₃P] are reactive to nucleophiles such as H₂O, cyanides, thiols, and Grignard reagents, via the elimination of (o-tol)₃P. The progress of these substitution reactions depends on the type of phosphine. For example, when we used triphenylphosphine (Ph₃P) as the phosphine source, the substitution reaction of the α -methoxyphosphonium salt 2a, which was obtained in 67% yield by the reaction of dimethyl acetal 1a and Ph₃P, with H₂O did not effectively proceed.⁵ However, when PhMgBr (3a) was used as a nucleophile for the substitution reaction of 2a, we encountered an unexpected phenomenon (Scheme 1). The reaction of 2a with an excess amount of 3a afforded the alcohol 4a (43%) as the major product along with the substituted product 5a (17%). To the best of our knowledge, such a reaction has never been reported. We now report a novel reaction of α -alkoxyphosphonium salts with Grignard reagents and its mechanistic study.



Scheme 1 An unusual reaction of the α -methoxyphosphonium salt with PhMgBr.

For the purpose of revealing the scope and limitation of this unusual reaction, we chose the α -methoxyphosphonium salt **2b** as the starting material, which was generated *in situ* from benzaldehyde dimethyl acetal **1b** because the α -alkoxyphosphonium salts are usually highly polar compounds and not easily handled. The α -alkoxyphosphonium salt **2b** formed from **1b** and Ph₃P *in situ* was treated with 5 equivalents of **3a** under a N₂ atmosphere. The major product was altered by the reaction temperature. That is, the benzhydrol methyl ether **5b** was obtained as a major product when the reaction was conducted at room temperature, but benzhydrol **4b** was the major product at 0 °C (Scheme 2).

It was curious that although we repeatedly performed the same reaction at 0 °C, **4b** was obtained in different yields in each run (30–65%). We could not initially understand why the reaction afforded such varying results. Since phenol (PhOH) and triphenylphosphine oxide (Ph₃P=O) were obtained as by-products, we then presumed that the N₂ gas contained a small amount of O₂ gas,⁶ which promoted this reaction as well as oxidized PhMgBr⁷ and Ph₃P to form these by-products. The varying results must be due to an inconsistent ratio of O₂ gas in the N₂ gas.

Based on this hypothesis, we carried out the reaction at 0 $^{\circ}$ C under an O₂ atmosphere. Consequently, **4b** was obtained in a reproducible yield (entry 1, Table 1), and no reaction proceeded under an argon atmosphere (entry 2). Therefore, the existence of O₂ is essential for the reaction. Dry air was

Scheme 2 Preliminary experiments with the aromatic α -methoxyphosphonium salt.

Graduate School of Pharmaceutical Sciences, Osaka University,

¹⁻⁶ Yamada-oka, Suita, Osaka 565-0871, Japan. E-mail: fujioka@phs.osaka-u.ac.jp; Fax: +8168798229;

Tel: +8168798225

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c1cc13919c

[‡] Present Address: Laboratory of Organic Chemistry, Department of Organic and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan

 Table 1 Optimization of the reaction conditions^a

OMe Ph OMe 1b	TESOTf (2 equiv) Ph ₃ P (3 equiv) CH ₂ Cl ₂ 0 °C	OMe ⁻OTf Ph∕→P [‡] Ph ₃ PhMgBr (3a) conditions 2b	OH Ph Ph 4b
Entry	Equiv. of 3a	Conditions	Yield (%)
1	5	O ₂ /0 °C	40
2	5	Ar/0 °C	ND^b
3	5	Dry air/0 °C	81
4	5	Dry air/-40 °C	57
5	1	Dry air/0 °C	Trace
6	3	Dry air/0 °C	49

^{*a*} Reaction conditions: to a solution of **1b** (1 equiv.) in CH₂Cl₂ (0.2 mol L^{-1}) under O₂, Ar or dry air, Ph₃P (3 equiv.) and TESOTF (2 equiv.) were added at 0 °C, and the mixture was stirred for 0.5 h. Then, **3a** was added, and the solution was stirred for 2–4 h. ^{*b*} Not detected.

suitable for this reaction as the O_2 source (entry 3). When the reaction was performed at a lower temperature (-40 °C), the reaction time was prolonged and no improvement in the yield was observed (entry 4). The use of 1 or 3 equivalents of **3a** decreased the yields of **4b** (entries 5 and 6).

We then examined the reaction with various Grignard reagents under the optimal conditions (Table 2). Various aromatic Grignard reagents with electron-donating or electronwithdrawing groups **3a–d** reacted with the α -methoxyphosphonium salt **2b** under dry air at 0 °C to afford the benzhydrol derivatives **4b–e** (entries 1–4). On the other hand, the alkenyl and alkyl Grignard reagents **3e** and **3f** were not effective in this reaction (entries 5 and 6).

Various α -alkoxyphosphonium salts generated from the *O*,*O*-acetals underwent this reaction (Table 3). Aromatic and heteroaromatic α -alkoxyphosphonium salts derived from the *O*,*O*-acetals **1c–g** were converted into the corresponding diaryl-methanols **4c**,**d**,**h–j** in good yields (entries 1–5). Cyclic acetal **1h** and diisopropyl acetal **1i** were also transformed into benzhydrol

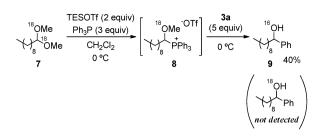
 Table 2
 Various Grignard reagents^a

OMe Ph ∕OMe 1b	$ \begin{array}{c} \text{TESOTf (2 equiv)} \\ \underline{\text{Ph}_{3}\text{P (3 equiv)}} \\ \underline{\text{CH}_{2}\text{Cl}_{2}} \\ 0 \ ^{\circ}\text{C} \end{array} $	OMe ⁻ OTf → p ⁺ Ph ₃ → 0 °C 2b → RMgX (3) (5 equiv) dry air 0 °C	OH Ph∕R 4
Entry	RMgX	Product	Yield (%)
	R'		
1	$\mathbf{R}' = \mathbf{H} (\mathbf{3a})$	4b	81
2	$\mathbf{R}' = \mathbf{Me} \left(\mathbf{3b} \right)$	4c	86
3	$\mathbf{R}' = \mathbf{OMe} \left(\mathbf{3c} \right)$	4d	62
4	$\mathbf{R}' = \mathbf{F} \left(\mathbf{3d} \right)$	4 e	57
5	MgBr (3e)	4f	Trace
6	EtMgBr (3f)	4g	ND^b
		0	

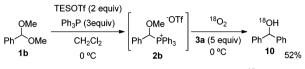
^{*a*} Reaction conditions: to a solution of **1b** (1 equiv.) in CH₂Cl₂ (0.2 mol L^{-1}) under dry air, Ph₃P (3 equiv.) and TESOTf (2 equiv.) were added at 0 °C, and the mixture was stirred for 0.5 h. Then, **3** (5 equiv.) was added, and the solution was stirred for 2–4 h at 0 °C. ^{*b*} Not detected.

Table 3 The reaction of various α -alkoxyphosphonium salts with PhMgBr under an O₂ atmosphere^{*a*}

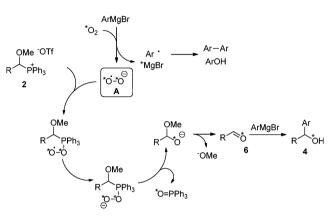
דESOTf (2 equiv) ך			PhMgBr (3a)	
QR ²	Ph ₃ P (3 equiv)	OR ² ⁻OTf	(5 equiv)	ĢН
R ¹ CR ²	CH ₂ Cl ₂	R ¹ [⊥] P [†] Ph ₃	dry air	R ¹ Ph
1	0°C	2	Temp.	4


		2	•	
Entry	Substrate	Product	Temp./°C	Yield (%)
	OMe OMe			
1	$\mathbf{R} = \mathbf{Me} (\mathbf{1c})$	4c	0	81
$2 \\ 3 \\ 4^{b,c}$	$\mathbf{R} = \mathbf{OMe} (\mathbf{1d})$	4d	-40	83
3	$\mathbf{R} = \mathbf{Br} (\mathbf{1e})$	4h	0	78
$4^{b,c}$	$\mathbf{R} = \mathbf{CF}_3 \left(\mathbf{1f} \right)$	4 i	-40	63
	OMe			
5	OMe (1g)	4j	-40	66
6	Ph O (1h)	4b	0	83
7^c	O ⁱ Pr (1i) Ph ⊂O ⁱ Pr (1i)	4b	-40	60
8	$\underbrace{\overset{OMe}{}_{10}}_{00Me} (1a)$	4a	0	56
9	OMe (1j)	4k	0	55
10	OMe H OMe (1k)	41	0	70
11 ^c	OMe 7 OMe (11)	4m	-40	56
12	$\overset{OMe}{\underset{\text{Br}}{\longrightarrow}} \overset{(1m)}{\underset{\text{OMe}}{\longrightarrow}} $	4n	0	63

^{*a*} Reaction conditions: to a solution of **1** (1 equiv.) in CH₂Cl₂ (0.2 mol L⁻¹) under dry air, Ph₃P (3 equiv.) and TESOTf (2 equiv.) were added at 0 °C, and the mixture was stirred for 0.5 h. Then, **3a** (5 equiv.) was added, and the solution was stirred for 2–4 h at 0 °C. ^{*b*} The reaction of **1f** with Ph₃P and TESOTf was performed at rt. ^{*c*} TMSOTf was used instead of TESOTf.


4b in good yields (entries 6 and 7). In addition, aliphatic α -alkoxyphosphonium salts derived from the *O*,*O*-acetals **1a**,**j**-**m** also reacted with **3a** to give the corresponding alcohols **4a**,**k**-**n** in moderate to good yields (entries 8–12). In some cases, the desired reaction proceeded at -40 °C, while the reaction competed with nucleophilic substitution at 0 °C.

The mechanism of this unusual reaction was then studied. We first synthesized the ¹⁸O-labelled dimethyl acetal 7 from *n*-decanal and $CH_3^{18}OH$ and carried out the reaction using this labelled acetal. However the ¹⁸O atom was not included in the product **9** (Scheme 3).⁸


Taking into consideration that O_2 promoted this reaction, the reaction using ¹⁸O₂ gas was then carried out (Scheme 4). It was found that the isotopic oxygen atom was introduced into the product **10** verifying that the O atom was derived from the O₂ gas.

Scheme 3 Isotopic labelling experiment using the ¹⁸O-labelled dimethyl acetal 7.

Scheme 4 Isotopic labelling experiment using an ${}^{18}O_2$ gas.

Scheme 5 Plausible reaction mechanism.

Based on these results, a novel radical pathway was theorized as depicted in Scheme 5.

A part of the aryl Grignard reagent reacts with O_2 , then the superoxide radical anion **A** and the aryl radical are generated.⁹ The radical anion species **A** has a high nucleophilicity,¹⁰ and attacks the cationic phosphorus atom of the α -methoxy-phosphonium salt **2** leading to the oxidative elimination of the phosphine-like oxaphosphetanes during the Wittig reaction. As soon as the aldehyde **6** is produced, the remaining Grignard reagent reacts with **6** to afford the alcohol **4**. Since the aliphatic Grignard reagents are more reactive to O_2 than aromatic ones,^{7c} all of the Grignard reagents seemed to be consumed before reacting with the aldehyde resulting in a trace amount of alcohols **4** (entries 5 and 6, Table 2).

This mechanism was supported by some experiments. First, the addition of TEMPO (2,2,6,6-tetramethylpiperidine-*N*-oxyl) interrupted the reaction, which indicated that the reaction proceeded *via* a radical pathway. Second, triphenylphosphine oxide was generated in the reaction, suggesting that the α -alkoxyphosphonium salts react with O₂-derived radical species, resulting in the oxidative elimination of phosphine.

In conclusion, we have investigated an unusual and novel reaction of α -alkoxyphosphonium salts with aryl Grignard reagents in the presence of O₂. Various α -alkoxyphosphonium salts and aryl Grignard reagents underwent this reaction to produce the corresponding alcohols. Furthermore, this reaction is suggested to proceed *via* a novel radical pathway. These results open a new aspect of the reactivity of α -alkoxyphosphonium salts.

This study was financially supported by the Hoansha Foundation, the Uehara Memorial Foundation, Takeda Science Foundation, and Grant-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Notes and references

- For recent applications in total synthesis, see: (a) W. T. Lambert and S. D. Burke, Org. Lett., 2003, 5, 515; (b) G. A. Molander, K. M. George and L. G. Monovich, J. Org. Chem., 2003, 68, 9533; (c) E. Quéron and R. Lett, Tetrahedron Lett., 2004, 45, 4527; (d) W. T. Lambert, G. H. Hanson, F. Benayoud and S. D. Burke, J. Org. Chem., 2005, 70, 9382; (e) M. E. Jung, J. Cordova and M. Murakami, Org. Lett., 2009, 11, 3882; (f) M. T. Crimmins, M. C. Mans and A. D. Rodríguez, Org. Lett., 2010, 12, 5028.
- 2 (a) S. Kim and Y. C. Kim, *Synlett*, 1990, 115; (b) É. Anders, K. Hertlein, A. Stankowiak and E. Irmer, *Synthesis*, 1992, 577.
- (a) H. Fujioka, T. Okitsu, Y. Sawama, N. Murata, R. Li and Y. Kita, J. Am. Chem. Soc., 2006, 128, 5930; (b) H. Fujioka, T. Okitsu, Y. Sawama, T. Ohnaka and Y. Kita, Synlett, 2006, 3077; (c) H. Fujioka, T. Okitsu, T. Ohnaka, Y. Sawama, O. Kubo, K. Okamoto and Y. Kita, Adv. Synth. Catal., 2007, 349, 636; (d) H. Fujioka, T. Ohnaka, T. Okitsu, O. Kubo, K. Okamoto, Y. Sawama and Y. Kita, Heterocycles, 2007, 72, 529; (e) H. Fujioka, T. Okitsu, T. Ohnaka, R. Li, O. Kubo, K. Okamoto, Y. Sawama and Y. Kita, J. Org. Chem., 2007, 72, 7898; (f) H. Fujioka, O. Kubo, K. Senami, K. Okamoto, T. Okitsu and Y. Kita, Heterocycles, 2009, 79, 1113.
- 4 H. Fujioka, A. Goto, K. Otake, O. Kubo, K. Yahata, Y. Sawama and T. Maegawa, *Chem. Commun.*, 2010, 46, 3976.
- 5 The α -methoxyphosphonium salt **2a** was less reactive to H₂O, so **2a** was able to be easily isolated. See ESI[†] for details.
- 6 We used N_2 gas from a nitrogen tank *via* the N_2 gas line. A small amount of O_2 in the air may be present in the N_2 gas line.
- 7 (a) C. W. Porter and C. Steel, J. Am. Chem. Soc., 1920, 42, 2650;
 (b) H. Gilman and A. Wood, J. Am. Chem. Soc., 1926, 48, 806;
 (c) M. T. Goebel and C. S. Marvel, J. Am. Chem. Soc., 1933, 55, 1693; (d) M. S. Kharasch and W. B. Reynolds, J. Am. Chem. Soc., 1943, 65, 501; (e) C. Walling and S. A. Buckler, J. Am. Chem. Soc., 1955, 77, 6032; (f) J. F. Garst, C. D. Smith and A. C. Farrar, J. Am. Chem. Soc., 1972, 94, 7707. For a review, see:
 (g) G. Sosnovsky and J. H. Brown, Chem. Rev., 1966, 66, 529.
- 8 See ESI† for details.
- 9 The reaction of O_2 and Grignard reagents is known to produce radical anion species. See: C. Walling and A. Cioffari, *J. Am. Chem. Soc.*, 1970, **92**, 6609. The aryl radical species coupled to itself to afford a biaryl compound which wasdetected as a by-product.
- 10 (a) E. J. Corey, K. C. Nicolaou, M. Shibasaki, Y. Machida and C. S. Shiner, *Tetrahedron Lett.*, 1975, **16**, 3183; (b) D. T. Sawyer and J. S. Valentine, *Acc. Chem. Res.*, 1981, **14**, 393, and references cited therein.