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Difluorinative ring expansions of benzo-fused
carbocycles and heterocycles are achieved with
p-(difluoroiodo)toluene†

Zhensheng Zhao, Avery J. To and Graham K. Murphy *

A chemoselective fluorinative ring expansion has been realized using

the hypervalent iodine (HVI) reagent p-TolIF2, which delivers

b,b-difluoroalkyl arenes in yields up to 89% and allylic gem-difluorides

in yields up to 78%. This rapid reaction exploits the ambiphilic

nature of alkenes and allenes, and incorporates both fluorine atoms

of the (difluoroiodo)arene in the products. The mechanism involves

a 1,2-phenyl shift, which provides access in one step to important

fluorinated building blocks for bioactive molecule synthesis.

Organofluorine compounds are critical to medicinal chemistry,
agrochemistry, medical imaging, and materials sciences,1 and
there exists a critical need for new fluorination strategies. As
part of this effort, the past decade has seen numerous new
hypervalent iodine (HVI)-mediated fluorination reactions, as
their inherent potential for addressing new or poorly accessible
fluorinated motifs is realized.2 HVI reagents are broadly reactive as
oxidants,3 owing to iodine’s desire to return to its natural oxidation
state, and in their fluorine-transfer reactions, this results in
an apparent reversal of polarity of one of the fluoride ligands.
For example, p-(difluoroiodo)toluene (p-TolIF2, 1),4 a stable solid
readily prepared from iodotoluene and aqueous fluoride via
oxidation and ligand transfer, provides an ‘‘electrophilic’’ fluorine
atom5 analogous to other reagents derived from fluorine gas.

(Difluoroiodo)arenes have been employed in numerous
fluorination processes, transferring one or both of their ligands.
They fluorinate nucleophiles such as silyl enol ethers6 or
b-dicarbonyls,7 and difluorinate ambiphilic functional groups
like alkenes5b,8 or diazo compounds,9 serving as fluorine gas
surrogates that deliver both ‘‘electrophilic’’ and nucleophilic
fluorine atoms. The vic-difluorination of alkenes can be inter-
rupted by various intramolecular processes, such as attack by
nucleophiles (e.g. alcohols, amines, carboxylic acid derivatives),
leading to a wide array of (hetero)cyclic fluorinated motifs.10

Reactions with styrenes8a,c,d or phenylallenes11 are interrupted
by 1,2-phenyl or 1,2-alkyl shifts, giving gem-difluorides via
rearrangements or ring contractions.8c,12 The state-of-the-art of
HVI-mediated fluorinations has been redefined, as many of
these reactions are now possible as catalytic and/or asymmetric
processes, where chiral iodoarene catalysts13 are re-oxidized
in situ.14,15 Therefore, as new fluorination reactions are realized,
the potential for further development is significant.

Fluorinative ring expansions mediated by 1 are surprisingly
unknown, but they might occur if substrates containing exo-
cyclic alkenes are as viable as the related endocyclic alkenes
used in ring contractions. If a-exomethylene-containing benzo-
cycloalkanes (e.g. 2) also react with 1 via a 1,2-phenyl shift
pathway, they would give a direct synthesis of b,b-difluoroalkyl
arenes 3, a motif extensively studied within many bioactive
molecules (Scheme 1a).16,17 Furthermore, if allene-containing
substrates (Scheme 1b, e.g. 4) are also viable,18 it would afford a
novel, one-step synthesis of allylic gem-difluorides 5, another
valuable fluorine-containing motif not currently accessible via
direct fluorination.19 We report here how indanes, tetralins and
related heterocyclic derivatives possessing a-exocyclic alkenes
or -allenes react with p-TolIF2 (1) to undergo rapid and chemo-
selective fluorinative ring expansions.

Scheme 1 Fluorinative ring expansions of alkenes and allenes using
p-TolIF2.
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We began our investigation by reacting model indane 2a
with 1.25 equiv of p-TolIF2 in DCE at reflux, using 20 mol%
BF3�OEt2 as activator, from which the b,b-difluoride 3a was
observed in 64% yield by 19F NMR yield (Table 1, entry 1).
Cooling the reaction to room temperature led to an increased
yield (74%); however, further cooling to 0 1C resulted in a
significantly decreased yield (entries 2 and 3). Chlorinated,
polar and non-polar solvents were also tested, though none
proved superior to DCE (entries 4–7, also see Table S1 for
additional entries, ESI†). Of the other Lewis acidic activators
tested, none proved as effective as BF3�OEt2 (Table 1, entries 8–11,
also see Table S2, ESI†). A 45% yield was even realized without
an added activator, which we attribute to borosilicate activation
of 1 (entry 12).9d The loading of BF3�OEt2 was also studied, and
while increasing to 30 mol% offered no improvement, decreasing
it to 5 mol% was optimal, giving 4a in 78% 19F NMR yield, and
63% isolated yield after 20 minutes (entries 13 and 14). Therefore,
reacting the a-exomethylene-containing indane 2a with BF3�OEt2-
activated p-TolIF2 gave a rapid and highly selective difluorinative
ring-expansion, where both of the fluorine atoms derived from a
single reagent.

We tested a series of a-exomethylene containing substrates
in this reaction, first probing the effect of arene substitution
on the indane-derived scaffold (Scheme 2). Halogenation was
universally well tolerated, with the 5-bromo derivative 2b giving
3b in 75% yield. Halogenation at the 6-position included the
bromo- (2c), fluoro- (2d) and chloro- (2e) derivatives, which gave
3c–e in 72–77% yield. We were surprised that the 7-methyl
derivative 2f was converted to 3f in only 43% yield, as neither
steric or electronic biases were expected to interfere. Fluorina-
tion of the 7-bromo (2g) and 7-methoxy (2h) derivatives was also
possible, giving the ring-expanded 3g and 3h in 57% and 49%
yield, respectively. We then investigated the rearrangement
homologous substrates derived from the tetralin scaffold,
and found unsubstituted alkene 2i to give 3i in 75% yield.

Methoxy substitution (2j) was moderately well-tolerated (3j, 49%
yield); however, higher yields were achieved with the 3-bromo
derivative 2k, which gave 3k in 89% yield. gem-Dimethylation
adjacent to the reacting alkene inhibited the desired reaction,
as alkene 2l was fully consumed, and yet the reaction failed
to produce 3l.

Alkenes derived from the chromane skeleton were investi-
gated, and the parent compound 2m reacted to give 3m in 42%
yield. Derivatives of this scaffold were prepared with substitu-
ents at positions distal to exocyclic alkene, allowing us to test
for remote steric effects.20 Numerous substitution patterns
were tolerated, such as the 2-phenyl derivative 2n, which gave
3n in 67% yield. 2,2-Dialkyl scaffolds included dimethyl- (2o),
diethyl- (2p), and mixed dialkyl- (2q, 2r) derivatives, which
all gave their corresponding difluorides 3o–3r in 58–61% yield.
2,2-Spirocyclic derivatives were also viable, with the spirocyclo-
butane (3s), -cyclopentane (3t) and -cyclohexane (3u) derivatives
undergoing the fluorinative rearrangement in 44–67% yield.
Substrates derived from the 2-oxindole scaffold (2v, 2w) failed,
which was surprising given the ease with which the related
acyclic cinnamides undergo fluorinative rearrangements.14c,p

Lastly, the thiochromane-derived alkene 2x was also fully con-
sumed in the reaction, but none of the desired product (3x) or
any other identifiable products were observed, presumably due
to the ease with which sulfides are oxidized by 1.21 Collectively, this
ensemble of results demonstrates that p-TolIF2 readily induces a
rapid and chemoselective difluorinative ring-expansion on benzo-
fused bicycles possessing a-exomethylene groups. While this
study was not exhaustive, we discovered that various functional
groups and substitution patterns were widely tolerated. Limita-
tions included substitution adjacent to the alkene, and aryl
methyl ethers were also low yielding, presumably due to their
instability in the reaction media.22 In any case, the ring-size
and halogen substitution patterns realized herein provide

Table 1 Optimization of the fluorinative ring-expansion using indane 2a

Entry Lewis acid (mol%) Solvent Temp. (1C) Yielda (%)

1 BF3�OEt2 (20) DCE Reflux 64
2 BF3�OEt2 (20) DCE rt 74
3 BF3�OEt2 (20) DCE 0 35
4 BF3�OEt2 (20) DCM rt 34
5 BF3�OEt2 (20) PhCl rt 25
6 BF3�OEt2 (20) CH3CN rt 0
7 BF3�OEt2 (20) THF rt Trace
8 TiF3 (20) DCE rt 31
9 TiF4 (20) DCE rt 31
10 AlF3 (20) DCE rt 27
11 lnF3 (20) DCE rt 34
12 — DCE rt 45
13 BF3�Et2O (30) DCE rt 57
14 BF3�Et2O (5) DCE rt 78 (63)b

a 19F NMR yield using 4-fluorotoluene as an internal standard. b Iso-
lated yield.

Scheme 2 Fluorinative ring-expansion of various exocyclic olefins.
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b,b-difluoroalkyl arenes with versatile handles for further
manipulation.

We tested the fluorinative ring-expansion on the related
allene-containing substrates, beginning with unsubstituted 4a
(Scheme 3). When subjected to the reaction conditions optimized
above, only a trace of 5a was observed. After screening reaction
time, temperature and loading of the Lewis acid, we discovered
that combining allene 4a, 1.25 equiv. p-TolIF2 and 20 mol%
BF3�OEt2 in DCE at reflux gives 5a in 74% isolated yield. We
found halogenation at any of the 5-, 6- or 7-positions on the arene
was well tolerated, providing the products 5b–5e in 56–78% yield.
Two homologous derivatives were also tested, with allene 4f giving
difluoride 5f in 44% yield, and with 7-bromo derivative 4g giving
5g in 41% yield. Oxygenation within the tether was tolerated
(5h, 29% yield), whereas the related sulfide 4i was not viable. The
tolerance for substitution patterns and functional groups dis-
played by these allenes was consistent with that of the related
alkenes; however, the yields decreased significantly for rearrange-
ments leading to the medium-ring scaffolds.

Such fluorination reactions have attracted significant interest,
and many efforts have been made to elucidate their mechanisms
both computationally and experimentally.23 The rearrangements
reported here are proposed to begin with activation of the iodane
by the Lewis acid (Fig. 1).24 The activated iodane A is then attacked
by the weakly nucleophilic p-system of the styrene (e.g. 2a) or
phenylallene derivative, via either concerted (shown) or stepwise
(not shown) processes, leading to intermediate B in which the first
C–F bond has been forged. The hypernucleofugal iodanyl leaving
group25 may be further activated by the Lewis acid, inducing
the arene to participate in expelling iodotoluene, generating
phenonium ion C. Ring expansion and rearomatization gives 3a,

where the second fluoride possibly derives from BF4
�,26 and

where the regioselectivity is directed by the stabilizing effect of
the existing fluorine atom.

In conclusion, we report a fluorinative ring-expansion of
benzo-fused alkene- and allene-containing substrates mediated
by p-TolIF2. This reaction exploits the iodane’s ability to deliver
both ‘‘electrophilic’’ and nucleophilic fluorides, and the substrate’s
ability to undergo 1,2-phenyl migration, providing direct access to
either b,b-difluorides or allylic gem-difluorides. The reactions were
rapid and tolerant to a variety of functional groups, though steric
hindrance and heteroatom (N,S) substitution were problematic.
This mild and operationally-simple reaction constitutes a novel
strategy for synthesizing fluorinated motifs not readily accessible
via other direct fluorination methods, and our continued efforts
will be reported in due course.
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