

Available online at www.sciencedirect.com

SPECTROCHIMICA ACTA PART A

Spectrochimica Acta Part A 68 (2007) 337-340

www.elsevier.com/locate/saa

Synthesis and photophysical properties of complexes of Be(II) and Zn(II) with 10-hydroxybenzo[*h*]quinoline ligand

Zhiqiang Guo^{a,*}, Zhenming Dong^a, Ruitao Zhu^a, Shuo Jin^a, Bo Liu^{a,b,**}

^a School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China ^b Institute of Chemistry, Science of School Beijing Jiaotong University, Beijing 100044, PR China

Received 27 October 2006; received in revised form 19 November 2006; accepted 30 November 2006

Abstract

Two 10-hydroxybenzo[*h*]quinoline metal complexes, bis(10-hydroxybenzo[*h*]quinolinato) beryllium (Bebq₂) and bis(10-hydroxybenzo[*h*]quinolinato)zincum (Znbq₂), have been synthesized. The structure are characterized by ¹HNMR, IR and so on. The photophysical processes of Bebq₂ and Znbq₂ have been carefully investigated by fluorescence spectra. The results show that the compounds emit yellow-green and yellow light. The emission peaks are at 492 and 512 nm, respectively. In addition, the light-emitting can be quenched by electron donor, *N*,*N*-dimethylaniline (DMA), and the quenching process follows the Stern–Volmer equation. Furthermore, the molecular interactions of Bebq₂ and Znbq₂ with electron acceptor, dimethylterephthalate (DMTP), were also carefully investigated. It displayed that the Znbq₂ is a potential substitute for Bebq₂ as an excellent emitting material.

© 2006 Elsevier B.V. All rights reserved.

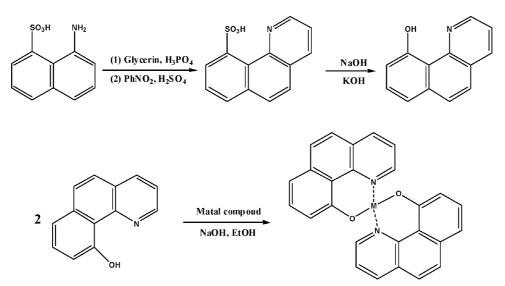
Keywords: 10-Hydroxybenzo[h]quinoline; Complexes; Interaction; N, N-Dimethylaniline; Dimethylterephthalate

1. Introduction

The design and fabrication of efficient organic light emitting devices (OLEDs) based on organic materials have been areas of active research due to their important applications in large area display technology. One of the most fascinating advantages in using these organic materials is a wide selection of emission colors in EL displays attainable through the molecular design of organic materials [1]. There have been extensive studies on organic EL devices using low molecular weight complexes with the aim of achieving high brightness, multicolor emission, and improving the durability and efficiency of devices [2,3]. Conventionally, Low molecular weight metal complexes, tris(8-hydroxyquinolinato)aluminum (Alq₃), has been considered to be the most excellent emitting material for organic EL devices. However, the 10-hydroxybenzo[h]quinoline beryllium complexes is superior to Alq₃ in EL character [4], and it has been

* Corresponding author. Tel.: +86 351 7010 874; fax: +86 351 7010 514. ** Corresponding author at: School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China. Tel.: +86 10 5168 3627; fax: +86 351 7010 514. achieved the standard of practical application. But, the toxicity of Beryllium made it impossible.

In this Paper, we have synthesized the bis(10-hydroxybenzo [h]quinolinato)beryllium (Bebq₂) and bis(10-hydroxybenzo [h]quinolinato)zincum (Znbq₂). The photophysical properties of Bebq₂ and Znbq₂ are investigated. The photoluminescence of Bebq₂ and Znbq₂ are examined in DMF. Moreover, the molecular interaction of with *N*,*N*-dimethylaniline (DMA) and dimethylterephthalate (DMTP) are investigated. Comparing their character, it displayed that the Znbq₂ is a potential substitute for Bebq₂ as an excellent emitting material.


2. Experimental

2.1. Materials and instruments

The reagents and chemicals for preparation of compounds were used as received unless noted otherwise. $BeSO_4 \cdot 4H_2O$, ZnCl₂, Ethanol, dichloromethane, dimethylterephthalate, ethyl acetate, *N*,*N*-dimethylaniline, petroleum ether, etc. were purchased from Beijing Chemical Plant and treated according to standard methods used before, which were all applied to measurement of the light-emitting properties. The synthetic route

E-mail address: guozhiqiang7988@yahoo.com.cn (Z. Guo).

^{1386-1425/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2006.11.042

Scheme 1. The synthetic routes of compound.

used is shown in Scheme 1. Melting points were determined on a Sanyo Gallenkamp MPD350 melting point apparatus and uncorrected. The IR spectra were determined on a PE-1700 IR spectrophotometer by dispersing samples in KBr disks. ¹HNMR spectra were measured on a Bruker ARX300 spectrometer with CDCl₃ and DMSO as solvent. UV–vis and fluorescence spectra were obtained on a Shimadzu UV-265 spectrophotometer and Shimadzu RF-540 spectrofluorothotometer, respectively. Luminescence spectrometer was with a xenon lamp as the light source. Both excitation and emission bands were set at 5 and 2.5 nm, respectively. All the experiments were carried out at 20 ± 1 °C.

2.2. Preparation of materials

2.2.1. Preparation of 10-hydroxybenzo[h]quinoline

10-Hydroxybenzo[*h*]quinoline is prepared according to Ref. [5]. The yield is 70%, mp 101–102 °C, ¹HNMR (DCCl₃, ppm) δ : 14.947(1H), 8.842(1H), 8.279–8.257(1H), 7.837–7.809(1H), 7.657–7.637(3H), 7.442–7.420(1H), 7.274(1H); IR (KBr, cm⁻¹): 3461.9, 3433.1, 3398.3, 3049.3, 2686.7, 2617.2, 1622.0, 1581.5, 1527.5, 1465.8, 1407.9, 1388.7, 1332.7, 1269.1, 1203.5, 1126.4, 1060.8, 1018.3, 829.3, 757.9, 717.5, 676.9, 634.5, 567.0, 503.4.

2.2.2. Preparation of

bis(10-hydroxybenzo[h]quinolinato)beryllium

10-Hydroxybenzo[h]quinoline (8 mmol) was dissolved in 40 ml of ethanol in a flask, BeSO₄·4H₂O (4 mmol) was dissolved in 100 ml of pure water in another flask, the 10-hydroxybenzo[h]quinoline solution was slowly poured into the BeSO₄ solution while stirring, Bebq₂ was deposited after the mixed solution was adjusted to pH 10 using NaOH, the Bebq₂ was filtered and purified by washing using ethanol. The yield is 90%, IR (KBr, cm⁻¹): 3433.1, 3047.3, 2927.7, 1625.9, 1581.5, 1519.8, 1433.1, 1409.9, 1332.7, 1299.9, 1280.6, 1215.1, 1174.6, 1141.8, 1078.1, 1041.5, 1016.4, 920.0, 891.1, 825.5, 800.4, 758.0, 736.8, 719.4, 650.0, 632.6, 569.0, 540.0, 511.1.

2.2.3. Preparation of bis(10-hydroxybenzo[h] quinolinato)zincum

10-Hydroxybenzo[h]quinoline (8 mmol) was dissolved in 40 ml of ethanol in a flask, ZnCl₂(4 mmol) was dissolved in 100 ml of pure water in another flask, the 10-hydroxybenzo[h]quinoline solution was slowly poured into the ZnCl₂ solution while stirring, Znbq₂ was deposited after the mixed solution was adjusted to pH 10 using NaOH, the Znbq₂ was filtered and purified by washing using ethanol. The yield is 93%, IR (KBr, cm⁻¹): 3440.8, 3047.3, 3020.3, 2923.9, 2852.52, 2688.6, 2578.7, 1623.9, 1577.7, 1529.5, 1469.7, 1433.0, 1413.7, 1392.5, 1334.65, 1271, 1139.9, 1027.9, 879.5, 829.3, 761.8, 717.5, 568.9 505.3, 449.4.

3. Results and discussion

3.1. ¹HNMR and IR of compounds

10-Hydroxybenzo[h]quinoline (HBQ) has very unique spectral properties. The fused 7,8-benzoquinoline structure constrains the O–H····N geometry of the dominant enol form to a nearly perfect six-membered ring hydrogen-bonding configuration. Thus, HBQ possesses a very strong hydrogen bond in the ground state, as indicated by a 14.9 ppm downfield-shifted hydroxyl proton (in CDCl₃) in the ¹H NMR study [6].

Comparing IR spectra of HBQ and Bebq₂ and Znbq₂. The absorption bands at $3462-3490 \text{ cm}^{-1}$ for ν (O–H) in the free ligand disappeared and new bands due to ν (M–O) appeared in the regions 1433.0 cm^{-1} . The band of $1269.1 \text{ cm}^{-1}\nu$ (C=N) has red shift to 1271.0 and 1299.9 cm^{-1} is due to the conjugation of the p-orbital on the double bond with the d-orbital on metal ion with reduction of the force constant [7]. The new absorption band at $3433-3047 \text{ cm}^{-1}$ in the complexes can be assigned to hydroxyl stretching vibration of the crystal water involved in the complexes. In the far IR region two new bands around 511.1-540.0 and $449.4-503.4 \text{ cm}^{-1}$ in the complexes can be assigned to ν (M–O) and ν (M–N), respectively.

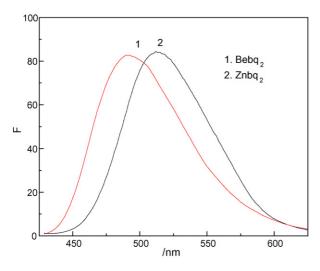


Fig. 1. The fluorescence spectra of Bebq₂ and Znbq₂ in DMF.

3.2. Fluorescence emission spectra

The fluorescence emission spectra of $Bebq_2$ and $Znbq_2$ in DMF are shown in Fig. 1. It can be seen from Fig. 1. that the maximum emission peaks are at 492 and 512 nm, respectively. This shows that the $Bebq_2$ and $Znbq_2$ emit yellow-green and yellow light and are desirable emitting photoluminescence material, respectively.

3.3. Interaction of Bebq₂ and Znbq₂ with N, *N*-dimethylaniline

N,*N*-Dimethylaniline is a typical electron donor [8]. The studies of interactions between metal complexes and DMA are helpful to understanding the photo-electronic properties of metal complexes. So the quenching process of Bebq₂ and Znbq₂ with DMA is examined. With the gradual increase in concentration of DMA, the fluorescence of Bebq₂ and Znbq₂ are all quenched efficiently and the processes also follow the Stern–Volmer equa-

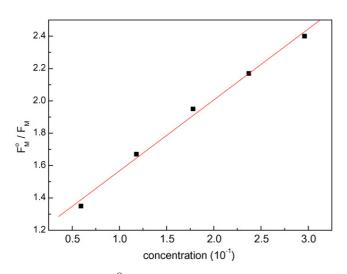


Fig. 2. Dependence of $F_{\rm M}^{\rm O}/F_{\rm M}$ on concentration of DMA. Concentration of Bebq₂, 5.0×10^{-5} M.

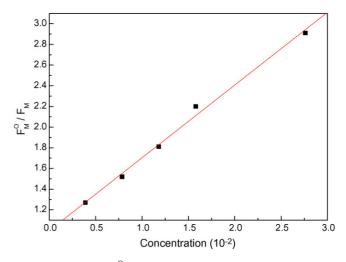


Fig. 3. Dependence of $F_{\rm M}^{\rm O}/F_{\rm M}$ on concentration of DMA. Concentration of Znbq₂, 1.25×10^{-5} M.

tion (Figs. 2 and 3). The apparent quenching constants are $4.98 \times 10^1 \text{ M}^{-1}$ and $7.04 \times 10^2 \text{ M}^{-1}$, respectively. Which suggests that the strong interactions between two metal complexes and DMA happen in the excited state.

3.4. Interaction of Bebq₂ and Znbq₂ with dimethylterephthalate

In this paper, the interactions between two metal complexes and DMTP are investigated, DMTP is a typical electron acceptor [9], which is helpful to understand the optical property of Bebq₂ and Znbq₂ and apply it to OLED. The experiments show that the fluorescence of Bebq₂ is initially increased and then decreased with gradual increasing in concentration of DMTP in DMF, furthermore, the interactions are not distinct and shown in Fig. 4. However, It can be seen from Fig. 5 that the fluorescence of Znbq₂ is quenched efficiently and the processes also follow the Stern–Volmer equation. The apparent quenching constant are $4.63 \times 10^3 \text{ M}^{-1}$. This can be explained by the following reasons:

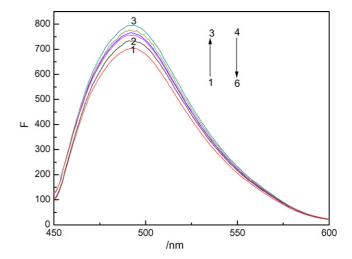


Fig. 4. Fluorescence spectra of Bebq₂ at different concentrations of DMTP. Concentration of Bebq₂, 1.25×10^{-5} M. Concentration of DMTP (mol/l, M); (1) 0.00; (2) 5×10^{-5} ; (3) 2×10^{-4} ; (4) 3.5×10^{-4} ; (5) 7×10^{-4} ; (6) 9.5×10^{-4} .

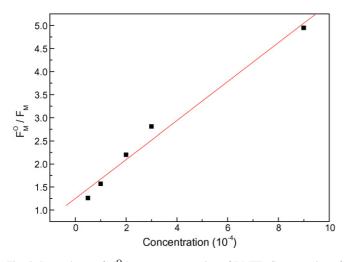


Fig. 5. Dependence of $F_{\rm M}^{\rm O}/F_{\rm M}$ on concentration of DMTP. Concentration of Znbq₂, 1.25×10^{-5} M.

the carrier transport capability of $Znbq_2$ may be superior to that of Bebq₂, and the $Znbq_2$ is a potential substitute for Bebq₂ as an excellent emitting material. Further research towards a better understanding of this difference is currently in progress.

4. Conclusions

In summary, two 10-hydroxybenzo[h]quinoline metal complexes, bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq₂) and bis(10-hydroxybenzo[h]quinolinato)zincum (Znbq₂), have been synthesized. The photophysical processes of Bebq₂ and Znbq₂ have been carefully investigated by fluorescence spectra. The results show that the compounds emit yellow-green and yellow light. The emission peaks are at 492 and 512 nm, respectively. In addition, the light-emitting can be quenched by electron donor, N,N-dimethylaniline, and the quenching process follows the Stern–Volmer equation. Furthermore, the molecular interactions of Bebq₂ and Znbq₂ with electron acceptor, dimethylterephthalate, were also carefully investigated. It displayed that the Znbq₂ is a potential substitute for Bebq₂ as an excellent emitting material.

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 20372044) is gratefully acknowledged.

References

- L.S. Sapochak, F.E. Benincasa, R.S. Schofield, J.L. Baker, K.K.C. Riccio, D. Fogarty, H. Kohlmann, K.F. Ferris, P.E. Burrows, J. Am. Chem. Soc. 124 (2002) 6119.
- [2] M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature 359 (1998) 151.
- [3] Z.Y. Xie, J.S. Huang, C.N. Li, S.Y. Liu, Y. Wang, Y.Q. Li, J.C. Shen, Appl. Phys. Lett. 74 (1999) 641.
- [4] Y. Hamada, T. Sano, T. Fujita, Chem. Lett. 5 (1993) 905.
- [5] H. Schenkel-Rudin, M. Schenkel-Rudin, Helv. Chim. Acta. 27 (1944) 1456.
- [6] M.L. Martinez, W.C. Cooper, P.T. Chou, Chem. Phys. Lett. 193 (1992) 151.
- [7] B.S. Garg, P.K. Singh, J.L. Sharma, Synth. React. Inorg. Met. -Org. Chem. 30 (2000) 803.
- [8] L.H. Feng, Z.B. Chen, Spectrochim. Acta Part A 61 (2005) 2505.
- [9] L.H. Feng, Z.B. Chen, Spectrochim. Acta Part A 61 (2006) 15.