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Direct Synthesis of Ketones from Primary
Alcohols and 1-Alkenes**
Chul-Ho Jun,* Chan-Woo Huh, and Sang-Jin Na

Activation of the aldehydic carbon±hydrogen bond by tran-
sition metal complexes has received much attention in organic
synthesis because of its potential to convert aldehydes into
ketones by hydroacylation.[1] Although intramolecular hydro-
acylation has been studied in detail,[2] only a few methods have
been reported for transition metal catalyzed intermolecular
hydroacylation.[3] Recently, we developed a direct chelation-
assisted intermolecular hydroacylation.[4] Primary and secondary
alcohols can be oxidized to aldehydes and ketones through
hydrogen transfer by a transition metal catalyst. In the course
of this oxidation, hydrogen atoms are transferred to hydrogen
acceptors such as ketones or alkenes to produce alcohols and
alkanes, respectively.[5,6] If oxidation by transition metal medi-
ated hydrogen transfer and hydroacylation occur consecu-
tively with the aid of identical catalysts and olefins, it should
be possible to prepare ketones directly from primary alcohols
and alkenes. We describe here a one-pot synthesis of a ketone
from a primary alcohol and a 1-alkene using a transition metal
catalyst together with 2-aminopyridine derivatives. To the
best of our knowledge, this is the first example of a direct
ketone synthesis from a primary alcohol and a 1-alkene.

Benzyl alcohol (1 a) was treated with 1-pentene (2 a) at
130 8C for 72 h using as catalyst a mixture of [chlorotris(tri-
phenylphosphane)rhodium(i)] (3 a, 10 mol % based upon 1 a)
and 2-amino-3-picoline [4 a, 100 mol%; Eq. (a)]. Hexano-
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phenone (5 a) was isolated in 74 % yield after chromatogra-
phy. The reaction proceeded quite well without a solvent. A
possible mechanism for this one-pot synthesis of 5 a from 1 a
and 2 a is illustrated in Scheme 1. The first step must be
oxidation by hydrogen transfer, in which primary alcohol 1 a is
converted into aldehyde 6 via complex 3 a. Hydrogen atoms
generated from 1 a must be transferred to 2 a to afford
pentane.[6] The aldehyde then reacts with 4 a to form aldimine
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Scheme 1. Mechanism for the direct synthesis of ketones from primary
alcohols and 1-alkenes by oxidation and hydroacylation.

7 and H2O. Formation of an aldimine from a primary alcohol
and a primary amine in the presence of a transition metal
catalyst is presumed to be the key step in N-alkylation of
primary amines with primary alcohols.[7] Subsequent hydro-
iminoacylation of 2 a with 7 leads to ketimine 8, as reported
earlier.[8] Hydrolysis of 8 by H2O, formed through the reaction
of 4 a with 6, affords ketone 5 a as the final product. Direct
synthesis of 5 a from 2 a and 6 by chelation-assisted hydro-
acylation has already been reported.[4] Since 2 a must serve
both as a hydrogen acceptor in the first step and as a
hydroacylation substrate in the second step, the amount of 2 a
should be at least twice that of 1 a.[9]

To determine the intermediates, p-methoxybenzyl alcohol
(1 b) was allowed to react at 130 8C for 72 h with allylbenzene
(9) under cocatalysis with 3 a (10 mol%) and 4 a (100 mol %).
This resulted in a mixture of p-methoxy-g-phenylbutanophe-
none (10), anisaldehyde (11), anisole (12), and propylbenzene
(13) in 63, 2, 8, and 61 % yield, respectively, based upon 1 b
[Eq. (b)].[10] Compound 13 is the hydrogenation product of 9,
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while 11 is an oxidation product of 1 b and 12 the decarbon-
ylation product of 11. Establishment of the presence of 11 and
13 confirms that hydrogen transfer occurs from the primary
alcohol to the 1-alkene.
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In the catalytic reaction of 1 a and 2 b with RhCl3 ´ H2O (3 b)
and PPh3 under the same reaction conditions as above,
heptanophenone (5 b) was obtained in much higher yield
(84 %) than in the reaction with 3 a. The reason is not clear,
but the active catalyst 3 a might be freshly generated in situ by
the reaction of 3 b with PPh3.[11]

To clarify the influence of 4 a, this substance was introduced
in various concentrations into the hydroacylation of 2 a with 4-
biphenylmethanol (1 c). Reaction occurred at 130 8C in the
course of 72 h with the catalytic system composed of 3 b
(10 mol %) and PPh3 (Table 1). No ketone was obtained in the
absence of 4 a, as expected. The yield of decarbonylation
product 15 decreased with increasing concentration of 4 a.
This suggests that a high concentration of 4 a retards the
decarbonylation of aldehyde generated from alcohol by
increasing the probability of carbon ± hydrogen bond cleavage
of carboxaldimine, which is present in higher concentration.

Various types of amine derivatives were examined with the
catalytic system consisting of 3 b and PPh3 (Table 2). Among
2-aminopyridine derivatives, 2-amino-4-picoline (4 b) showed
the greatest catalytic activity, and 2-amino-6-picoline (4 c) the
least. This may be because of steric hindrance by the 6-methyl
group (see 16). The nitrogen atom in the pyridinyl group
would coordinate to the metallic center with difficulty in this
case, so that the metal and carbon ± hydrogen bonds in the
aldimine would not be brought into sufficiently close prox-
imity. 2-Aminomethylpyridine (4 e) showed no catalytic
activity, perhaps due to the formation of a less-favored six-
membered ring metallacyclic complex such as 17, or to the
instability of the N-alkylaldimine compared with the more
conjugated N-arylaldimine. Even N,N-dimethylurea (4 f),
which lacks the 2-aminopyridine moiety, provided a hydro-
acylated product in 3 % yield, possibly via intermediate 18.
This clearly demonstrates that formation of the five-mem-
bered metallacyclic intermediate is a prerequisite for this
reaction. No hydroacylated product was detected with
triethylamine (4 g).

Catalytic reactions of various primary alcohols and 1-
alkenes with 3 b (3.3 mol% based upon alcohol) and PPh3

(16.5 mol %) as well as 4 b (100 mol %) at 130 8C for 12 h were
also examined (Table 3). The resulting hydroacylated ketones
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were linear, not branched systems.[12] There appear to be no
limitations with respect to the 1-alkene component. Even the
sterically hindered 1-alkene 3,3-dimethyl-1-butene (2 d) pro-
vided 5 d in fairly good yield (85 %). All the benzylic alcohols
1 a ± 1 d provided good results, although yields with aliphatic
primary alcohols like 1 e were low (22 %).

We thus present a general synthesis for ketones starting
from 1-alkenes and primary alcohols with the catalytic
assistance of 2-aminopyridine derivatives and transition metal
complexes. This newly developed synthesis achieves the
generality required for a practical organic synthetic proce-
dure.

Table 1. Influence of the concentration of 2-amino-3-picoline (4a) on the
reaction of 4-biphenylmethanol (1c) with 1-pentene (2 a).[a]
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Entry 4a [mol %] Yield (5 i) [%] 5 i[b] 14[b] 15[b]

1 20 21 55 9 36
2 50 55 86 4 10
3 100 67 92 0 8
4 200 88 100 0 0

[a] A mixture of 1 c (0.48 mmol), 2a (4.8 mmol), 3 b (0.048 mmol), PPh3

(0.24 mmol), and various amounts of 4 a was heated for 72 h at 130 8C.
[b] Relative amounts determined by gas chromatography.

Table 2. Results of the hydroacylation of 1-pentene (2a) with benzyl
alcohol (1 a) to give hexanophenone (5a) in the presence of RhCl3 ´ xH2O
and PPh3 as catalyst system, as well as various amines (100 mol %).[a]

Entry Amine Yield [%][b]

1 54

2 91

3 9

4 63

5 0

6 3

7 0

[a] A mixture of 1 a (0.48 mmol), 2a (4.8 mmol), 3b (0.048 mmol), PPh3

(0.24 mmol), and an amine (0.48 mmol) was heated for 40 h at 130 8C.
[b] Isolated 5a.
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Experimental Section

In a typical experiment, a mixture of 1a (155 mg, 1.44 mmol), 4 b (155 mg,
1.44 mmol), and PPh3 (62.6 mg, 0.239 mmol) was dissolved in 2 a (1000 mg,
14.3 mmol) in a 2.5-mL screw-capped vial. After the mixture had been
stirred for several minutes, complex 3b (10.0 mg, 0.048 mmol) was added,
and the resulting mixture was stirred for 12 h at 130 8C. The solution was
concentrated, and the residue obtained was purified by column chroma-
tography (hexane/EtOAc, 5/2) to give 218 mg of 5a (86 % yield).
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Table 3. Ligand-supported intermolecular hydroacylation of 1-alkenes 2 with primary alcohols 1.[a]

R CH2OH
R'

R R'

O

100 mol% 4b, 130oC, 12h
+

1 2 5

3.3 mol% 3b, 16.5 mol% PPh3

1     :     10

Alcohol 1-Alkene Hydroacylated Yield [%][b]

Entry R (1) R' (2) product 5

1 Ph (1 a) n-C3H7 (2 a) 5a 86

2 Ph (1 a) n-C4H9 (2 b) 5b 84

3 Ph (1 a) n-C8H17 (2 c) 5c 66

4 Ph (1 a) t-C4H9 (2d) 5d 85

5[c] Ph (1 a) H (2 e) 5e 43

6 Ph (1 a) Cyclohexyl (2 f) 5 f 76

7[d] Ph (1 a) C6F5 (2g) 5g 69

8 4-MeOC6H4 (1b) n-C3H7 (2 a) 5h 77

9 4-PhC6H4 (1 c) n-C3H7 (2 a) 5 i 84

10 2-Naphthyl (1d) n-C3H7 (2 a) 5j 78

11 PhCH2CH2 (1 e) n-C3H7 (2 a) 5k 22[e]

[a] A mixture of 1 (1.435 mmol), 4 b (1.435 mmol), 3 b (0.048 mmol), PPh3 (0.239 mmol), and 2
(14.300 mmol) was heated for 12 h at 130 8C. [b] Yield of hydroacylated product isolated by column
chromatography (SiO2, hexane/EtOAc, 5/2). [c] Benzene was used as solvent. [d] Toluene
(200 mg) was added as a solvent. [e] With 3a as catalyst. Use of the same molar quantity of 3 b and
PPh3 instead of 3a led to the isolation of 5k (10 %).


