Synthese, Kristallstruktur und Magnetismus von [(CH₃)₂NH₂][PrCl₄(H₂O)₂]

Annette Becker und Werner Urland*

Hannover, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 28. Dezember 1998.

Inhaltsübersicht. Das komplexe wasserhaltige Chlorid $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$ wurde erstmals dargestellt und die Kristallstruktur anhand von Einkristalldaten bestimmt. Die Verbindung kristallisiert orthorhombisch in der Raumgruppe *Cmca* (*Z* = 8) mit *a* = 1796,6(2) pm, *b* = 940,7(1) pm und *c* = 1238,4(2) pm. Die Anionenteilstruktur wird gemäß $[PrCl_{4/2}Cl_2(H_2O)_2]^-$ von Ketten kantenverknüpfter Trigon-

dodekaeder $[PrCl_6(H_2O)_2]^{3-}$ aufgebaut, die von Dimethylammoniumkationen ($[(CH_3)_2NH_2]^+$) zusammengehalten werden. Um die Wechselwirkungen des Praseodymkations (Pr^{3+}) mit seinen Liganden zu untersuchen, wurden magnetische Messungen durchgeführt. Die Interpretation erfolgte mittels ligandenfeldtheoretischer Berechnungen unter Anwendung des Angular-Overlap-Modells.

Preparation, Crystal Structure, and Magnetism of [(CH₃)₂NH₂][PrCl₄(H₂O)₂]

Abstract. The complex water containing chloride $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$ has been prepared for the first time and the crystal structure has been determined from single crystal X-ray diffraction data. The compound crystallizes orthorhombically in the space group *Cmca* (*Z* = 8) with *a* = 1796.6(2) pm, *b* = 940.7(1) pm, and *c* = 1238.4(2) pm. The anionic part of the structure is built up by chains of edge-connected trigondodecahedra $[PrCl_6(H_2O)_2]^{3-}$ according to $[PrCl_{4/2}Cl_2(H_2O)_2]^{-}$, which are held together by dimethylam-

Einleitung

Schon lange beschäftigen wir uns mit der Synthese komplexer wasserhaltiger und wasserfreier Chloride der Lanthanide mit organischen, stickstoffhaltigen Kationen, die von struktur- und magnetochemischem Interesse sind [1–8]. Die Verbindungen zeichnen sich durch eine große Strukturvielfalt mit charakteristischen Baueinheiten der komplexen Anionen aus. Bei den schweren Lanthaniden (Ln = Sm-Lu) finden sich häufig isolierte $[LnCl_6]^{3-}$ -Oktaeder [6, 7] oder isolierte pentagonale Bipyramiden $[LnCl_4(H_2O)_3]^-$ [4]. Die komplexen Anionen der leichten Lanthanide (Ln = La-Nd) neigen zu Verbrückungen, wie im Falle der dimeren Einheiten $[Ln_2Cl_8(H_2O)_6]^{2-}$ [3, 5] oder der Ketten $[LnCl_{4/2}Cl_2(H_2O)_2]^-$ [1, 5, 8]. In der Verbindung [CH₃NH₃]₈[NdCl₆][NdCl₄(H₂O)₂]₂Cl₃ [2] finden sich sogar nebeneinander isolierte Oktaeder $[NdCl_6]^{3-}$ und Ketten vom Typ $[NdCl_{4/2}Cl_2(H_2O)_2]^{-}$. Das hier vorgestellte komplexe Chlorid $[(CH_3)_2NH_2]$. $[PrCl_4(H_2O)_2]$ ist isotyp zu der bereits früher beschriebenen Verbindung [(CH_3)₂ NH_2][NdCl₄(H_2O)₂] [8].

Institut für Anorganische Chemie der Universität Hannover

D-30167 Hannover Telefax: 05 11-76 21 90 32 monium cations ([(CH₃)₂NH₂]⁺). In order to study the interactions between the praseodymium cation (Pr^{3+}) and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.

Keywords: Rare-earth Compounds; Dimethylammonium Diaquatetrachloropraseodymate; Crystal Structure; Magnetic Properties; Angular Overlap Model

Magnetische Untersuchungen an den komplexen Chloriden [(CH₃)₂NH₂]₄[LnCl₆]Cl (Ln = Ho, Er, Tm) [7] und [(CH₃)₂NH₂][NdCl₄(H₂O)₂] [8] haben gezeigt, daß ligandenfeldtheoretische Berechnungen unter Berücksichtigung der Angular-Overlap-Parameter e_{σ} und e_{π} zu guter Übereinstimmung mit den gemessenen Suszeptibilitäten führen. Dabei sind die für [(CH₃)₂NH₂]₄[LnCl₆]Cl (Ln = Ho–Tm) [7] erhaltenen Angular-Overlap-Parameter mit denen der oktaedrischen Einheiten [LnCl₆]³⁻ in Cs₂KTmCl₆ [9] und Cs₂NaHoCl₆ [10] vergleichbar. Bei den komplexen Chloriden [(CH₃)₂NH₂]₄[LnCl₆]Cl (Ln = Ho–Tm) nehmen die Parameter e_{σ} und e_{π} entsprechend der Lanthanidenkontraktion ab.

Darstellung und Eigenschaften

Eine Lösung von 0,33 mmol "Pr₆O₁₁" (Strem Chemicals, 99,9%) in halbkonzentrierter Salzsäure (E. Merck, p. a.) wird bis zur Trockne eingedampft. Das so erhaltene PrCl₃ · x H₂O (x \approx 7) wird in einer Mischung aus Ethanol (Sigma Aldrich, HPLC grade) und Butanol (Aldrich, 99%) gelöst und mit 10 ml einer ethanolischen Lösung (c = 0,6 mol/l) von Dimethylammoniumchlorid (Aldrich, 99%) versetzt. Diese Lösung wird mehrere Stunden bei 50 °C gerührt und anschließend bis zur beginnenden Kristallisation eingeengt und filtriert. Nach einigen Tagen bilden sich sehr hygroskopische,

^{*} Prof. Dr. Werner Urland

Callinstr. 9

E-Mail: urland@mbox.acc.uni-hannover.de

transparente hellgrüne Kristalle der Titelverbindung aus. Die Kristalle sind quaderförmig mit Kantenlängen von 0,2 bis 2 mm.

Röntgenographische Untersuchungen

Kristalle von $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$ wurden in wasserfreiem Paraffin unter einem Mikroskop ausgewählt, in Markröhrchen eingebracht und diese mit Picein verschlossen. Sie wurden mit Schwenkaufnahmen auf ihre Güte geprüft. Die Reflexintensitäten wurden auf einem Imaging-Plate-Diffraktometer (STOE-IPDS) gemessen. Einzelheiten zur Strukturuntersuchung enthält Tabelle 1. Weitere Details zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-410643 angefordert werden.

Magnetische Untersuchungen

Polykristalline Proben des komplexen wasserhaltigen Chlorids [(CH₃)₂NH₂][PrCl₄(H₂O)₂] wurden im Temperaturbereich von 1,7 bis 300 K bei magnetischen Feldstärken (H) zwischen 5 und 15 kOe mit einem SQUID-Magnetometer (Quantum Design, MPMS 5) magnetisch vermessen. Die Probenvorbereitung wurde wie in [8] beschrieben durchgeführt. Die magnetischen Rohdaten wurden zunächst um die Beiträge des "Leerköchersystems" (Gelatinekapsel, Haushaltswatte, Kunststoffhalm und Faden) korrigiert, anschließend erfolgte eine diamagnetische Korrektur nach *Selwood* [11]. Eine Feldstärkeabhängigkeit trat im Temperaturbereich von 1,7 bis 300 K praktisch nicht auf.

Tabelle 1Kristalldaten und Angaben zur Strukturbestim-
mung von $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$

Gitterkonstanten (300 K)/pm	a = 1796, 6(2)
	b = 940,7(1)
	c = 1238,4(2)
Kristallsystem	orthorhombisch
Raumgruppe, Z	Cmca, Z = 8
röntg. Dichte/g \cdot cm ⁻³	2,239
Zellvolumen/pm ³	$2,093 \cdot 10^9$
Kristallabmessungen/mm ³	$0,259 \times 0,185 \times 0,555$
Diffraktometer	STOE-IPDS, Graphit-
	monochromator
Strahlung (λ /pm)	Mo-K _{α} (λ = 71,073)
Meßbereich/°	$4,6 \le 2\theta \le 56,3$
Anzahl gemessener Reflexe	11986
Anzahl symmetrieunabhängiger	
Reflexe	1288
(h, k, l)-Bereich	$\pm 23, \pm 11, \pm 16$
R _{int}	0,051
Linearer Absorptionskoeffizient	
(μ/cm^{-1})	53,5
Strukturverfeinerung	volle Matrix an F ² -Werten,
-	kleinste Fehlerquadrate
Absorptionskorrektur	keine
Anzahl verfeinerter Parameter	51
R1; wR2 (alle Reflexe)	0,0316; 0,0794
GooF = S	1,207
Restelektronendichten:	-2,02/2,65
min./max. $\Delta \rho / e \cdot pm^{-3} \cdot 10^{-6}$	
Verwendete Programme	SHELXS-86 [19],
c	SHELXL-93 [20],
	STOF-IPDS Softwarenaket ^{a)} [21]

^{a)} Inklusive Software zur Datenreduktion.

Ergebnisse und Diskussion

Das komplexe Chlorid $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$ kristallisiert im orthorhombischen Kristallsystem, Raumgruppe Cmca (Z = 8), mit den Gitterkonstanten a = 1796,6(2) pm, b = 940,7(1) pm und c = 1238,4(2) pm. In Tabelle 2 sind die Lageparameter mit den äquivalenten isotropen Auslenkungsparametern (U_{aq}) angegeben. Tabelle 3 gibt ausgewählte interatomare Abstände und Bindungswinkel wieder. Abbildung 1 zeigt einen Ausschnitt aus der Kristallstruktur von $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$. Das strukturbestimmende Element ist ein Trigondodekaeder [PrCl₆(H₂O)₂]³⁻, aus dem durch Kantenverknüpfung über Chloridionen gemäß $[PrCl_{4/2}Cl_2(H_2O)_2]^-$ Stränge entlang $[0\ 1\ 0]$ (vgl. Abb. 2) gebildet werden. Diese Trigondodekaederketten bilden eine primitive Anordnung. Die Dimethylammoniumkationen befinden sich zwischen den Strängen in Schichten parallel zu (100) (vgl. Abb. 3). Längs [100] wechseln sich somit Schichten von anionischen $[PrCl_{4/2}Cl_2(H_2O)_2]^-$ -Trigondodekaederketten mit Schichten von Dimethylammonium-

Atom	Lage	x/a	y/b	z/c	$U_{\ddot{a}q}{}^{a)}$
Pr	8 d	0,25873(1)	0	1/2	137(1)
Cl1	16 g	0,3775(1)	0,0808(1)	0,6341(1)	254(2)
Cl2	16 g	0,3113(1)	0,2616(1)	0,3980(1)	228(2)
O1	16 g	0,1659(2)	0,0776(3)	0,3606(2)	365(7)
N1	8 Ť	1/2	-0,1853(5)	0,5785(4)	325(10)
C1	8 f	1/2	-0,2007(8)	0,6981(5)	424(15)
C2	8 f	1/2	-0,3227(10)	0,5185(6)	511(20)

^{a)} $U_{aq} = 1/3 (U_{11} + U_{22} + U_{33}) [22]$

Tabelle 3Ausgewählte interatomare Abstände (in pm) undBindungswinkel (in °) für $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$

D Cl1	280.0(1)	· · · h)	
Pr-CII	280,9(1)	Pr–Cl2 ^b	286,5(1)
Pr–Cl1 ^{a)}	280,9(1)	Pr–Cl2 ^{c)}	286,5(1)
Pr-Cl2	292,3(1)	Pr–O1	250,9(3)
Pr–Cl2 ^{a)}	292,3(1)	Pr–O1 ^{a)}	250,9(3)
N1-C1	148,8(8)	N1-C2	149,1(10)
Pr–Pr ^{c)}	471,4(1)		
N1-Cl1	340,3(5)	N1–Cl2 ^{a)}	347,8(5)
N1–Cl1 ^{e)}	340,3(5)	N1-Cl2 ^{d)}	347,8(5)
N1–Cl1 ^{a)}	356,9(5)	N1-O1 ^{b)}	459,8(6)
N1-Cl1 ^{d)}	356,9(5)	N1-O1 ^{f)}	459,8(6)
O1–Pr–O1 ^{a)}	96,67(15)	Cl2–Pr–O1 ^{a)}	139,22(7)
Cl1-Pr-O1	146,42(7)	Cl2-Pr-Cl1	77,42(3)
Cl1–Pr–O1 ^{a)}	100,21(8)	Cl2-Pr-Cl1 ^{a)}	74,15(2)
Cl1 ^{a)} –Pr–Cl1	81,10(4)	Cl2–Pr–Cl2 ^{b)}	127,60(3)
Cl2 ^{b)} –Pr–O1	68,43(7)	Cl2-Pr-Cl2 ^{c)}	70,95(3)
Cl2 ^{b)} –Pr–O1 ^{a)}	77,52(7)	Cl2 ^{a)} –Pr–Cl1	74,15(2)
Cl2 ^{b)} –Pr–Cl1	143,73(2)	Cl2 ^{a)} –Pr–Cl2	142,30(3)
Cl2 ^{b)} –Pr–Cl1 ^{a)}	82,01(3)	Pr ^{c)} -Cl2-Pr	109,05(11)
Cl2 ^{c)} –Pr–Cl2 ^{b)}	127,91(3)	C1-N1-C2	114,33(56)
Cl2-Pr-O1	70,88(7)		

 $\begin{array}{l} \text{Symmetrie} operationen: \ ^{a)} \ x, -y, -z + 1; \ ^{b)} - x + 1/2, \ y - 1/2, \ z; \ ^{c)} - x + 1/2, \\ -y + 1/2, -z + 1; \ ^{d)} - x + 1, \ -y, -z + 1; \ ^{c)} - x + 1, \ y, \ z; \ ^{f)} \ x + 1/2, \ y - 1/2, \ z \end{array}$

kationen ab. Abstände, die auf ausgeprägte Wasserstoffbrückenbindungen hindeuten [12], wurden nicht gefunden (vgl. Tab. 3). Die in der Struktur von $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$ auftretenden

 $[PrCl_{4/2}Cl_2(H_2O)_2]^-$ Trigondodekaederketten wurden auch in den Pyridiniumsalzen (Py) $[LnCl_4(H_2O)_2]$ (Ln = La-Nd) [5] sowie in

 $(CH_3NH_3)_3$ [PrCl₄(H₂O)₂]Cl₂ [1] gefunden. Ebenfalls achtfach koordinierte Lanthanidionen liegen in (n-Pic)[LnCl₄(H₂O)₃] (n = 2, 4; Ln = La–Nd) [5] vor, wobei sich hier wohl unter dem Einfluß der größeren Picoliniumkationen nur noch dimere [Ln₂Cl₈(H₂O)₆]^{2–} Einheiten ausbilden können. Die Praseodymverbindung $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$ zeigt über den gesamten untersuchten Temperaturbereich paramagnetisches Verhalten. In Abbildung 4 ist die reziproke magnetische Suzeptibilität in Abhängigkeit von der absoluten Temperatur für H = 10 kOe wiedergegeben. Zur eingehenden Interpretation des magnetischen Verhaltens wurden ligandenfeldtheoretische Rechnungen durchgeführt [13]. Die magnetischen Suszeptibilitäten wurden unter Berücksichtigung der Elektronenwechselwirkung, der Spin-Bahn-Kopplung und des Kristallfeldes nach dem Angular-Overlap-Modell [14] berechnet. Der Einfluß des Magnetfeldes wurde durch den Magnetfeldoperator ($\beta H(\hat{L} + 2\hat{S})$ (β = Bohrsches Magneton) beschrieben [13]. Zu den Rechnungen wurden alle 91 möglichen

Abb. 1 Ausschnitt aus der Kristallstruktur von $[(CH_3)_2NH_2][PrCl_4(H_2O)_2];$ die Elementarzelle ist eingezeichnet.

Abb. 2 Ketten über gemeinsame Kanten verknüpfter $[PrCl_6(H_2O)_2]^{3-}$ -Trigondodekaeder gemäß $[PrCl_{4/2}Cl_2(H_2O)_2]^{-}$ entlang [0 1 0].

Abb. 3 Projektion der Kristallstruktur von $[(CH_3)_2NH_2][PrCl_4(H_2O)_2]$ auf (0 1 0).

Abb. 4 Vergleich der beobachteten (H = 10 kOe) und berechneten reziproken magnetischen Suszeptibilitäten für [(CH₃)₂NH₂][PrCl₄(H₂O)₂].

Zustände innerhalb des L, S, J, M_I-Quantisierungsschemas für die f²-Elektronenkonfiguration des Pr³⁺-Kations herangezogen. Die Elektronenwechselwirkungsparameter (F₂, F₄, F₆) und die Spin-Bahn-Kopplungskonstante (ζ) wurden der Literatur entnommen [15]. Die Angular-Overlap-Parameter für die Wechselwirkung von Pr^{3+} mit Cl^{-} ($e_{\sigma}(Cl^{-})$) bzw. H_2O $(e_{\sigma}(H_2O))$ schätzten wir ab, indem wir Werte aus früheren Arbeiten [10, 16] nach dem d^{-7} -Gesetz [17] auf die mittleren Abstände $\overline{d}_{Pr-Cl} = 286,6 \text{ pm}$ und $\overline{d}_{Pr-O} =$ 250,9 pm in [(CH₃)₂NH₂][PrCl₄(H₂O)₂] umgerechnet haben. Das Verhältnis e_{σ}/e_{π} für die Cl⁻-Liganden wurde entsprechend [10] zu 3,4 gesetzt. Zur Abschätzung des e_{π} -Parameters für die H₂O-Liganden ist die Kenntnis der Bindungswinkel am Sauerstoffatom notwendig [16]. Da bei der Strukturbestimmung keine Wasserstoffatome verfeinert werden konnten, wurde angenommen, daß die Bindungswinkel des H2O-Liganden den verzerrt tetraedrischen Winkeln in $(4-Pic)[PrCl_4(H_2O)_3]$ [3] entsprechen. Aus diesem Grund wird zunächst $e_{\pi}(H_2O) = 0 \text{ cm}^{-1}$ gesetzt [16]. Die so ermittelten Werte wurden als Startparameter für Anpassungsrechnungen nach dem Spiral-Algorithmus von Jones [18] verwendet. Tabelle 4 enthält die zur Berechnung verwendeten Parameter (F_2 , F_4 , F_6 , ζ) sowie die durch Anpassung ermittelten Angular-Overlap-Parameter und den zugrunde gelegten Basissatz. Die gute Übereinstimmung von gemessenen (Δ) und nach dem Angular-Overlap-Modell berechneten (-) reziproken Suszeptibilitätswerten (vgl. Abb. 4) läßt schließen, daß magnetische Wechselwirkungen zwischen den Pr³⁺-Kationen in der anionischen Kette [PrCl_{4/2}Cl₂(H₂O)₂]⁻ schwach sind und hier bei den

Tabelle 4 Parameter F_2 , F_4 , F_6 , ζ , e_{σ} , e_{π} (in cm⁻¹) und Basissatz für [(CH₃)₂NH₂][PrCl₄(H₂O)₂]

F ₂	305,4	
F_4	51,88	
F ₆	5,321	
ζ	729,5	
e_{σ} (Cl ⁻)	359	
e_{σ} (H ₂ O)	200	
e_{π} (Cl ⁻)	107	
e_{π} (H ₂ O)	0	
Basissatz	³ P, ³ F, ³ H, ¹ S, ¹ D, ¹ G, ¹ I	

Modellrechnungen unberücksichtigt bleiben können. Bemerkenswert ist, daß der bei der Anpassung erhaltene Wert e_{π} (H₂O) = 0 cm⁻¹ die Annahme eines tetraedrischen Winkels für das koordinierende Sauerstoffatom bestätigt. Die erhaltenen Angular-Overlap-Parameter nehmen wie erwartet von der Praseodymzur Neodymverbindung (Nd: e_{σ} (Cl⁻) = 285 cm⁻¹, e_{π} (Cl⁻) = 71 cm⁻¹, e_{σ} (H₂O) = 182 cm⁻¹ [8]) gemäß der Lanthanidenkontraktion ab und sind vergleichbar mit früher gefundenen Werten [7, 10, 16].

Literatur

- [1] P. Runge, M. Schulze, W. Urland, Z. Naturforsch. 1990, 45 b, 603.
- [2] P. Runge, M. Schulze, W. Urland, Z. Anorg. Allg. Chem. 1991, 592, 115.
- [3] D. Mackenstedt, W. Urland, Z. Anorg. Allg. Chem. 1993, 619, 893.
- [4] D. Mackenstedt, W. Urland, Z. Anorg. Allg. Chem. 1993, 619, 1393.
- [5] D. Mackenstedt, W. Urland, J. Alloys Compds. 1994, 208, 189.
- [6] M. Schulze, Dissertation, Univ. Hannover 1991.
- [7] A. Becker, W. Urland, J. Alloys Compds. 1998, 275–277, 62.
- [8] A. Becker, W. Urland, Z. Anorg. Allg. Chem. 1999, 625, 217.
- [9] W. Urland, Ber. Bunsenges. Phys. Chem. 1979, 83, 1042.
- [10] W. Urland, Chem. Phys. Letters 1981, 83, 116.
- [11] P. W. Selwood, *Magnetochemistry*, 2nd ed., Interscience Publishers Inc., New York, 1956.
- [12] A. F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, 1986.
- [13] W. Urland, Chem. Phys. Lett. 1977, 46, 457.
- [14] W. Urland, Chem. Phys. Lett. 1976, 14, 393.
- [15] J. S. Margolis, J. Chem. Phys. 1961, 35, 1367.
- [16] W. Urland, Chem. Phys. Lett. 1979, 62, 525.
- [17] W. Urland, Chem. Phys. 1979, 38, 407.
- [18] A. Jones, Comp. J. 1970, 13, 301.
- [19] G. M. Sheldrick, SHELXS-86: Program for Crystal Structure Determination, Univ. Göttingen, 1986.
- [20] G. M. Sheldrick, SHELXL-93: Program for Crystal Structure Refinement, Univ. Göttingen, 1993.
- [21] STOE-IPDS Software, Ver. 2.87, Fa. Stoe & Cie Darmstadt, 1997.
- [22] R. X. Fischer, E. Tillmanns, *Acta. Crystallogr.* **1988**, *C* 44, 775.