

View Article Online View Journal

CrystEngComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: H. Cui, Y. Wang, Y. Wang, Y. Fan, L. Zhang and C. Su, *CrystEngComm*, 2016, DOI: 10.1039/C6CE00358C.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/crystengcomm

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

A Stable and Porous Iridium(III)-Porphyrin Metal-Organic Framework: Synthesis, Structure and Catalysis

Hao Cui,^a Yingxia Wang,^a Yanhu Wang,^a Yanzhong Fan,^a Li Zhang,^{*a} and Cheng-Yong Su^{*ab}

Self-assembly of a new metalloporphyrin tetracarboxylic ligand Ir(TCPP)Cl (TCPP = tetrakis(4-carboxyphenyl)porphyrin) with $2rCl_4$ in the presence of benzoic acid leads to the formation of a three-dimensional (3D) iridium(III)-porphyrin metalorganic framework (Ir-PMOF) with the formula of $[(2r_6(\mu_3-O)_8(OH)_2(H_2O)_{10})_2(Ir(TCPP)CI)_3]$ -solvents (Ir-PMOF-1(Zr)), which possesses square-shaped channels of 1.9×1.9 nm² (atom-to-atom distances across opposite Ir metal atoms) in three orthogonal directions as disclosed by the single-crystal X-ray diffraction analysis. Ir-PMOF-1(Zr) represents the first MOF bearing the self-supported iridium-porphyrin catalytic framework, featuring in high porosity and stability. The catalytic tests disclose that the activated Ir-PMOF-1(Zr) can promote O-H insertion with the turnover frequency (TOF) up to 4260 h⁻¹. Ir-PMOF-1(Zr) can be recycled and reused for 10 runs without significant loss of catalytic activity, and the total turnover number (TON) for O-H insertion after 10 successive runs reach 875.

INTRODUCTION

Metal-catalyzed carbene transfer reactions have been widely used for the construction of valuable compounds.¹ Metalloporphyrin complexes of iron,² cobalt,³ ruthenium,⁴ and rhodium,⁵ etc. are known to catalyze olefin cyclopropanation, and further, X-H (X = C, N, Si) bond insertion with high efficiency and selectivity. For example, Rh-porphyrin complexes furnish cyclopropanation and C-H insertion products with unusual selectivity for *cis*-cyclopropanes^{5a} and primary insertion products^{5b}, respectively. Fe- and Ruporphyrins can catalyze the N-H insertion of ammonia² and peptide containing N-terminal amine,⁴ respectively. Compared to other group 8 and group 9 metals, the reactivity of iridiumporphyrins toward carbene transfer has been much less explored. Recently, intermolecular cyclopropanation and carbene X-H bond insertion have been reported by Woo,⁶ Che⁷ and Rodríguez-García⁸ using Ir-porphyrin catalysts.

Nevertheless, there are two major disadvantages associating with metalloporphyrin catalysis. First, the synthesis

of metalloporphyrin is often challenging and low-yielding. Second, metalloporphyrins are prone to oxidative selfdestruction of the catalyst under very strong oxidizing medium. To make better use of metalloporphyrin catalysis, one approach is to immobilize the metalloporphyrin catalyst onto an organic or inorganic polymer.⁹ Immobilization onto a solid support enables the catalysts to be easily recovered and reused, and also reduces the metalloporphyrin degradation. Another alternative immobilization method is to integrate metalloporphyrin onto the backbones of metal-organic (MOFs).¹⁰ Since MOFs possess uniform, frameworks continuous and permeable channels, construction of porous MOFs by using metalloporphyrin ligands can directly install these active sites on the pore surface and facilitate transportation of reactants/products to or from inner reactive vessels. Unlike immobilized metalloporphyrin catalysts onto an organic/inorganic polymer, porphyrinic MOFs lack nonaccessible bulk volume and can act as single-site catalysts with 100% utility of active sites.¹¹⁻²⁹

Despite the availability of a large number of porphyrinic MOFs, none of them has embedded iridium-porphyrin complexes as the building blocks, which are known to show catalytic potentials in carbene transfer reactions such as cyclopropanation and N-H insertion.⁶⁻⁸ We have long been working in the field of carbene/nitrene transfer reactions, and are interested to develop efficient while recyclable Irporphyrin catalysts to accomplish such catalysis.^{30,31} According to above discussion, we believe that a promising way is to construct iridium(III)-porphyrin metal-organic frameworks (Ir-PMOFs) as the self-supported Ir-porphyrin catalysts. Herein, we report, to the best of our knowledge, the first Ir-porphyrin MOF, Ir-PMOF-1(Zr), which is highly porous and stable, and is

^{a.} MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China. E-mail: zhli99@mail.sysu.edu.cn; cesscy@mail.sysu.edu.cn

^{b.} State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

[†] Electronic supplementary information (ESI) available: Crystal structure data, physical characterizations, chemical/thermal stability study, and dye adsorption of porphyrinic MOFs, recycling experiments, ICP spectrometric evaluation of metal leaching, and NMR data of O-H insertion products. CIF files giving crystallographic data. CCDC 1436270. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x.

Journal Name

efficient in the carbenoid insertion reactions into O-H bonds (Scheme 1).

EXPERIMENTAL SECTION

ARTICLE

General Information. All the reagents in the present work were obtained from the commercial source and used directly without further purification. The ligand 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin (TCPPCO₂Me) was synthesized according to the literature.²⁸

Cautions! Although we have not experienced any problem in the handling of the diazo compounds (e.g. ethyl diazoacetate (EDA)), extreme care should be taken when manipulating them due to their explosive nature.

Synthesis of Ir(TCPPCO2Me)(CO)Cl. Iridium porphyrin complex Ir(TCPPCO₂Me)(CO)Cl was prepared according to a similar procedure:^{7,32} TCPPCO₂Me (100 mg, 11.8 mmol) and [Ir(COD)Cl]₂ (100 mg, 14.9 mmol) in 1,2,4-tricholorobenzene (20 mL) was stirred at 190 °C. After 1 day, the solvent was removed under reduced pressure. The crude reaction mixture was purified on silica using a mixture of DCM and EtOAc as the eluent to afford the product as a red solid (106 mg, 82% yield based on TCPPCO₂Me). ¹H NMR (400 MHz, CDCl₃) δ 8.90 (m, 8 H), 8.46 (m, 8 H), 8.33 (m, 8 H), 4.10 (s, 12 H). ¹³C NMR (100 MHz, CDCl_3) δ 167.33, 145.70, 140.94, 134.70, 134.40, 132.28, 130.30, 128.45, 128.27, 121.60, 52.75. FT-IR (KBr) v 3428 (br), 2058 (s), 1724 (s), 1607 (s), 1537 (w), 1435 (m), 1401 (w), 1278 (s), 1185 (w), 1111 (s), 1020 (s), 965 (w), 867 (w), 823 (w), 797 (w), 765 (m), 712 (m) cm⁻¹. HRMS (ESI): m/z 1037.2142 [M-CO- $Cl]^{+}$ for $[C_{52}H_{36}N_4O_8lr]^{+}$ (Calc. 1037.2161). UV-vis (THF, λ_{max} , (logε)) 419 nm (5.30), 531 nm (4.22).

Synthesis of Ir(TCPP)CI. Ir(TCPP)CI was prepared via the hydrolysis of the obtained Ir(TCPPCO₂Me)(CO)CI according to a similar procedure:²⁸ The obtained ester (120 mg) was stirred in a mixture of THF (6 mL) and MeOH (6 mL), to which a solution of KOH (100 mg) in H₂O (6 mL) was added. This mixture was refluxed for 5 h. After the reaction mixture was cooled down to room temperature, the organic solvents (e.g. THF, MeOH)

were removed under reduced pressure. The crude product as red precipitate was obtained after 1 M HCl Wag added to the aqueous suspension. Until no further precipitate was detected (pH~2), the crude product was collected, washed with water (60 mL), and dried in vacuum. The yield is 90 mg (81%).¹H NMR (400 MHz, CD₃OD) δ 8.80 (s, 8 H), 8.44 (d, 2 H, *J* = 8 Hz), 8.33 (d, 2 H, *J* = 8 Hz). FT-IR (KBr) v 3413 (br), 1698 (s), 1605 (s), 1536 (w), 1407 (m), 1355 (m), 1255 (s), 1175 (m), 1102 (m), 1016 (s), 792 (s), 711 (m) cm⁻¹. HRMS (ESI): m/z 981.1522 [M-CO-Cl]⁺ for [C₄₈H₂₈N₄O₈Ir]⁺ (Calc. 981.1534). UV-vis (THF, λ_{max} , (log ϵ)) 409 nm (5.07), 531 nm (3.96).

Synthesis of $[(Zr_6(\mu_3-O)_8(OH)_5(H_2O)_7)_2(Ir(TCPP)CI)_3]$ -solvents (Ir-PMOF-1(Zr)). Ir(TCPP)CI (6 mg, 5.9×10^{-3} mmol), ZrCl₄ (10 mg, 0.04 mmol), benzoic acid (300 mg, 2.45 mmol) and dimethylformamide (DMF, 1 mL) were placed in a glass vial, which was then sealed and heated to 120 °C in an oven. After 48 h, red block crystals were obtained (6 mg, 64% yield based on Ir(TCPP)CI) and air-dried. Anal. Calcd. For $[(Zr_6(\mu_3-O)_8(OH)_2(H_2O)_{10})_2(Ir(TCPP)CI)_3]\cdot 8(C_6H_5COOH)\cdot 4DMF$

 $(C_{212}H_{189}CI_{3}Ir_{3}N_{16}O_{84}Zr_{12})$: C, 41.84 H, 3.38; N, 3.69. Found: C, 41.84; H, 3.12; N, 3.57%. FT-IR (KBr) v 3394 (br), 1601 (s), 1551 (s), 1404 (s), 1015 (m), 718 (m), 652 (m) cm⁻¹.

Single X-ray Crystallography. The X-ray diffraction data was collected with an Agilent Technologies SuperNova X-RAY diffractometer system equipped with Cu-k α radiation (λ = 1.54178 Å). The crystal was kept at 150.0(1) K during data collection. The structure was solved with the SIR2004 structure solution program integrated in Olex2 using Direct Methods, and refined with the XH refinement package using CGLS minimisation.^{33a} The final refinement was performed by SHELXL-2014/7 (Sheldrick, 2014) imbedded in WINGX.^{33b} The main coordination framework in the crystal lattice show apparent disorder over two closely adjacent positions; however, adequate treatment of this disorder by splitting all atoms into two parts seems troublesome due to high crystal symmetry. Therefore, the refinement was restricted to one set of molecules by using DIFX to constrain porphyrin ligand. ISOR/SIMU was applied to all non-hydrogen atoms to simulate isotropic behaviours. Even though, ADP max/min ratios, especially for Ir and Zr atoms, are not prevented. All solvent molecules have been removed by SQUEEZE program.^{33c} The positions of the hydrogen atoms are generated geometrically. A summary of the crystal structure refinement data and selected bond angles and distances are listed in Table S1 and Table S2.

Typical Procedure for O-H Insertion. A solution of EDA (34.2 mg, 0.3 mmol, 1.0 eq) was added slowly to the solution of isopropanol (90 mg, 1.5 mmol, 5.0 eq) and activated Ir-PMOF-1(Zr) (4.7 mg, 0.003 mmol, 1 mol [Ir]%) in DCM (1 mL). The resulting solution was stirred at room temperature for 10 min until EDA was completely consumed. The undissolved catalyst was removed through centrifugation, and washed with DCM (1 mL) and acetone (1 mL × 3). The combined supernatant was evaporated to dryness, and the residue was dissolved in CDCl₃ and analysed by ¹H NMR to determine the conversion of EDA to the alkoxyacetate **2a** (94%). ¹H NMR (400 MHz, CDCl₃) of

Published on 12 February 2016. Downloaded by University of Pennsylvania Libraries on 15/02/2016 09:18:03.

Journal Name

2a: δ 4.18 (q, J = 7.2 Hz, 2H), 4.03 (s, 2H), 3.68 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H), 1.22 (d, J = 6.1, 1.3 Hz, 6H).

RESULTS AND DISCUSSION

The general synthesis methods of Ir-porphyrins start from the reaction of [Ir(COD)Cl]₂ and porphyrin ligands, and offer the product Ir(Por)(CO)Cl of which the central Ir(III) atom shows saturated six-coordination mode.^{6-8,32} The presence of a kinetically inert CO ligand bound to the Ir atom reduces the activities of Ir(Por)(CO)Cl. Through the reaction of a 1:1.2 molar ratio of TCPPCO₂Me and [Ir(COD)Cl]₂ in 1,2,4tricholorobenzene at 190°C for 1 day, Ir(TCPPCO₂Me)(CO)Cl be prepared. То our delight, hydrolysis can of Ir(TCPPCO₂Me)(CO)Cl in a solution of KOH led to the formation of Ir(TCPP)Cl in which the bound CO was removed (Scheme 2). As a new class of Ir-porphyrins, the coordinatively unsaturated Ir(Por)Cl has an potential to exhibit excellent catalytic activities. The absence of CO in Ir(TCPP)Cl is evident from the disappearance of ν (C=O) in its FT-IR spectrum, whereas the spectrum of Ir(TCPPCO₂Me)(CO)Cl shows this peak (~ 2058 cm⁻ ¹) due to the presence of Ir-CO bond (Figure S1).³⁴

Scheme 2. Ir-Porphyrin Ligand Synthesis.

Reaction of ZrCl₄ and Ir(TCPP)Cl in the presence of benzoic acid in DMF at 120°C for 48 h yielded red block crystals of $[Zr_6(\mu_3-O)_8(OH)_5(H_2O)_7)_2(Ir(TCPP)Cl)_3]$ -solvents (Ir-PMOF-1(Zr)). Both of EDS and XPS analyses suggested that the atomic ratio of Zr : Ir : Cl is around 4 : 1 : 1 in Ir-PMOF-1(Zr) (Figures S2 and S3; Tables S3 and S4). XPS spectrum displayed two intense peaks at 62.4 and 65.4 eV, assignable to Ir 4f_{7/2} and Ir 4f_{5/2}, respectively, indicative of the +3 valence nature of Ir.³⁵ In the range of 1900-2200 cm⁻¹ in its FT-IR spectrum, there is no characteristic peak of the carbonyl stretching, confirming the absence of CO in the axial position of the Ir(III) atom (Figure S4).^{34,35}

Single-crystal X-ray diffraction studies reveal that Ir-PMOF-1(Zr) crystallizes in cubic space group /m-3m, and is an isostructure of PCN-224.^{28a} Six Zr(IV) atoms connect eight μ_3 oxygen atoms to form a Zr₆O₈ octahedron cluster, in which each Zr atom is further occupied by two terminal QH_{10} H₂Q and each Zr₃ face is capped by a μ_3 -O atom As showing integration 1a, six edges of the Zr₆ octahedron are bridged by carboxylates from six different 4-connecting Ir(TCPP)Cl ligands (Figure 1b), imposing a D_{3d} symmetry to furnish the 3D framework of Ir-PMOF-1(Zr) (Figure 1c, d), in which the same square-like channels of 1.9 \times 1.9 nm (atom-to-atom distances across opposite Ir metal atoms) intercross in three orthogonal directions. It is worthy to mention that, due to high crystal and molecular symmetry, exactly identifying O^{2-} , OH^{-} and H_2O groups involved in coordination with Zr₆ cluster is impossible solely depending on the single-crystal analysis, because the statistical nature of the diffraction result averages the distances between difference Zr-O bonds. Nevertheless, based on the chemical compositions and metal charges determined from EDS, XPS and elemental analyses, we speculate a formula of $[Zr_6(\mu_3-O)_8(OH)_2(H_2O)_{10})_2(Ir(TCPP)CI)_3]$ for the coordination framework, in which the μ_3 -O oxygen atoms are most probably O^{2-} (Zr-O, 2.058-2.154 Å), while terminal μ_1 -O oxygen atoms are statistically distributed OH and H₂O which are indistinguishable (Zr-O, 2.263 Å). For Ir centers, half of axial positions are vacant while the rest are coordinated by Cl anions. The powder X-ray diffraction (PXRD) patterns of bulk samples of Ir-PMOF-1(Zr) closely match the simulated one from its single-crystal data (Figure S5), indicative of satisfactory phase purity of the product.

Figure 1. Crystal structures of Ir-PMOF-1(Zr): (a) the 6-connected Zr_6 cluster; (b) the 4-connected Ir-porphyrin ligand Ir(TCPP)CI; (c) and (d) the 3D framework showing open channels (the axial Cl atoms are removed for clarity). Ir (dark red), Zr (teal), N (blue), O (red), Cl (bright green) and C (gray).

It has been discovered that the coordination environment around the Zr_6 cluster could be tuned by adjusting the reactions conditions such as the ratio of Zr(IV) salt to porphyrin ligand and the amount of modulating reagent such as benzoic acid and acetic acid (Table S5).^{13,24,25,28} So far, several typical topology nets containing Zr_6 clusters, including (4,12)-

ARTICLE

Published on 12 February 2016. Downloaded by University of Pennsylvania Libraries on 15/02/2016 09:18:03

connected ftw-a net in PCN-228^{28c} (or CPM-99¹³, FJI-H6²⁴), (4-8)-connected **csq** net in PCN-222^{28b} (or MOF-545²⁵) and (4,6)connected **she** net in PCN-224^{28a}, have been constructed based on tetracarboxylated porphyrin ligands. It should be noted that the 12-connected Zr₆ clusters and TCPP ligands are difficult to form ftw-a network due to the steric effect between the porphyrin ring and the phenyl ring. Alternatively, the 12-connected Zr₈ clusters behave as the building units in ftw-a net as represented in PCN-221,^{28d} or the elongated porphyrinic TCBPP (tetrakis(4-carboxybiphenyl)porphyrin) ligands are used to construct ftw-a net as in PCN-228 (or CPM-99, FJI-H6). Ir-PMOF-1(Zr) has the same (4,6)-connected topology as PCN-224, and the lower connectivity is resulted from the relatively high ZrCl₄/ Ir(TCPP)Cl ratio, i.e. 7.2:1. When this Zr/porphyrin ratio was decreased to 4.4:1, red cubic crystals of Ir-PMOF-2(Zr) were obtained (Table S5). Due to the poor crystal data, its crystal structure couldn't be well refined. Single-crystal study shows that Ir-PMOF-2(Zr) crystallizes in space group Pm-3m, and is an isostructure of PCN-221 (Figure S6). It should be noted that Ir-PMOF-2(Zr) has been obtained in much shorter reaction time (8-12 h for Ir-PMOF-2(Zr) vs. 48 h for Ir-PMOF-1(Zr)), which might indicate that Ir-PMOF-2(Zr) was kinetically favoured phase, whereas Ir-PMOF-1(Zr) was thermodynamically favoured phase.

Figure 2. Thermal and chemical stability study of Ir-PMOF-1(Zr): (a) the variable-temperature PXRD patterns from 30 to 250°C; (b) the PXRD patterns upon treatments in different solvents.

Ir-PMOF-1(Zr) crystals exhibit high thermal stability. The thermal gravimetric (TG) curve of the air-dried Ir-PMOF-1(Zr) sample displays a gradual weight loss up to 370°C, indicating that the solvated molecules are evacuated slowly upon heating (Figure S7). The thermal stability of Ir-PMOF-1(Zr) has been further testified by the variable temperature PXRD measurements, indicating that the framework can sustain heating up to 240°C (Figure 2a). Moreover, Ir-PMOF-1(Zr) possesses excellent chemical stability. The PXRD monitoring of the fresh crystals immersed in common organic solvents such as isopropanol ([']PrOH), acetonitrile (CH₃CN), hexane, toluene, dichloromethane (DCM), and water (H₂O) for several days confirmed that the coordination framework was intact (Figures 2b and S8a-f).

To evaluate the porosity of Ir-PMOF-1(Zr), Naeadsorption isotherms at 77 K were measured (Figure 3)! Prior/to sorption examination, the samples are subjected to solvent exchange with acetone for 5 days and activated by heating at 120 °C under vacuum for 18 h. The N₂ adsorption of Ir-PMOF-1(Zr) shows typical type-I isotherm, in accord with micro-porosity identified by the single-crystal analysis. The N₂ uptake is 705 $cm^{3} g^{-1}$ (STP), and the calculated total pore volume is 1.09 cm^{3} g⁻¹. The Brunauer-Emmet-Teller (BET) surface area is estimated to be 2637 $m^2 g^{-1}$, which is comparable with the value of isostructural PCN-224(Ni) (2600 m² g⁻¹).²⁸ The theoretical BET surface and pore volume of Ir-PMOF-1(Zr) are calculated to be 2625 m² g⁻¹ and 1.40 cm³ g⁻¹, respectively, by Materials Studio 6.1.³⁶

Figure 3. N₂ and CO gas adsorption-desorption isotherms of Ir-PMOF-1(Zr) at 77 K.

Capturing or adsorbing carbon monoxide is of importance due to its high toxicity and poison effect in catalysis and fuel cells. A high affinity to CO was rarely observed for metalorganic materials.³⁷ It has been reported that a rhodium-based MOF DUT-82 (DUT = Dresden University of Technology) has an especially high CO adsorption capability, which can adsorb as high as 800 cm³ g⁻¹ of CO at 77 K (0.59 bar). The CO storage capability of Ir-PMOF-1(Zr) has been examined (Figure 3). At 77 K and 0.57 bar, the CO uptake reaches 1029 cm³ g⁻¹, corresponding to about 73 CO molecules adsorbed per subunit of (Ir(TCPP)CI).

The transportation ability through the large channels in Ir-PMOF-1(Zr) has been evaluated by the dye uptake test. Two organic dyes, i.e. orange gelb (OG, 15.6 \times 10.1 \times 5.4 Å³) and methylene blue (MB, 16.3 \times 7.9 \times 4.0 Å³), are chosen for the adsorption measurements.³⁸ MB and OG have similar size but different charges. MB is a cationic dye, whereas OG is an anionic dye. The adsorption amounts of the dye per gram of Ir-PMOF-1(Zr) for OG and MB are estimated to be 7.2 and 58.4 mg g⁻¹, respectively (Figure S9), suggesting that the large channels (19 \times 19 Å²) of Ir-PMOF-**1**(Zr) are permeable and able to transport bulky organic molecules. The difference in

Published on 12 February 2016. Downloaded by University of Pennsylvania Libraries on 15/02/2016 09:18:03

R-OH

Journal Name

adsorbed amounts of these two dyes might partly be explained by the acidity of the node –OH and –OH₂ sites.³⁹

The insertion into polar X-H bonds (X = N, O, S) has attracted a lot of interests since Merck's commercial synthesis of the antibiotic thienamycin using dirhodium complex to catalyze the carbenoid insertion into the N-H bonds of $\beta\text{-lactams.}^{40}$ Copper and dirhodium complexes are the most common catalysts, whereas a few other metals (e.g. Fe, Ru, Pd, In, Re) have been occasionally used in X-H insertion reactions.⁴¹ To our surprise, no Ir-based catalysts have been reported in the insertion reaction of a carbene into the O-H bond, while there are two examples of Ir-catalyzed N-H insertions.^{6,42}

To examine the catalytic capability of iridium(III) porphyrins in O-H insertion reactions, a homogeneous catalyst of Ir(TPP)(CO)Cl (TPP = tetraphenylporphyrin) was prepared and then employed in the O-H insertion reaction of isopropanol ('PrOH) with ethyl diazoacetate (EDA), where the molar ratio of catalyst : EDA : iPrOH is 0.01 : 1 : 5. After the reaction proceeded in DCM at room temperature for 10 min, all of EDA was consumed and the conversion of EDA into alkoxyacetate 2a was 88% (Table 1, entry 1). Under the similar reaction condition but using dirhodium acetate (Rh₂(OAc)₄) as the catalyst instead of Ir(TPP)(CO)Cl, the conversion of EDA to 2a was 83% (entry 2). These catalytic results suggest that iridium(III) porphyrins have compatible capability as the acknowledged powerful O-H insertion catalysts, i,e. Rh₂(OAc)₄.

To our delight, the self-supported MOF catalyst Ir-PMOF-1(Zr) can even increase the conversion up to 94% (entry 3) under the heterogeneous reaction condition. In the first 1 min, the conversions into 2a in the presence of Ir(TPP)(CO)Cl and Ir-PMOF-1(Zr) were 33% and 71%, respectively (entries 4 and 5), indicating the heterogeneous catalyst Ir-PMOF-1(Zr) has an excellent initial rate. The superior activity of Ir-PMOF-1(Zr) may be ascribed to the vacant coordination sites on the axial positions of the central Ir atoms. Moreover, the large and uniform pores of the framework enable each active Ir-site accessible for catalytic purpose. Based on our catalytic results, the turnover frequency (TOF) of Ir-PMOF- $\mathbf{1}(Zr)$ is up to 4260 h⁻¹. When decreasing the molar percent of [Ir] to 0.1%, the reaction in the presence of Ir-PMOF-1(Zr) still achieved 77% conversion, although a much longer reaction time of 2.5 h was required (entry 6).

In addition to isopropanol, other alcohols such as methanol and ethanol can take part in the Ir-PMOF-1(Zr) catalyzed O-H insertion reactions, and the alkoxyacetate products 2b and 2c are produced with 80% and 87% yields, respectively (Table 1, entries 7 and 8). Phenols are another important group of compounds containing O-H bonds. We have examined the O-H insertion reactions for phenol, 4-methoxyphenol and 4bromophenol. In the presence of 1 mol [Ir]% of Ir-PMOF-1(Zr), all of EDA was consumed in 10 min, whereas phenoxyacetate products 3a, 3b and 3c were obtained with 56%, 63% and 70% yields, respectively (Table 1, entries 9-11). In addition to the O-H insertion products, the self-coupling reaction products of EDA, i.e. diethyl fumarate and maleate accounted for all initial EDA.

	[M]	R-O	
+ EDA	- ,		

Table 1. Catalytic O-H Insertion.

or Ar-OH	+ EDA DCM,	R.T. 2	₂ Et or	CO ₂ Et
Entry	Catalyst	Substrate	Product	Yield ^a
				(%)
1	lr(TPP)(CO)Cl	ⁱ PrOH	2a	88
2	Rh ₂ (OAc) ₄	ⁱ PrOH	2a	83
3	lr-PMOF- 1 (Zr)	ⁱ PrOH	2a	94
4 ^b	lr(TPP)(CO)Cl	ⁱ PrOH	2a	33
5 ^b	lr-PMOF- 1 (Zr)	ⁱ PrOH	2a	71
6 ^c	lr-PMOF- 1 (Zr)	ⁱ PrOH	2a	77
7	lr-PMOF- 1 (Zr)	MeOH	2b	80
8	lr-PMOF- 1 (Zr)	EtOH	2c	87
9	lr-PMOF- 1 (Zr)	<i>—</i> он	3a	56
10	Ir-PMOF- 1 (Zr)	МеО-ОН	3b	63
11	Ir-PMOF- 1 (Zr)	ВгОН	3c	70

^aReaction conditions: 1 mol [Ir]% of the catalyst, 10 min. The yields are based on the conversions of EDA to the O-H insertion products. ^bReaction time: 1min. ^cCatalyst amount: 0.1 mol [Ir]%.

The high stability of Ir-PMOF-1(Zr) makes it a robust heterogeneous catalyst. As testified by the PXRD monitoring before and after catalytic reactions (Figure S7), the crystal framework of Ir-PMOF-1(Zr) remains stable after the catalytic reactions. Inductively coupled plasma optical emission spectrometer (ICP-OES) analysis of the reaction filtrate indicated that the amount of the Ir leaching into the reaction mixture was less than 0.06% of the total Ir content in Ir-PMOF-1(Zr). The crystalline catalysts can be easily isolated by centrifugation, and can be reused at least nine times without significant loss of activity (Figure 3). Before each repeating run, Ir-PMOF-1(Zr) catalyst was washed with DCM (3 \times 5 mL) to remove the adsorbed organic compounds in the interior and exterior surfaces. During the nine reaction runs, the yields of 2a were in the range of 88-94%, whereas in the tenth run, the yield was reduced to 64%. To sum up, the turnover number (TON) is up to 875 after ten successive runs (Table S6). The PXRD patterns of the recycled catalyst after the tenth run still show comparable diffraction profile with the as-synthesized sample (Figure S10).

CONCLUSION

In conclusion, we have successfully embedded the versatile homogeneous iridium(III)-porphyrin catalyst into a stable and porous zirconium metal-organic framework, and the resulting

View Article Online

DOI: 10.1039/C6CE00358C

Ar-Q

ARTICLE

Ir-PMOF-1(Zr) carries coordinatively unsaturated Ir active sites and shows high stability against organic solvents, water, as well as heating (up to 240°C). As a self-supported heterogeneous catalyst, Ir-PMOF-1(Zr) is efficient in O-H insertion reaction of alcohols and phenols, displaying superior capabilities to the related homogenous catalysts. In the reaction system, Ir-PMOF-1(Zr) manifests advantages in easy recycling, reusable catalysis and good stability, thereof implying a promising application by developing and improving such kind of self-supporting heterogeneous catalyst based on iridium(III)-porphyrin metal-organic frameworks.

Figure 4. Recycling experiments.

Acknowledgements

Published on 12 February 2016. Downloaded by University of Pennsylvania Libraries on 15/02/2016 09:18:03

This work was supported by the 973 Program (2012CB821701), the NSFC Projects (21373278, 21450110063, 91222201), the STP Project of Guangzhou (15020016), the NSF of Guangdong Province (S2013030013474) and the RFDP of Higher Education of China (20120171130006).

Notes and references.

- 1 J. Ma, L. Zhang, S. Zhu, Curr. Org. Chem., 2016, 20, 102-118.
- 2 I. Aviv, Z. Gross, Chem. Commun., 2006, 4477-4479.
- 3 S. Zhu, X. Xu, J. A. Perman, X. P. Zhang, J. Am. Chem. Soc., 2010, **132**, 12796-12799.
- 4 C.-M. Ho, J.-L. Zhang, C.-Y. Zhou, O.-Y. Chan, J. J. Yan, F.-Y. Zhang, J.-S. Huang, C.-M. Che, J. Am. Chem. Soc., 2010, 132, 1886-1894.
- 5 (a) H. J. Callot, F. Metz, C. Piechocki, *Tetrahedron* 1982, **38**, 2365-2369; (b) H.-Y. Thu, G. S.-M. Tong, J.-S. Huang, S. L.-F. Chan, Q.-H. Deng, C.-M. Che, *Angew. Chem. Int. Ed.*, 2008, **47**, 9747-9751.
- 6 B. J. Anding, L. K. Woo, Organometallics 2013, 32, 2599-2607.
- 7 J.-C. Wang, Y. Zhang, Z.-J. Xu, V. K.-Y. Lo, C.-M. Che, ACS Catal., 2013, 3, 1144-1148.
- I. Rodríguez-García, C. López-Sánchez, M. Álvarez-Corral and M. Muñoz-Dorado, Synlett, 2012, 23, 2469-2472.
- 9 N. U. Day, C. C. Wamser and M. G. Walter, *Polym. Int.*, 2015, 64, 833-857.

- 10 J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C_{View} *Article Online Soc. Rev.*, 2014, **43**, 6011-6061. DOI: 10.1039/C6CE00358C
- B. J. Burnett, P. M. Barron, C. Hu, W. Choe, J. Am. Chem. Soc., 2011, 133, 9984-9987.
- 12 Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc., 2012, **134**, 928-933.
- 13 Q. Lin, X. Bu, A. Kong, C. Mao, X. Zhao, F. Bu, P. Feng, J. Am. *Chem. Soc.*, 2015, **137**, 2235-2238.
- 14 A. Fateeva, S. Devautour-Vinot, N. Heymans, T. Devic, J.-M. Grenèche, S. Wuttke, S. Miller, A. Lago, C. Serre, G. De Weireld, G. Maurin, A. Vimont, G. Férey, *Chem. Mater.*, 2011, 23, 4641-4651.
- 15 G. Nandi, I. Goldberg, *Chem. Commun.*, 2014, **50**, 13612-13615.
- 16 I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha, J. T. Hupp, *ACS Catal.*, 2015, **5**, 6302-6309.
- 17 H.-C. Kim, Y. S. Lee, S. Huh, S. J. Lee, Y. Kim, *Dalton Trans.*, 2014, **43**, 5680-5686.
- 18 L. Meng, Q. Cheng, C. Kim, W.-Y. Gao, L. Wojtas, Y.-S. Chen, M. J. Zaworotko, X. P. Zhang, S. Q. Ma, *Angew. Chem. Int. Ed.*, 2012, **51**, 10082-10085.
- 19 S. R. Ahrenholtz, C. C. Epley, A. J. Morris, *J. Am. Chem. Soc.*, 2014, **136**, 2464-2472.
- 20 A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, *Angew. Chem. Int. Ed.*, 2012, **51**, 7440-7444.
- 21 E. A. Dolgopolova, D. E. Williams, A. B. Greytak, A. M. Rice, M. D. Smith, J. A. Krause, N. B. Shustova, *Angew. Chem. Int. Ed.*, 2015, **54**, 13639-13643.
- 22 K. S. Suslick, P. Bhyrappa, J. -H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry, S. R. Wilson, *Acc. Chem. Res.*, 2005, **38**, 283-291.
- 23 C. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, C.-D. Wu, J. Am. Chem. Soc., 2012, 134, 87-90.
- 24 J. Zheng, M. Wu, F. Jiang, W. Su, M. Hong, Chem. Sci., 2015, 6, 3466-3470.
- 25 W. Morris, B. Volosskiy, S. Demir, F. Gándan, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart, O. M. Yaghi, J. Am. Chem. Soc., 2015, 137, 2199-2202.
- 26 N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J. Chang, O. M. Yaghi, P. Yang, J. Am. Chem. Soc., 2015, 137, 14129-14135.
- 27 J. A. Johnson, X. Zhang, T. C. Reeson, Y.-S. Chen, J. Zhang, J. Am. Chem. Soc., 2014, **136**, 15881-15884.
- (a) D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen, D. J. Darensbourg, H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 17105-17110. (b) D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 10307-10310. (c) T.-F. Liu, D. Feng, Y.-P. Chen, L. Zou, M. Bosch, S. Yuan, Z. Wei, S. Fordham, K. Wang, H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 413-419. (d) D. Feng, H.-L. Jiang, Y.-P. Chen, Z.-Y. Gu, Z. Wei, H.-C. Zhou, Inorg. Chem. 2013, 52, 12661-12667.
- 29 D. Hagrman, P. J. Hagrman, J. Zubieta, Angew. Chem. Int. Ed., 1999, 38, 3165-3168.
- 30 J. Kang, B. Zhu, J. Liu, B. Wang, L. Zhang, C-Y. Su, Org. Chem. Front., 2015, 2, 890-907.
- 31 (a) L. Chen, J. Kang, H. Cui, X. Wang, L. Liu, L. Zhang, C-Y. Su, *Dalton Trans.*, 2015, **44**, 12180-12188. (b) L. Chen, T. Yang, H. Cui, T. Cai, L. Zhang, C-Y. Su, *J. Mater. Chem. A* 2015, **3**, 20201-20209.
- 32 (a) H. Ogoshi, J.-I. Setsune, Z.-I. Yoshida, J. Organomet. Chem. 1978, 159, 317-328. (b) K. J. Del Rossi, B. B. Wayland, J. Chem. Soc., Chem. Commun. 1986, 1653-1655. (c) S. K. Yeung, K. S. Chan, Organometallics 2005, 24, 6426-6430.
- 33 (a) O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard,
 H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341; (b) L. J.
 Farrugia, J. Appl. Cryst., 1999, 32, 837-838; (c) P. V. D. Sluis,

Published on 12 February 2016. Downloaded by University of Pennsylvania Libraries on 15/02/2016 09:18:03.

Journal Name

A. L. Spek, Acta Cryst., Sect. A: Found. Crystallogr, 1990, 46,

- 194-201.
 34 J. L. Cornillon, J. E. Anderson, C. Swistak, K. M. Kadish, J. Am. Chem. Soc., 1986, 108, 7633-7640.
- 35 T. V. Voskobojnikov, E. S. Shpiro, H. Landmesser, N. I. Jaeger and G. Schulz-Ekloff, J. Mol. Catal. A-Chem., 1996, 104, 299-309.
- 36 T. Düren, F. Millange, G. Férey, K. S. Walton and R. Q. Snurr, *J. Phys. Chem. C*, 2007, **111**, 15350-15356.
- 37 G. Nickerl, U. Stoeck, U. Burkhardt, I. Senkovska and S. Kaskel, J. Mater. Chem. A, 2014, **2**, 144-148.
- 38 X. Zhao, X. Bu, T. Wu, S. T. Zheng, L. Wang and P. Feng, Nat Commun., 2013, 4, 2344.
- 39 R. C. Klet, S. Tussupbayev, J. Borycz, J. R. Gallagher, M. M. Stalzer, J. T. Miller, L.; Gagliardi, J. T. Hupp, T. J. Marks, C. J. Cramers, M. Delferro, O. K. Farha, J. Am. Chem. Soc., 2015, 137, 15680-15683.
- 40 T. N. Salzmann, R. W. Ratcliffe, B. G. Christensen and F. A. Bouffard, *J. Am. Chem. Soc.*, 1980, **102**, 6161-6163.
- 41 A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire and M. A. McKervey, *Chem Rev*, 2015, **115**, 9981-10080.
- 42 I. K. Mangion, I. K. Nwamba, M. Shevlin and M. A. Huffman, Org. Lett., 2009, 11, 3566-3569.