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[RhIII(Cp*)]-Catalyzed ortho-Selective Direct C(sp2)�H Bond
Amidation/Amination of Benzoic Acids by N-Chlorocarbamates
and N-Chloromorpholines. A Versatile Synthesis of Functionalized
Anthranilic Acids**

Fo-Ning Ng, Zhongyuan Zhou, and Wing-Yiu Yu*[a]

Abstract: A RhIII-catalyzed direct ortho-C�H amidation/ami-
nation of benzoic acids with N-chlorocarbamates/N-chloro-
morpholines was achieved, giving anthranilic acids in up to
85 % yields with excellent ortho-selectivity and functional-
group tolerance. Successful benzoic acid aminations were
achieved with carbamates bearing various amide groups in-
cluding NHCO2Me, NHCbz, and NHTroc (Cbz = carbobenzy-
loxy; Troc = trichloroethylchloroformate), as well as secon-
dary amines, such as morpholines, piperizines, and piperi-
dines, furnishing highly functionalized anthranilic acids. A

stoichiometric reaction of a cyclometallated rhodium(III)
complex of benzo[h]quinoline with a silver salt of N-chloro-
carbamate afforded an amido–rhodium(III) complex, which
was isolated and structurally characterized by X-ray crystal-
lography. This finding confirmed that the C�N bond forma-
tion results from the cross-coupling of N-chlorocarbamate
with the aryl–rhodium(III) complex. Yet, the mechanistic de-
tails regarding the C�N bond formation remain unclear ;
pathways involving 1,2-aryl migration and rhodium(V)–
nitrene are plausible.

Introduction

Transition-metal-catalyzed C�N bond formation by C(sp2)�H
bond activation is currently receiving attention for the devel-
opment of atom-economical syntheses of arylamines.[1, 2] While
significant advances have been accomplished in Pd-catalyzed
intra- and intermolecular arene C�H amidations, these exam-
ples are mainly limited to amides as coupling partners.[3, 4] Re-
cently, extensive investigations have been directed to
[RhIII(Cp*)]-catalyzed (Cp* = pentamethylcyclopentadienyl)
direct arene C�H aminations.[5, 6] With [RhCl2(Cp*)]2 and deriva-
tives as catalysts, the aminations should initially involve ortho-
selective arene C�H bond cleavage to form reactive aryl–
rhodium(III) complexes.[7] The Glorius group and ours have al-
ready independently reported the coupling of the aryl–
rhodium(III) complexes with N-chloroamines to afford N-aryla-
mines.[5a–c] Other aminating reagents, such as arylsulfonyla-
zides, arylazides, alkyl azides,[5d–i] aroyloxycarbamates,[5j] N-are-
nesulfonated imides,[5k] and N-fluorobenzenesulfonimide
(NFSI)[5l] are shown to be effective coupling partners. Despite

these apparent successes, direct aminations are limited to sub-
strates bearing N-donor directing groups (DG = pyridines,
amides, oximes; Scheme 1); related examples involving oxygen
donors are sparse.[8]

Anthranilic acids (AAs) are important precursors to many
medicinally active heterocycles, such as indoles, acridines, and
quinolines.[9] Prompted by our earlier work on the direct C�H
amidation of anilides,[3 g] we pursued a rapid synthesis of AAs
by Pd-catalyzed ortho-C�H amidation of benzoic acids with sul-
fonyloxycarbamates.[3f] However, the Pd-catalyzed reactions
suffered from moderate yields and were limited to the mesityl-
sulfonyloxycarbamate reagents for effective reactions. Since
prior derivatization of the benzoic acids to their lithium salts
was required for effective transformations, the moderate prod-
uct yields were attributed to the incompatibility of the mesityl-
sulfonyloxycarbamate with the alkaline medium.

Previously,[10] we achieved the [RhIII(Cp*)]-catalyzed carbe-
noid C(sp2)�H bond insertion to benzoic acids under alkaline-
free conditions.[8n] In our study, when reacting 2,4-dimethylben-
zoic acid (0.1 mmol) with [Rh(Cp*)(OAc)2] (5 mol %) in
[D4]methanol at 60 8C for 20 min, 44 % ortho-deuteriated ben-
zoic acid was observed. This result suggests that [Rh(Cp*)-
(OAc)2] can effect ortho-C�H bond activation of benzoic acids
without prior derivatization. Motivated by this finding, we
herein disclosed a Rh-catalyzed direct ortho-C�H amination of
benzoic acids for the synthesis of functionalized anthranilic
acids.
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Results and Discussion

To begin, 2,4-dimethylbenzoic acid 1 a (0.2 mmol) was treated
with [RhCl2(Cp*)]2 (3 mol %), AgOAc (1.5 equiv), and methyl N-
chlorocarbamate (2 a) (1.5 equiv) in MeOH (2 mL) at 60 8C for
12 h, and 3 aa was obtained in 68 % yield (Table 1, entry 1). In
this work, employing phenylazide and sulfonyloxycarbamates
as reagents failed to effect significant transformations, and the
desired AAs were obtained in <5 % yield (entries 2–4). No
product formation was observed with AgOAc alone in the ab-
sence of the Rh catalyst (entry 5). When CsOAc (1.5 equiv) was
used, 3 aa was formed in 5 % yield (entry 6). According to our
previous report, a substoichiometric amount of CsOAc
(30 mol %) was needed for the Rh-catalyzed amination of ace-
tophenone oximes.[5c] In this work, a combination of AgSbF6

(1.5 equiv) and CsOAc (0–2 equiv) was examined. Unlike our
previous finding, employing 0–0.3 equivalents of CsOAc result-
ed in negligible 3 aa formation (entries 7 and 8). When 1–
2 equivalents of CsOAc was utilized, 3 aa was furnished in ap-
proximately 40 % yield (entries 9 and 10). This finding suggest-
ed that a stoichiometric amount of acetate is required for ef-
fective catalytic turnovers. Low product yields were obtained
with silver trifluoroacetate (AgTFA) (entry 11) and Ag2CO3

(entry 12) as additives. Up to 85 % of 3 aa formation was ac-
complished when AgOAc was used along with tBuOH as sol-
vent (entry 13). With MeOH as the solvent, the methyl ester of
1 a (~10 %) was obtained as a side product. Employing nonal-
coholic solvents, such as 1,2-dichloroethane (DCE), DMF, diox-
ane, and toluene, resulted in 25–42 % product yields (en-
tries 14–17).

Table 2 depicts the results of a substrate-scope study. Under
the optimized conditions, all benzoic acids employed in this

study were transformed to their
corresponding anthranilic acids
3 ba–3 ea in 40–85 % yields with
excellent ortho-selectivities. The
amidation reactions exhibit
good tolerance to the OAc, Br, I,
and F substituents, which are
useful functional groups for late-
stage cross-coupling reactions.
Notably, when the amidation of
2-bromobenzoic acid (1 c) was
performed by the Pd-catalyzed
conditions (Li salt of 1 c
(0.2 mmol), ethyl mesityl-
sulfonyloxycarbamate
(1.5 equiv), Pd(OAc)2 (10 mol %),
and KOAc (1 equiv) in dioxane
(1 mL) at 90 8C for 4 h), 2-[(ethox-
ycarbonyl)amino]benzoic acid
(debrominated product) was
formed exclusively in 20 % yield
(i.e. , no 3 ca was obtained).

The meta-substituted trifluoro-
methyl- and phenoxy-benzoic
acids were amidated at the less-

Scheme 1. Recent examples in RhIII-catalyzed direct C�H aminations/amidations.

Table 1. Reaction optimization.[a]

Entry Reagent [equiv] Additives [equiv] Solvent Yield [%][b,c]

1 2 a AgOAc (1.5) MeOH (68)
2 phenylazide (2) – DCE 0
3 N-nosyloxy

carbamate (1.2)
CsOAc (0.3) MeOH 0

4 N-mesitylsulfonyl
oxycarbamate
(1.2)

CsOAc (0.3) MeOH 5

5[d] 2 a AgOAc (1.5) MeOH 0
6 2 a CsOAc (1.5) MeOH 5
7 2 a AgSbF6 (1.5) MeOH 0
8 2 a AgSbF6 (1.5)

CsOAc (0.3)
MeOH 0

9 2 a AgSbF6 (1.5)
CsOAc (1)

MeOH 50

10 2 a AgSbF6 (1.5)
CsOAc (2)

MeOH 40

11 2 a AgTFA (1.5) MeOH 30
12 2 a Ag2CO3 (1.5) MeOH 36
13[e] 2 a AgOAc (1.5) tBuOH (85)
14 2 a AgOAc (1.5) DCE 26
15 2 a AgOAc (1.5) DMF 42
16 2 a AgOAc (1.5) dioxane 28
17 2 a AgOAc (1.5) toluene 25

[a] Reaction conditions: 1 a (0.2 mmol), 2 a (1.5 equiv), [RhCl2(Cp*)]2

(3 mol %), additives (0.3–2 equiv), solvent (2 mL), 60 8C for 12 h under a N2

atmosphere. [b] NMR spectroscopic yields. [c] Isolated yields in parenthe-
ses. [d] The reaction ran without [RhCl2(Cp*)]2. [e] Same result was ob-
tained when 2 a (1.2 equiv) was used. DCE = 1,2-dichloroethane.
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hindered ortho-C�H bond to give 3 fa (50 %) and 3 ga (47 %)
with a mass balance of >90 %. The analogous reaction of 4-
bromobenzoic acid afforded 2,6-diamidated benzoic acid 3 ha
exclusively in 54 % yield with a >90 % mass balance. Yet, dou-
bling the quantity of 2 a failed to improve the yield of 3 ha
even with an extended reaction time of 24 h. A similar diami-
dation was also reported by Glorius and co-workers in the
study of the Rh-catalyzed amination of O-methylbenzohyroxa-
mic acids.[5j] Facile reactions were also achieved for disubstitut-
ed benzoic acids bearing alkyl, halogen, and ethereal substitu-
ents to furnish 3 ia–3 ka in 50–70 % yields (mass balance of
3 ka = 85 %).

According to our previous report, the Pd-catalyzed amida-
tion of 1-naphthoic acid (1 l) suffered low product yield (~
30 %). In this work, when 1-naphthoic acid was reacted with
2 a under the Rh-catalyzed conditions, 3 la was formed in 67 %
yield. Similarly, the analogous reaction of 3-thiophencarboxylic
acid (1 m) furnished 3 mb in 40 % yield (mass balance = 80 %).
However, we found that treating the lithium salt of 1 m
(0.2 mmol) with ethyl mesitylsulfonyloxycarbamate (1.5 equiv),
Pd(OAc)2 (10 mol %), and KOAc (1 equiv) in dioxane (1 mL) at
90 8C for 4 h did not produce any amide products. Thus, the
Rh-catalyzed amidation appeared to be more general than the
Pd-catalyzed reactions. Notwithstanding, carboxylic acids bear-
ing some heteroaryl motifs, such as benzofuran, indole, and
pyridine, were found to be poor substrates, which were fully
recovered at the end of the reactions. The amidation of 2-ben-
zylbenzoic acid occurred exclusively at the arene-C�H bond to
furnish 3 na in 73 % yield; products due to amidation at the
benzyl-C�H bond were not obtained.[11] This result suggests
that the outer-sphere nitrene-mediated C�H insertion is kineti-

cally incompatible to the Rh-catalyzed arene amidation reac-
tions.

The diversity of the N-coupling partners has been examined.
For instance, reactions of benzyl N-chlorocarbamate (2 b) and
2,2,2-trichloroethyl N-chlorocarbamate (2 c) with 1 a under the
Rh-catalyzed conditions afforded 3 ab and 3 bc in 77 and 75 %
yields. Notably, the OAc and NHTroc (Troc = trichloroethylchlor-
oformate) groups can be selectively deprotected under orthog-
onal conditions for further transformations.[12] For the coupling
of 1 a with 2 c, we obtained a mixture of N-Troc AA and a cy-
clized product 3 ac (combined yield = 50 %). When the reaction
was repeated with the presence of PivOH (0.5 equiv), 3 ac was
obtained exclusively in 55 % yield (mass balance = 70 %). A sim-
ilar cyclization reaction was also reported by Glorius and co-
workers in the RhIII-catalyzed C�H amidation of O-methylben-
zohydroxamic acids with aroyloxycarbamates.[5j]

Direct C�H bond couplings of benzoic acids with N-chloro-
morpholines were also achieved (Table 3). Treatment of 2,4-di-
methylbenzoic acid (0.2 mmol), N-chloromorpholine (1.2 equiv;

0.11 equiv/h), [RhCl2(Cp*)]2 (3 mol %), and AgOAc (1.5 equiv) in
tBuOH/MeOH (1:1) at 60 8C for 12 h afforded 3 ad in 70 % yield.
No prior derivatization of the carboxylic acid group to an
amide group is needed. Likewise, other N-chloroamines were
successfully coupled to 2,4-dimethylbenzoic acid to give 3 ae
(67 %), 3 af (81 %), and 3 ag (69 %) under Rh catalysis. When 2-
(acetyloxy)benzoic acid (1 b) was reacted with N-chloro-N’-Boc-
piperizine (2 f) (Boc = tert-butoxycarbonyl), a deacetylated
product 3 bf was obtained exclusively in 50 % yield after
workup. In this work, N-chloroamines derived from N-chlorocy-
clopentylamine were found to be ineffective coupling partners,
and no desirable amination product was obtained with >90 %
recovery of the starting benzoic acid.

A cross-dehydrogenative coupling (CDC) between benzoic
acids and amines involving twofold N�H and C�H activations
has been developed (Scheme 2). In this work, the N�H activa-
tion was achieved by treating morpholines (0.24 mmol) with
tert-butyl hypochlorite (0.24 mmol) in dioxane at room temper-

Table 2. Substrate scope studies.[a,b]

[a] Reaction conditions: 1 (0.2 mmol), 2 (1.2 equiv), [RhCl2(Cp*)]2

(3 mol %), AgOAc (1.5 equiv), tBuOH (2 mL), 60 8C under a N2 atmosphere.
[b] Isolated yields. [c] 0.5 equiv PivOH was added. [d] Isolated as the cor-
responding methylester.

Table 3. Amine scope.[a–c]

[a] Reaction conditions: 1 (0.2 mmol), 2 (1.2 equiv), [RhCl2(Cp*)]2

(3 mol %), AgOAc (1.5 equiv), tBuOH/MeOH (1:1), 60 8C under a N2 atmos-
phere. [b] Isolated yields. [c] Chloroamines were added dropwise by using
MeOH as a solvent; rate = 0.11 equiv/h.
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ature for 5 min to generate N-chloromorpholine in situ.[15] And
it was directly employed without isolation for the RhIII-cata-
lyzed direct-C�H amination of benzoic acids. For instance,
treating 2,4-dimethylbenzoic acid (1 a), N-chloromorpholine (in
situ; 0.11 equiv/h), [RhCl2(Cp*)]2 (3 mol %), AgOAc (1.5 equiv) in
MeOH at 60 8C for 12 h furnished 3 ad in 70 % yield. Similarly,
other amines, such as piperidine and N’-Boc-piperizine, were
coupled to 2,4-dimethylbenzoic acid to give 3 ae (62 %) and
3 af (55 %).

In this study, anthranilic acid 3 aa was readily converted to
the corresponding 4H-3,1-benzoxain-4-one (4 aa) in 90 % yield
by N,N-dicyclohexylcarbodiimide (DCC) treatment (Scheme 3).
Compound 4 aa was known to exhibit human leukocyte elas-
tase inhibitory activities.[13] With the choice of the NHCbz
group, 3 ab can be selectively derivatized to 4 ab bearing
a free NH group by a sequence of esterification and hydroge-
nolysis. It is conceivable that the free NH group is open for the
Buchwald–Hartwig arylation to
afford the flufenamic acid deriva-
tives.[14]

To ascertain the role of the
aryl–rhodium(III) complex in the
amination reaction, we prepared
well-characterized aryl–rhodium-
(III) complex 5 by reacting
[RhCl2(Cp*)]2 (0.2 mmol) with
benzo[h]quinoline (0.2 mmol)
and NaOAc (0.44 mmol) in
CH2Cl2 under room temperature
for 24 h.[7b] When 5 (0.1 mmol)
was subjected to the amidation
conditions (i.e. , methyl N-chloro-
carbamate (2 a ; 0.12 mmol) and
AgSbF6 (0.1 mmol) in CH2Cl2),
a complicated mixture was ob-
tained. Attempts to purify the
mixture were unsuccessful. Yet,
when 5 was reacted with a silver
salt of 2 a in CH2Cl2,[15] an
amido–rhodium(III) complex 6
was obtained in 95 % yield
(Scheme 4).

Based on the single-crystal X-ray diffraction study,
complex 6 was confirmed to be a metallacyclic
amido–rhodium(III) complex that features a
Rh(1)�N(2) bond length of 2.061 �. This bond length
value is comparable to corresponding values ob-
served in some defined amido–rhodium(III) com-
plexes (Scheme 4): sulfonamido–rhodium(III) complex
7: 2.108 �; cationic isopropylcarbamato–rhodium(III)
complex 8 : 2.090 �; tetrakis(carboxamidates)dirhodiu-
m(II) complex: 2.018 �; and a 1,2-bis(2-pyridinecar-
boxamido)benzene rhodium(III) complex: 1.971 �.[16, 5i]

Scheme 5 depicts a plausible reaction mechanism.
[Rh(Cp*)(OAc)2][17] should be the active catalyst and

undergoes an irreversible rate-limiting C�H bond cleavage to
form a cyclometallated benzoate complex (A).[7c] This is sup-
ported by the observed notable primary kinetic isotope effect
(KIE) kH/kD = 3.1.[18] Furthermore, upon treating 1 a (0.2 mmol),

Scheme 2. Cross-dehydrogenative amination of benzoic acids involving in situ twofold
N�H and C�H activations.

Scheme 3. Synthetic applications.

Scheme 4. Characterization of the amido–rhodium(III) complex 6 (representative bond lengths: Rh(1)�N(1):
2.103 �; Rh(1)�N(2): 2.061 �) and selected examples of well-defined amido–rhodium(III) complexes.
[Rh2(5R-MEPY)4] = dirhodium(II) tetrakis(methyl 2-oxopyrrolidine-5-carboxylates) ; H2bpb = 1,2-bis(2-pyridinecarbox-
amido)benzene; py = pyridine.
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[RhCl2(Cp*)]2 (3 mol %), AgOAc (1.5 equiv), and 2 a in
[D4]methanol at 60 8C for 20 min, no ortho-deuteriated benzoic
acid was detected with 3 aa formed in 14 % yield. On the con-
trary, when the analogous experiment was performed in the
absence of 2 a, ortho-deuteriated benzoic acid was obtained in
54 % based on 1H NMR spectroscopic analysis. This result
shows C�H bond cleavage in the Rh-catalyzed amidation reac-
tion is irreversible.[19] Based on our stoichiometric studies, the
C�N bond formation should be mediated by the coupling of
the aryl–rhodium(III) complex and the N-chloroamidate anion,
which is likely to be formed by reacting 2 with AgOAc. We hy-
pothesized that the C�N bond formation may occur by 1,2-aryl
migration with the cleavage of the N�Cl bond. However, an al-
ternative pathway involving the formation of RhV nitrenoid
species is also possible. In a computation study by Xia and co-
workers on the [RhIII(Cp*)]-catalyzed cycloaddition of benzohy-
droxamic acids with alkenes, formation of RhV nitrene inter-
mediate from a seven-membered rhodacycle containing a N-
OPiv moiety by an acyloxy migration process was proposed.[20]

Yet, both pathways should afford the same amido–rhodium(III)
intermediate (B). Protodemetalation should regenerate the
[Rh(Cp*)(OAc)2] catalyst with release of the anthranilic acid
products.

Conclusion

To conclude, a RhIII-catalyzed direct C�H amidation/amination
of benzoic acids is developed. The amidation offers a direct
route for the synthesis of functionalized anthranilic acids,
which are important building blocks to many medicinally
active heterocycles. The amidation/amination reactions exhibit
excellent regioselectivities and functional-group tolerance.

Experimental Section

General procedures for the RhIII-catalyzed
ortho-C�H amidation of benzoic acids

For N-chloroamides as a coupling partner: One-batch
addition of reagent 2 (method A): Benzoic acids
1 (0.2 mmol), [RhCl2(Cp*)]2 (3 mol %), and AgOAc
(1.5 equiv) were added to a vial (8 mL) that was sealed
with a Teflon liner cap. The vial was evacuated and back-
filled with N2 three times. Freshly distilled tBuOH (2 mL)
was added to the reaction vial, followed by the addition
of 2 (1.2 equiv) with a 50 mL-syringe in one portion (re-
agents 2 b and 2 c, which are solids at room tempera-
ture, were added to the reaction vial along with the ben-
zoic acids). The reaction was stirred at 60 8C for 12 h.
After cooling to room temperature, EtOAc (4 mL) and
2 m HCl (2 mL) were added. The organic layer was col-
lected and the aqueous layer was washed with EtOAc
(4 mL � 2). The combined organic fractions were dried
over Na2SO4 and then filtered through a plug of glass-
wool. Solvents were removed by rotary evaporation and
the residue was redissolved in a small amount of di-
chloromethane. The dissolved mixture was then purified
by flash column chromatography on silica gel by gradi-
ent elution with 10 % EtOAc in hexanes with 5 % incre-
ment until 50 % EtOAc in hexanes was reached, at which
point the anthranilic acid products were eluted.

For N-chloroamines as a coupling partner: Slow addition of re-
agent 2 (method B): A mixture of benzoic acids (0.2 mmol), [RhCl2-
(Cp*)]2 (3 mol %), and AgOAc (1.5 equiv) were dissolved in freshly
distilled tBuOH (1 mL) in a 10 mL-Schlenk tube under a N2 atmos-
phere. Chloroamine 2 was dissolved in MeOH (1 mL) and was
added dropwise to the reaction tube by a syringe pump (rate =
0.11 equiv/h). The reaction was stirred at 60 8C for 12 h. After cool-
ing to room temperature, the reaction was diluted with EtOAc
(4 mL). Saturated NaHCO3 and 1 m HCl were added to adjust the
pH of the crude mixture to 5. The organic layer was collected, and
the aqueous layer was washed with EtOAc (4 mL � 2). The com-
bined organic fractions were dried over Na2SO4 and then filtered
through a plug of glasswool. Solvents were removed by rotary
evaporation, and the residue was re-dissolved in a small amount of
dichloromethane. The dissolved mixture was then purified by flash
column chromatography on silica gel by gradient elution with
10 % EtOAc in hexanes with 5 % increment until 50 % EtOAc in hex-
anes was reached, at which point the anthranilic acid products
were eluted.

Cross-dehydrogenative coupling reaction between benzoic
acids and amines

A mixture of 2,4-dimethylbenzoic acid (0.2 mmol), [RhCl2(Cp*)]2

(3 mol %), and AgOAc (1.5 equiv) were dissolved in freshly distilled
MeOH (1 mL) in a 10 mL-Schlenk tube under a N2 atmosphere. In
a separate 4 mL-vial, secondary amines (0.24 mmol) were mixed
with tert-butyl hypochlorite (0.24 mmol) in dioxane (1 mL) for
5 min. To the Schlenk tube containing RhIII and the benzoic acids,
the secondary amine solution mixture in the vial was added drop-
wise by a syringe pump (rate = 0.11 equiv/h). The reaction mixture
was stirred at 60 8C for 12 h, and then was treated by the same
workup procedures as in method B.

Scheme 5. Proposed mechanism.
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Kinetic isotope effect (KIE) experiment

In a parallel experiment, benzoic acids 1 a (0.1 mmol) and [D2]2,4-
dimethyl-6-benzoic acid ([D2]1 a) (0.1 mmol) were added separately
into two 8 mL-vials sealed with a Teflon liner cap. [RhCl2(Cp*)]2

(3 mol %) and AgOAc (1.5 equiv) were added into the two separate
reaction vials, and the vials were evacuated and back-filled with N2

three times. Freshly distilled MeOH (2 mL) was added to the two
reaction vials, followed by the addition of 2 (1.2 equiv) with
a 50 mL-syringe in one portion. The two reactions were stirred at
60 8C for 20 min. After cooling to room temperature, EtOAc (4 mL)
and 2 m HCl (2 mL) were added. The organic layer was collected
and the aqueous layer was washed with EtOAc (4 mL � 2). The
combined organic fractions were dried over Na2SO4 and then fil-
tered through a plug of glasswool. Solvents were removed by
rotary evaporation to dryness. The residue was redissolved in
[D]chloroform followed by the addition of internal standard (dibro-
momethane, 0.1 mmol). The conversions of 1 a and ([D2]1 a) were
determined by 1H NMR spectroscopy. The same set of experiments
was repeated three times to obtain an average KIE value.

Synthesis of amido–rhodium(III) complex 6

Cyclometallated complex 5 (0.1 mmol) and the silver salt of 2 a
(0.1 mmol) were added to a 10 mL-Schlenk tube. The tube was
evacuated and back-filled with N2 three times. Distilled dichlorome-
thane (5 mL) was added to the reaction tube. The reaction mixture
was stirred at room temperature overnight. The reaction crude was
filtered through a plug of Celite and rinsed with dichloromethane.
The filtrate was then evaporated to dryness under reduced pres-
sure. The residue was washed with hexanes (5 mL � 3), diethyl
ether (5 mL � 3), and a small amount of EtOAc (~1 mL). The result-
ed residue was dried in vacuo to afford complex 6. To obtain
a single-crystal for X-ray crystallographic study, complex 6 was dis-
solved in a minimum amount of dichloromethane and then layered
with hexanes for 1 day.
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