Catalysis Science & Technology

PAPER

Check for updates

Cite this: Catal. Sci. Technol., 2018, 8, 5535

Received 14th August 2018, Accepted 13th September 2018

DOI: 10.1039/c8cy01689e

rsc.li/catalysis

Introduction

During recent years, considerable attention has been paid to the utilization of sunlight energy, which is regarded as an abundant and clean energy source for different applications (*e.g.*, driving chemical reactions).^{1–3} In the field of catalytic reactions, exploiting low-cost and efficient catalytic systems with high stability is a major goal. Among these, photocatalytic technology is a promising strategy because it can combine catalysis with the potential utilization of solar energy.^{4–6} Among the organic reactions, the synthesis of imines derived from amines is a kind of critical organic reaction.^{7–12} The resultant imines are widely used intermediates, pharmaceuticals, and fine chemicals.^{13,14}

In earlier studies, the transformation of amines to imines were performed mainly on noble metals (Pd, Au, Pt).^{15,16} When compared with noble metals, low-cost and abundant inorganic semiconductors photocatalysts have attracted increasing attention because of their intrinsic catalytic properties.^{17–20} Some significant studies have been

Heilongjiang University, 150080 Harbin, P. R. China.

Hydrogenated $Cu_2OAu@CeO_2$ Z-scheme catalyst for photocatalytic oxidation of amines to imines[†]

Yingying Liu, Yajie Chen,* Wei Zhou, ២ Baojiang Jiang, 跑 Xin Zhang and Guohui Tian 🕕*

The design and fabrication of highly active visible light photocatalysts for organic synthesis reactions are particularly challenging for solar energy utilization and conversion. Herein, hydrogenated Z-scheme yolk-shell $Cu_2O|Au@CeO_2$ (H- $Cu_2O|Au@CeO_2$) photocatalysts were synthesized using cubic Cu_2O as the starting core material *via* surface Au deposition and oxidation etching process, followed by hydrogenation treatment. When compared with CeO_2 , $Cu_2O@CeO_2$, and $Cu_2O@CeO_2|Au$ nanocomposites, optimized H- $Cu_2O|Au@CeO_2$ showed remarkably higher visible light oxidation activity for the synthesis of imines from amines at ambient pressure and room temperature. The remarkably enhanced photoactivity of the H- $Cu_2O|Au@CeO_2$ composite mainly derives from the enhanced photoinduced charge separation efficiency, porous yolk-shell structure, proper surface defects, and well-maintained strong oxidation/reduction capabilities. The Z-scheme charge transfer process and photocatalytic reaction mechanism of the H- $Cu_2O|Au@CeO_2$ composites were also provided through spectral and photoelectrochemical analyses together with the investigation of structure and photocatalytic oxidation reactions. This study provides a probable approach for designing unique Z-scheme catalysts.

conducted involving the reactions of amines to imines. For example, oxide semiconductors (e.g., TiO2, CeO2, Nb2O5), metal sulfides (e.g., CdS, ZnIn₂S₄), and mesoporous graphite C₃N₄ have showed photocatalytic oxidation ability of amines to imines.²¹⁻²⁵ Unfortunately, fast photoinduced charge recombination rate of a single-component catalyst is difficult to meet the stringent requirements of practical applications, including selectivity and productivity. As compared to singlecomponent catalysts, heterostructured catalysts constructed by coupling two semiconductors have been confirmed to show considerably enhanced photoactivity; therefore, the construction of a heterostructure material was considered to be an effective approach to resolve the disadvantages mentioned above.^{26,27} For instance, for type-II band alignment, heterostructured Cu2O/CeO2 photocatalysts have exhibited higher visible light photocatalytic degradation performance than single Cu₂O and CeO₂ because of their accelerated separation rate of photogenerated carriers.²⁸⁻³⁰ However, the decreased oxidation/reduction ability of the Cu₂O/CeO₂ heterostructure is detrimental to any improvements in the photocatalytic activity.³¹ Therefore, simultaneously improving photogenerated charge carriers separation and maintaining individual oxidation/reduction ability is considerably desirable. The construction of a Z-scheme system photocatalyst can effectively realize this objective. Recently, the Z-scheme system photocatalysts have garnered increased attention because the strong oxidation and reduction capabilities of the

View Article Online

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science,

E-mail: chenyajie1970@163.com, tiangh@hlju.edu.cn; Fax: +86 451 86661259; Tel: +86 451 86608781

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/ c8cy01689e

components in the composite can be maintained.³²⁻³⁷ In addition, the morphology and structure considerably influence the photocatalytic activity. Some special structures, such as hollow and core-shell structures, have demonstrated increased photocatalytic activity.³⁸ In particular, yolk-shell nanostructures possess the advantages of both core-shell and hollow structures, which can significantly enhance light utilization and photocatalytic activity. For example, Pt@CeO₂ composites with tunable yolk-shell and core-shell structures have been prepared, which have exhibited remarkable visible light photocatalytic activity.³⁹ However, no Z-scheme system involving Cu₂O/CeO₂ yolk-shell nanostructure composites has been designed and applied in photocatalytic organic reactions up to now.

In this work, in order to implement the synthesis of imines from amines under visible light irradiation, hydrogenated Z-scheme yolk-shell Cu₂O\Au@CeO₂ photocatalyst was prepared, and its fabrication route is illustrated in Scheme S1.† Cubic Cu₂O was first prepared. Then, the surfaces of cubic Cu₂O were loaded with Au nanoparticles via chemical reduction. The following oxidation etching process produced the Z-scheme yolk-shell Cu₂O\Au@CeO₂ composite. The photocatalytic activity of the optimal Z-scheme yolk-shell Cu₂O\Au@CeO₂ composite was remarkably higher than that of the control samples, such as individual CeO₂ and common yolk-shell Cu₂O@CeO₂ composite. Moreover, the subsequent hydrogenation treatment can further improve the photocatalytic performance by reforming the surface/interface defects of Cu₂O\Au@CeO₂. The origin of significantly enhanced photocatalytic performance and reaction mechanism for the optimal Z-scheme yolk-shell composite catalyst were explored.

Experimental section

Synthesis of cubic Cu₂O nanocrystals

Firstly, 0.0372 g EDTA–2Na and 0.0250 g $CuSO_4 \cdot 5H_2O$ were separately added into 100 mL distilled water to form an aqueous solution (0.01 M). An appropriate amount of D-glucose and NaOH were also dissolved in 10 mL distilled water to form 0.1 M and 1 M aqueous solutions, respectively. Then, 100 mL EDTA–2Na solution and 10 mL D-glucose solution were put in a 250 mL breaker containing 100 mL CuSO₄ aqueous solution. After NaOH solution (10 mL, 1 M) was mixed with the above solution, the beaker containing the mixed solution was put into a water bath (80 °C) and kept for 30 min. After filtration, the obtained precipitate (cubic Cu₂O) was washed, followed by drying at 60 °C.

Synthesis of Cu₂O\Au

In a typical synthesis process, 0.05 g Cu₂O was added in distilled water (28 mL); then, 10 mL 1% PVP (polyvinyl pyrrolidone; mol. wt: 10 000) solution was added in the above solution under stirring (30 min). Finally, the optimal 0.7 mL HAuCl₄ solution (2.5×10^{-3} g mL⁻¹) was mixed with the above solution. After stirring for 3 h, the obtained precipitate was filtrated and washed, followed by drying at 60 °C. For comparison, the experiments of Cu₂O loaded with different Au contents were also done. Here, 0.35 mL, 1.05 mL, and 1.40 mL HAuCl₄ solutions were used to prepare the Cu₂O\Au samples.

Synthesis of hydrogenated Cu₂O\Au@CeO₂ (H-Cu₂O\Au@CeO₂)

Cu₂O\Au@CeO₂ was firstly synthesized via a template etching method. Under magnetic stirring, 2.5 mL NaCl aqueous solution was added in a beaker containing 200 mL absolute ethanol. Further, 50 mg Cu₂O\Au was dispersed in the above NaCl solution to obtain well-distributed suspension under ultrasonic dispersion for 15 min. Then, 50 mL ethanol solution containing 0.011 g $(NH_4)_2Ce(NO_3)_6$ was dropped into the above suspension solution at 45 °C. The obtained final powder was washed and dried (60 °C). Similarly, Cu₂O@CeO₂ was also obtained under a similar synthesis route using Cu₂O to replace Cu2O\Au. H-Cu2O\Au@CeO2 was obtained by calcining Cu₂O\Au@CeO₂ to 300 °C and maintaining it under Ar/H₂ (7%) atmosphere for 10 min, and the resultant product was termed as H-Cu2O\Au@CeO2. As a comparison, Au nanoparticles were also loaded on the outer side of $Cu_2O(@CeO_2)$, and the sample was labeled as Cu₂O@CeO₂\Au.

Characterization

The crystal structure of the powder samples was determined using an X-ray diffractometer (D8 Advance), and Cu Ka was the radiation source (40 kV, 44 mA, $\lambda = 1.5406$ Å). Surface morphology and elemental distributions of the samples were analyzed by scanning electron microscopy-energy-dispersive X-ray spectrometer (SEM-EDS, S-4800, EDAX). Transmission electron microscopy (TEM) was performed using a JEOL 2100 system operated at 200 kV. In order to perform TEM characterization, after ultrasonic dispersion, ethanol suspensions containing catalysts were dropped onto copper grids (400 mesh) coated with carbon. The diffuse reflectance spectra (DRS) were obtained from a UV-2550 UV-vis absorption spectrophotometer equipped with an ISR-240A integrating sphere using BaSO₄ as the reference sample. Raman spectra were obtained from a laser Raman spectrometer (HR800, Horiba) using 632.8 nm excitation wavelength and 1800 L mm⁻¹ grating. The valence states of the elements were determined on an X-ray photoelectron spectrometer (XPS, VG ESCALABMK II); Al K α (*hv* = 1486.8 eV) was used as the X-ray source. The C 1s peak at 284.6 eV was used as the internal standard. Fluorescence spectra were obtained from the FLS920 fluorescence spectrophotometer (Edinburgh) using a He-Cd laser source, and the excitation wavelength was 320 nm. The metal composition of the optimal catalyst was detected via inductively coupled plasma emission spectrometer (ICP, Optimal 7000).

Electrochemical test

The electrochemical test was performed on an electrochemical analyzer (BAS100B), and a three-electrode system was applied. Saturated Ag/AgCl was used as the reference electrode, and Pt foil (1 cm \times 1.5 cm) was used as the counter electrode. A Xe lamp (300 W, CEL-HXF-300) was used as the light source; it was equipped with a 400 nm cutoff filter. Here, 0.1 M Na₂SO₄ solution bubbled with nitrogen gas was used as the electrolyte. Electrochemical impedance spectroscopy (EIS) data was obtained using an electrochemical analyzer (Zahner Elektrik, Germany) over a 100–0.05 Hz frequency range under bias of -0.8 V with sinusoidal perturbations of 10 mV.

Photocatalytic performance test

Photocatalytic tests were carried out in a 3 mL quartz vessel. A mixed solution of 1.5 mL deionized water (H₂O), 15 µL organic reactants, and 15 mg photocatalyst was added into the quartz vessel. Further, oxygen was bubbled through the reactor for 15 min to enhance the oxygen adsorption of the photocatalyst. Then, the vessel was plugged using a rubber stopper. The vessel was maintained at room temperature (20-23 °C) by circulating water through the outer jacket. The samples were collected before and at regular intervals during irradiation, and the catalyst was removed by filtration. The light source was a Xe lamp (300 W, CEL-HXF-300); a 400 nm cutoff filter was employed. The light density was 5.8 mW cm⁻². After light irradiation, the photocatalyst particles were filtered, and the product was extracted using acetonitrile. It was then analyzed by gas chromatography-mass spectrometry (6890GC-5973MSD, Agilent) after drying with Na2SO4 powder. The electron spin resonance (ESR) spectra were obtained using an A300 ESR spectrometer at room temperature, where DMPO was used as the spin-trap reagent in a methanol solution. Instrument settings conditions: receiver gain, 1×10^3 ; time constant, 10.24 ms; modulation amplitude, 3 G; center field, 3507 G; microwave power, 6.35 mW; sweep width, 80 G; sweep time, 42 s.

Results and discussion

Material characterization

X-ray diffraction (XRD) analysis was performed to determine the structures of the catalysts. In Fig. 1A, all the diffraction peaks located at 36.5° , 42.4° , 60.9° , and 73.1° matched with the cuprite structure Cu₂O (JCPDS: 05-0667).⁴⁰ The diffraction peaks at 56.3° , 47.5° , 33.1° , and 28.6° correspond to CeO₂ with a fluorite structure (JCPDS: 81-0792).⁴¹ However, Au can-

Fig. 1 (A) XRD patterns and (B) Raman spectra of different samples.

not be identified in the XRD pattern of Cu₂O\Au@CeO₂ because of its low content. The XRD diffraction peak intensity of H–Cu₂O\Au@CeO₂ is slightly lower than that of Cu₂O\Au@CeO₂ due to the decrease in the crystallinity after hydrogenation treatment. Moreover, there exists a weak diffraction peak (43.3°) of Cu derived from the partial reduction of Cu₂O.⁴² The Raman spectra in Fig. 1B further confirmed the formation of Cu₂O and CeO₂ (Fig. 1B). In Fig. 1B, the peak at 459 cm⁻¹ corresponds to the F_{2g} skeletal vibration.⁴³ However, in the Raman spectrum of H–Cu₂O\Au@CeO₂, the peak (459 cm⁻¹) corresponding to CeO₂ changes to 465 cm⁻¹, which can be attributed to the production of oxygen vacancies (Vo's) originating from the hydrogenation treatment.⁴⁴ In optimal H–Cu₂O\Au@CeO₂, the molar ratio of Cu:Ce:Au is about 39:18:1 according to the ICP test.

SEM and TEM characterizations were performed to demonstrate the morphology and structure of the catalysts. As shown in Fig. 2A, the outer surface of cubic Cu₂O is smooth. However, the outer surface of cubic Cu₂O\Au is rough and uniformly covered by Au nanoparticles (8-10 nm) (Fig. 2B). The TEM image further confirmed the cubic structure of Cu₂O (Fig. 2C), and uniformly distributed Au nanoparticles on the outer surface of Cu₂O can also be seen from the inset of Fig. 2D. The diameter of Au nanoparticles is about 8-10 nm. The EDS element mapping results also proved the uniform distribution of Au nanoparticles on the outer surface of Cu₂O (Fig. S1[†]). From Fig. 3A, it can be seen that rough porous CeO₂ shells were formed on the outside of the Cu₂O\Au because of the partial sacrifice of Cu₂O during the etching reaction, and uniform yolk-shell structure nanocubes were observed (Fig. 3B), demonstrating the successful preparation of yolk-shell structure Cu2O\Au@CeO2. Fig. 3C shows the HRTEM image (the box in Fig. 3B); interplanar spacings of 0.31 and 0.19 nm correspond to the (111) and (220) facets of CeO₂, respectively.⁴¹ After hydrogenation treatment, the

Fig. 2 SEM (A) and TEM (C) images of Cu_2O; SEM (B) and TEM (D) images of Cu_2O\Au.

Fig. 3 SEM images of Cu₂O\Au@CeO₂ (A) and H–Cu₂O\Au@CeO₂ (B). TEM images of Cu₂O\Au@CeO₂ (C) and H–Cu₂O\Au@CeO₂ (D). HRTEM images of Cu₂O\Au@CeO₂ (E) and H–Cu₂O\Au@CeO₂ (F).

entire cubic morphology and yolk-shell structure of $Cu_2O|Au@CeO_2$ were effectively maintained (Fig. 3D and E). The corresponding HRTEM image is shown in Fig. 3F. Apart from the lattice fringe (0.19 nm) of the CeO₂ (220) plane, there exists a thin amorphous CeO₂ surface layer, which is produced from the hydrogenation treatment.⁴⁴

Optical and electrochemical properties

The survey XPS spectrum (Fig. S2[†]) confirms the existence of Ce, O, Cu, and Au in H-Cu₂O\Au@CeO₂. In Fig. 4A, the peaks assigned to $Ce^{4+} 3d_{3/2}$ are marked as u''', u'', and u. The peaks corresponding to Ce⁴⁺ $3d_{5/2}$ are marked as ν'' , ν''' , and ν . Similarly, the peaks attributed to $Ce^{3+} 3d_{3/2}$ and $Ce^{3+} 3d_{5/2}$ are marked as u' and v', respectively.^{45,46} The deconvolution results reveal the coexistence of Ce³⁺ and Ce⁴⁺ in the samples. Moreover, the relative concentration of Ce3+ in H-Cu₂O\Au@CeO₂ is larger than that in Cu₂O\Au@CeO₂ estimated via the integrated peak area in the spectra through the equation (Fig. S2[†]), implying that the hydrogenation treatment induced the formation of Vo's of Ce³⁺/Ce⁴⁺ redox pairs by causing lattice distortion and charge imbalance in CeO₂.⁴⁶ The peaks of Cu $2p_{1/2}$ (952.2 eV) and Cu $2p_{3/2}$ (932.4 eV) are associated with Cu⁰ or Cu¹⁺.⁴⁷ The peaks at 934.1 (Cu 2p_{3/2}) and 953.9 eV (Cu $2p_{1/2}$) can be ascribed to Cu^{2+} .⁴⁵ The exis-

Fig. 4 XPS spectra of (A) Ce 3d, (B) Cu 2p, (C) O 1s, and (D) Au 4f of different samples. Core-level XPS spectra are shown using color maps, and the corresponding deconvoluted peaks are shown using solid lines. The spectra decomposition was executed using the XPS PEAK 41 program with Gaussian functions after the subtraction of a linear background.

tence of satellite peaks at 941.2 and 961.9 eV in the spectra indicates that there is marginal content of the chemical state of Cu^{2+} oxidation state (CuO).⁴⁸ The O 1s spectra are shown in Fig. 4C. The two deconvoluted peaks at around 529.3 and 531.4 eV are related to lattice oxygen and hydroxyl-type oxygen species/molecular water, respectively.⁴⁹ In the Au 4f XPS spectrum (Fig. 4D), the peaks at 84.0 and 87.7 eV can be attributed to metallic Au atoms in the composite catalysts.⁵⁰

UV-vis absorption spectra are employed to investigate the optical properties of the photocatalysts. In Fig. 5A, steep absorption edges can be found at 450 and 635 nm in the absorption spectra of CeO₂ and Cu₂O, respectively. When compared with CeO₂, the increased visible light absorption of Cu₂O\Au@CeO₂ mainly comes from the introduction of Cu₂O. Meanwhile, the existence of Au and Cu nanoparticles can exhibit localized surface plasmon resonance (SPR) effect. Moreover, H–Cu₂O\Au@CeO₂ exhibited the strongest visible light absorption among these samples because of the existence of surface defects generated from hydrogenation.

Surface defects such as the existence of Vo's were confirmed by ESR test (Fig. S3[†]). For Cu₂O@CeO₂\Au, weak absorption at about 550 nm can be found from its UV-vis absorption spectrum, which originated from the SPR effect of Au nanoparticles. The direct optical bandgaps of CeO₂ and Cu₂O were measured by plotting the graph of $(ahv)^2$ versus photon energy (*hv*) (Fig. 5B). Here, *a* is the optical absorption coefficient, and *hv* can be calculated as hv = 1240/wavelength. The direct optical bandgaps of CeO₂ and Cu₂O were 2.87 and 1.95 eV, respectively, measured by extrapolating the linear region of the square of the absorption curve to the *x*-axis. These values are in good agreement with the reports of CeO₂ (2.8– 3.0 eV) and Cu₂O (2.0–2.2 eV).^{46,51}

Photoluminescence is an important characterization technique to analyze the behavior of photogenerated carriers.⁵² Published on 03 October 2018. Downloaded by Kaohsiung Medical University on 11/11/2018 12:38:37 AM.

Fig. 5 (A) UV-vis absorption spectra and (B) calculated bandgaps of different catalysts; steady state (C) and transient state (D) photo-luminescence spectra of the different catalysts.

In Fig. 5C, the steady state photoluminescence spectra show emission bands at around 427 and 465 nm, originating from the defects within the Ce 4f and O 2p levels, respectively.⁵³ Obviously, these composite catalysts including Cu₂-O@CeO2\Au showed relatively lower photoluminescence intensity than pure CeO₂. In particular, H-Cu₂O\Au@CeO₂ showed the lowest photoluminescence intensity. It indicates that the inhibited photoinduced charge recombination in the composites was because of the existence of proper surface defects (Vo's) and the synergy between Cu₂O, Au, and CeO₂. Moreover, the transient state photoluminescence spectroscopy tests (Fig. 5D) also prove that the average fluorescence lifetime of H-Cu₂O\Au@CeO₂ is the longest in these catalysts (Table S1[†]). Hence, this H-Cu₂O\Au@CeO₂ Z-scheme yolkshell system is better than an ordinary heterojunction structure.

Transient photocurrent tests were implemented to demonstrate the accelerated photoinduced charge transfer and separation of different samples. As evident from Fig. 6A, the H– Cu₂O\Au@CeO₂ electrode showed higher photocurrent density than Cu₂O, Cu₂O@CeO₂, and Cu₂O\Au@CeO₂. The results indicate that the Z-scheme structure and proper surface defects in H–Cu₂O\Au@CeO₂ could generate additional charge carriers, thereby promoting their effective separation. Similarly, EIS tests were also performed. In Fig. 6B, the smallest arc size can be observed for the H–Cu₂O\Au@CeO₂ electrode, suggesting the lowest interfacial charge transfer resistance (Rct), resulting in the highest charge transfer and separation efficiency. This agrees with the photoluminescence spectra and transient photocurrent results.⁵⁴

Photocatalytic activities

A series of organic synthesis reactions of imines from amines were performed to evaluate the photocatalytic activity of cata-

Fig. 6 (A) Photocurrent response of different samples with and without visible light irradiation under bias of 0.4 V versus NHE. (B) Nyquist plots of different samples. Supporting electrolyte is 0.1 M Na_2SO_4 .

lysts in deionized water. The N-benzylidene benzylamine derived from benzylamine under aerobic oxidation was first studied. A high yield (88.0%) and good selectivity (96.5%) to N-benzylidene benzylamine product were obtained in the presence of H-Cu₂O\Au@CeO₂ after 5 h visible light irradiation. However, when using Cu₂O\Au@CeO₂, Cu₂O@CeO₂\Au, Cu₂O@CeO₂, CeO₂\Au, and CeO₂ as the photocatalysts in an oxygen atmosphere, despite having similar selectivity, relatively low yields of 72%, 56.2%, 41.3%, 40.3%, and 21.6% are obtained, respectively. The significantly enhanced photocatalytic activity of H-Cu₂O\Au@CeO₂ arise from several factors. Firstly, the enhanced photoinduced charge separation and transfer rate in Z-scheme Cu₂O@CeO₂ composites can accelerate the photocatalytic organic reaction rate. Secondly, significantly enhanced visible light absorption of the composites because of hydrogenation can indeed contribute toward the generation of additional photogenerated charge carriers. Meanwhile, hot electrons can be produced from Au nanoparticles during visible light irradiation, and some hot electrons can leap into the conduction band of Cu₂O to participate in the catalytic reactions. Thirdly, the Vo's (generated from the formed Ce³⁺ after hydrogenation) can also provide a higher carrier concentration and promote enhanced carrier separation,⁴³ which can be proven by photochemical and photoelectrochemical tests. Moreover, the porous CeO₂ shell and hollow interlayer can also promote the reactants transfer. In addition, the relatively high adsorption capacity (Table S2[†]) of H-Cu₂O\Au@CeO₂ contributes toward the enhancement of photocatalytic activity.

In photocatalytic tests, some control experiments were also carried out. The photocatalytic tests of H-Cu₂O\Au@CeO₂ with different Au contents confirmed that the moderate content of Au can make H-Cu₂O\Au@CeO₂ exhibit optimal photocatalytic activity (Fig. S4[†]). The same organic reaction occurring in air and under de-aerated conditions showed relatively low yields of 69% and 15% (Fig. 7B), respectively. Meanwhile, the control experiments also indicated that there was a very low conversion rate under dark or no catalyst conditions (Fig. 7B). Meanwhile, when compared with the reported catalysts, the catalyst in this work still achieves satisfying conversion and selectivity (Table S3⁺). The results verified that the oxidative reactions could be driven under the existence of a catalyst, molecular oxygen, and light irradiation. The effect of substrate concentration on the photocatalytic reactions (Fig. S5[†]) was also studied. It can be seen that the conversion rate and yield increased with the benzylamine concentration up to 90 mM; it then decreased at higher concentrations. This can be attributed to the fact that when the concentration is less than or equal to 90 mM, more benzylamine molecules can reach the surface active sites of the catalysts and participate in the oxidation reaction, leading to a higher conversion rate (Fig. S5A[†]) and yield (Fig. S5B[†]). When the benzylamine concentration is too high, some of the benzylamine molecules cannot reach the surface

Fig. 7 (A) Time course of benzylamines yield over various photocatalysts: a) Cu₂O, b) CeO₂, c) CeO₂\Au, d) Cu₂O@CeO₂, e) Cu2O@CeO2\Au, f) Cu2O\Au@CeO2, g) H-Cu2O\Au@CeO2. Reaction conditions: 15 mg photocatalysts, 1.5 mL H₂O, 15 μ L substrates, visible light (λ > 400 nm), illumination time is 5 h, oxygen atmosphere, room temperature (20-23 °C); (B) time course of benzylamines yield over H-Cu2O\Au@CeO2 under different reaction conditions: (a) no photocatalysts, (b) dark, (c) N₂ atmosphere, (d) air; (C) photocatalytic oxidation of benzylamines over H-Cu2O\Au@CeO2 using different trapping agents: isopropanol (IPA) for 'OH, benzoquinone (BQ) for 'O2, and ammonium oxalate (AO) for h⁺; (D) ESR spectra of DMPO-'O2 in H-Cu₂O\Au@CeO₂ dispersion under different conditions: a) reaction conditions: 15 mg photocatalysts, 1.5 mL methanol dispersion, 15 µL of substrates under visible light irradiation $(\lambda > 400 \text{ nm})$, illumination time is 2 h, oxygen atmosphere, room temperature (20-23 °C), b) no photocatalysts, c) dark.

of the catalyst and participate in the reaction, so the conversion rate and yield decrease. However, the selectivity exhibits no obvious change (Fig. S5C†). The aerobic oxidation reactions of some other amines were also carried out. The experimental results are listed in Table 1. Obviously, the aerobic oxidation of amines was realized. Moreover, higher yields can be obtained from benzylamines containing electron-donating groups such as OCH₃ and CH₃ in comparison to benzylamines with electron-withdrawing groups (*e.g.*, Cl), which is in agreement with a previous report.⁵⁵ In addition, for the *para*-substituted benzylamines, a higher reaction rate can be provided in comparison to the *ortho* and *meta* isomers due to steric effects.

To reveal the underlying cause of the dramatic enhancement in activity and corresponding intrinsic mechanism of photocatalytic aerobic oxidation of amines, radical scavenger tests were performed. Isopropanol (IPA), benzoquinone (BQ), and ammonium oxalate (AO) were selected as the trapping agents of 'OH, 'O2-, and h+, respectively.56 As shown in Fig. 7C, the introduction of BQ and AO led to a significant decrease in the benzylamine conversion, demonstrating that O_2^- and h⁺ act as the main active species. The significantly important role of 'O₂⁻ in the photocatalytic reaction was further confirmed by ESR measurements. As presented in Fig. 7D, four obvious signals assigned to DMPO- O_2^- can be observed when H-Cu2O\Au@CeO2 acts as the catalyst under visible light illumination, indicating that O_2^- can be generated from H-Cu2O\Au@CeO2.57 The control experiments show that 'O₂⁻ signal cannot be found in the absence of H- $Cu_2OAu()CeO_2$ or under dark conditions. Meanwhile, the weak ESR signal of DMPO-'OH adduct can be found (Fig. S6[†]). This indicated that only a small quantity of 'OH radicals were produced in this photocatalytic system. The above ESR and radical trapping tests confirmed the synergistic effects of h^+ and O_2^- in the photocatalytic reaction.

The improved photocatalytic activity of H-Cu₂O\Au@CeO₂ can be elucidated from the formation of the Z-scheme band structure system (Fig. 8). According to the XPS valence spectra (Fig. S7[†]), the valence band (VB) positions of CeO₂ and Cu₂O were located at 2.44 and 0.63 V, respectively. As evident from Fig. 5B, the bandgaps of CeO₂ and Cu₂O were 2.74 and 1.95 eV, respectively. Therefore, the conduction band (CB) positions of CeO₂ and Cu₂O were located at about -0.30 and -1.32 V versus NHE, respectively. The designed schematic diagram of the energy band structure of H-Cu₂O\Au@CeO₂ is shown in Fig. 8. In the Z-scheme H-Cu₂O\Au@CeO₂ system, Cu₂O and CeO₂ can be simultaneously excited under visible light irradiation. Photoinduced electrons from the CB of CeO₂ could transfer to the VB of Cu₂O via metallic Au to recombine with the holes. This combination process was very fast. Hence, the charge carriers' separation efficiency was considerably enhanced. Electrons in the CB of Cu₂O were captured by O_2 , so O_2^- was produced. The h⁺ in the VB of CeO₂ directly oxidized H₂O to form 'OH radicals. Therefore, the produced predominant active species O_2^- and h^+ could effectively oxidize various amines to their corresponding

 $\label{eq:table_transform} \begin{array}{l} \mbox{Table 1} & \mbox{Photocatalytic oxidation of a series of benzylic amines over $H-Cu_2O\Au@CeO_2$. Reaction conditions: 15 mg $H-Cu_2O\Au@CeO_2$, 1.5 mL H_2O, 15 mL H_2O, 16 mL H_2O, 16 mL H_2O, 16 mL H_2O, 17 mL H_2O, 17 mL H_2O, 18 mL H_2O, 18 mL H_2O, 18 mL H_2O, 19 mL H_2O, 10 mL $H_2O$$

				Conversion	Selectivity (%)	
Entry	Substrate	Product	By-product	(%)	N-Benzylidene benzylamines	Benzaldehydes
1	NH ₂			91.2	96.5	13.5
2	NH ₂	p C P P		91.9	94.8	15.2
3	Cl NH2	CI CI		71.6	69.5	30.5
4	NH ₂			90.4	61.0	39
5	NH ₂			75.4	56.8	43.2

imines. Meanwhile, a small number of generated hot electrons could jump to the CB of Cu₂O and then be captured by the molecular oxygen to yield superoxide radicals (O_2). Moreover, the Vo's on H-Cu₂O\Au@CeO₂ can accelerate the photoinduced charge separation and improve the photocatalytic performance. Conversely, in a traditional type-II heterostructure model (Fig. S8[†]), the electrons in the CB of Cu₂O and Au jump to that of CeO_2 , and the h⁺ in the VB of CeO_2 would leap to that of Cu_2O . However, O_2^- could not be produced because CeO₂ has a more positive CB-edge potential (-0.30 V) than O_2/O_2^- (-0.33 V). Similarly, 'OH radicals cannot be produced because Cu₂O has a more negative VB (+0.63 V). However, the production and significant role of O_2^{-} and 'OH were verified in the active species trapping experiments (Fig. 7C). Therefore, a Z-scheme structure mechanism is reasonable. The above experiment results showed that the produced h^+ and O_2^- species should exert a synergistic catalytic role on the photocatalytic reaction. The photocatalytic reaction mechanism was also proposed (Fig. 8). The electrons (e⁻) in the CB of Cu_2O reacted with O_2 to produce O_2^- . The h⁺ in the VB of CeO₂ oxidized the anchored amine to produce the cation radical complex.58 Meanwhile, the hydrogen atoms

Fig. 8 Photocatalytic reaction mechanism of imines derived from amines under aerobic conditions over $H-Cu_2O\setminus Au@CeO_2$.

can be extracted by O_2^- from the amine radial cations to generate imine intermediates, and the hydrolysis of imine intermediates leads to the formation of intermediate benzaldehyde and ammonia gas, which were proven by the GC-MS (Fig. S9†) and ion chromatography test results (Fig. S10†). Then, benzaldehyde molecules are transferred to the primary amines to produce the corresponding imines (Table 1).

The photocatalytic cycling stability of H-Cu₂O\Au@CeO₂ was also tested. After six reaction cycles, only a slow decrease in the photocatalytic activity can be found (Fig. S11[†]). Meanwhile, conversion and selectivity have no obvious decrease after the reusability test (Fig. S12[†]), indicating the excellent active stability of the H-Cu₂O/Au@CeO₂ catalyst. Furthermore, the different characterizations (XRD, Raman, XPS, SEM, and TEM) of the H-Cu₂O\Au@CeO₂ catalyst after the tests were done (Fig. S13-S16[†]). The results show that the catalyst has relatively high morphology and structural stability. In addition, the H-Cu₂O\Au@CeO₂ catalyst can be applied to other organic synthesis reactions. For example, the photocatalytic synthesis of aromatic aldehyde from the corresponding aromatic alcohol derivatives were also achieved (Table S4[†]). This suggests that the H-Cu₂O\Au@CeO₂ catalyst may have wide applications in photocatalytic organic syntheses.

Conclusions

In summary, we have developed a H–Cu₂O\Au@CeO₂ Z-scheme yolk–shell structure photocatalyst. The prepared H– Cu₂O\Au@CeO₂ catalysts can significantly enhance the charge separation efficiency and maintain strong oxidation/reduction capabilities. The transformation of amines into imines was realized with high productivity and excellent selectivity under aerobic oxidation conditions. Besides, the composite catalysts showed potential performance in other organic reactions and possessed excellent stability without compromising on the photocatalytic efficiency. More detailed studies were also performed to clarify the factors that determine the catalytic activity and applications to some other oxidation reactions. This synthesis strategy can contribute toward fabricating Z-scheme catalysts yielding both high oxidation and excellent reduction ability.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (51772079, 51672073 21771061), Natural Science Foundation of Heilongjiang Province of China (B2017009).

References

- 1 J. C. Colmenares and R. Luque, *Chem. Soc. Rev.*, 2014, 43, 765–778.
- 2 S. Peiris, J. McMurtrie and H.-Y. Zhu, *Catal. Sci. Technol.*, 2016, 6, 320–338.
- 3 D. S. Ovoshchnikov, B. G. Donoeva and V. B. Golovko, *ACS Catal.*, 2015, 5, 34–38.
- 4 J. D. Tibbetts, D. R. Carbery and E. A. C. Emanuelsson, ACS Sustainable Chem. Eng., 2017, 5, 9826–9835.
- 5 D. R. Sun, L. Ye and Z. H. Li, *Appl. Catal.*, *B*, 2015, 164, 428–432.
- 6 X. J. Lang, X. D. Chen and J. C. Zhao, *Chem. Soc. Rev.*, 2014, 43, 473-486.
- 7 Z.-Y. Zhai, X.-N. Guo, G.-Q. Jin and X.-Y. Guo, *Catal. Sci. Technol.*, 2015, 5, 4202–4207.
- 8 D. S. Ovoshchnikov, B. G. Donoeva and V. B. Golovko, ACS Catal., 2015, 5, 34–38.
- 9 S. Zhang, C. R. Chang, Z. Q. Huang, Y. Y. Ma, W. Gao, J. Li and Y. Q. Qu, ACS Catal., 2015, 5, 6481–6488.
- 10 Y. Liu, P. Zhang, B. Z. Tian and J. L. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 13849–13858.
- P. Sudarsanam, B. Mallesham, A. Rangaswamy, B. G. Rao, S. K. Bhargava and B. M. Reddy, *J. Mol. Catal.*, 2016, 412, 47–55.
- 12 F. Raza, J. H. Park, H.-R. Lee, H.-I. Kim, S.-J. Jeon and J.-H. Kim, *ACS Catal.*, 2016, 6, 2754–2759.
- 13 B. Chen, L. Y. Wang and S. Gao, ACS Catal., 2015, 5, 5851–5876.
- 14 S.-I. Murahashi, Angew. Chem., Int. Ed. Engl., 1995, 34, 2443-2465.
- 15 X. J. Yang, B. Chen, X. B. Li, L. Q. Zheng, L. Z. Wu and C. H. Tung, *Chem. Commun.*, 2014, **50**, 6664–6667.
- 16 S.-I. Naya, T. Niwa, T. Kume and H. Tada, Angew. Chem., Int. Ed., 2014, 53, 7305–7309.
- 17 N. Li, X. J. Lang, W. H. Ma, H. W. Ji, C. C. Chen and J. C. Zhao, *Chem. Commun.*, 2013, 49, 5034–5036.
- 18 B. Yuan, R. F. Chong, B. Zhang, J. Li, Y. Liu and C. Li, *Chem. Commun.*, 2014, 50, 15593–15596.
- 19 X. Li, J. G. Yu and M. Jaroniec, *Chem. Soc. Rev.*, 2016, 45, 2603–2636.

- 20 J. Chen, J. Cen, X. L. Xu and X. N. Li, *Catal. Sci. Technol.*, 2016, 6, 349–362.
- 21 H. J. Chen, C. Liu, M. Wang, C. F. Zhang, N. C. Luo, Y. H. Wang, H. Abroshan, G. Li and F. Wang, ACS Catal., 2017, 7, 3632–3638.
- 22 X. J. Lang, W. H. Ma, Y. B. Zhao, C. C. Chen, H. W. Ji and J. C. Zhao, *Chem. – Eur. J.*, 2012, 18, 2624–2631.
- 23 S. Furukawa, Y. Ohno, T. Shishido, K. Teramura and T. Tanaka, ACS Catal., 2011, 1, 1150–1153.
- 24 A. Rangaswamy, P. Sudarsanam, B. G. Rao and B. M. Reddy, *Res. Chem. Intermed.*, 2016, 42, 4937–4950.
- 25 X. T. Wang, C. H. Liow, D. P. Qi, B. W. Zhu, W. R. Leow, H. Wang, C. Xue, X. D. Chen and S. Z. Li, *Adv. Mater.*, 2014, 26, 3506–3512.
- 26 D. Friedmann, A. Hakki, H. Kim, W. Choic and D. Bahnemann, *Green Chem.*, 2016, **18**, 5391–5411.
- 27 G. Liu, L. Z. Wang, H. G. Yang, H.-M. Cheng and G. Q. Lu, J. Mater. Chem., 2010, 20, 831–843.
- 28 S. M. Fang, Y. J. Xin, G. Lei, C. C. Han, P. Qiu and L. E. Wu, *Appl. Catal.*, B, 2015, 179, 458–467.
- 29 D. Sharma, V. R. Satsangi, R. Shrivastav, U. V. Waghmare and S. Dass, *Int. J. Hydrogen Energy*, 2016, 41, 18339–18350.
- 30 S. C. Hu, F. Zhou, L. Z. Wang and J. L. Zhang, Catal. Commun., 2011, 12, 794–797.
- 31 M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai and Y. H. Wu, J. Phys. Chem. B, 2006, 110, 20211–20216.
- 32 J.-C. Wang, L. Zhang, W.-X. Fang, J. Ren, Y.-Y. Li, H.-C. Yao, J.-S. Wang and Z.-J. Li, ACS Appl. Mater. Interfaces, 2015, 7, 8631–8639.
- 33 H. J. Li, Y. Y. Gao, Y. Zhou, F. T. Fan, Q. T. Han, Q. F. Xu,
 X. Y. Wang, M. Xiao, C. Li and Z. G. Zou, *Nano Lett.*,
 2016, 16, 5547–5552.
- 34 H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, *Nat. Mater.*, 2006, 5, 782–786.
- 35 F. Chen, Q. Yang, S. N. Wang, F. B. Yao, J. Sun, Y. L. Wang, C. Zhang, X. M. Li, C. G. Niu, D. B. Wang and G. M. Zeng, *Appl. Catal.*, *B*, 2017, 209, 493–505.
- 36 F. Chen, Q. Yang, X. M. Li, G. M. Zeng, D. B. Wang, C. G. Niu, J. W. Zhao, H. X. An, T. Xie and Y. C. Deng, *Appl. Catal.*, *B*, 2017, 200, 330–342.
- 37 F. Chen, Q. Yang, Y. L. Wang, F. B. Yao, Y. H. Ma, X. D. Huang, X. M. Li, D. B. Wang, G. M. Zeng and H. Q. Yu, *Chem. Eng. J.*, 2018, 348, 157–170.
- 38 N. Zhang, X. Z. Fu and Y.-J. Xu, J. Mater. Chem., 2011, 21, 8152–8158.
- 39 N. Zhang, S. Q. Liu and Y.-J. Xu, Nanoscale, 2012, 4, 2227-2238.
- 40 M. Basu, A. K. Sinha, M. Pradhan, S. Sarkar and G. T. Pal, J. Phys. Chem. C, 2011, 115, 12275–12282.
- 41 H. Z. Bao, Z. H. Zhang, Q. Hua and W. X. Huang, *Langmuir*, 2014, **30**, 6427–6436.
- 42 W. Chen, Z. L. Fan and Z. P. Lai, *J. Mater. Chem. A*, 2013, 1, 13862–13868.
- 43 Y. J. Lee, G. H. He, A. J. Akey and R. Si, *J. Am. Chem. Soc.*, 2011, 133, 12952–12955.
- 44 Y. T. Xiao, Y. J. Chen, Y. Xie, G. H. Tian, S. E. Guo, T. R. Han and H. G. Fu, *Chem. Commun.*, 2016, 52, 2521–2524.

- 45 S. Fang, Y. J. Xin, L. Ge, C. C. Han, P. Qiu and L. N. Wu, *Appl. Catal.*, *B*, 2015, 179, 458-467.
- 46 S. Sultana, S. Mansingh, M. Scurrell and K. M. Parida, *Inorg. Chem.*, 2017, **56**, 12297–12307.
- 47 A. A. Dubale, C.-J. Pan, A. G. Tamirat, H.-M. Chen, W.-N. Su, C.-H. Chen, J. Rick, D. W. Ayele, B. A. Aragaw, J.-F. Lee, Y.-W. Yang and B.-J. Hwang, *J. Mater. Chem. A*, 2015, 3, 12482–12499.
- 48 S. Joshi, S. J. Ippolitoabc and M. V. Sunkara, *RSC Adv.*, 2016, 6, 43672–43684.
- 49 Z. W. Ma, S. L. Zhao, X. P. Pei, X. M. Xiong and B. Hu, *Catal. Sci. Technol.*, 2017, 7, 191–199.
- 50 H. J. Xia, Y. Wang, F. H. Kong, S. R. Wang, B. L. Zhu, X. Z. Guo, J. Zhang, Y. M. Wang and S. H. Wu, *Sens. Actuators, B*, 2008, 134, 133–139.
- 51 J.-C. Wang, L. Zhang, W.-X. Fang, J. Ren, Y.-Y. Li, H.-C. Yao, J.-S. Wang and Z.-J. Li, ACS Appl. Mater. Interfaces, 2015, 7, 8631–8639.

- 52 M. J. Islam, D. A. Reddy, J. Choi and T. K. Kim, *RSC Adv.*, 2016, 6, 19341–19350.
- 53 S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P. L. Anderson and S. Seraphin, *Cryst. Growth Des.*, 2007, 7, 950–955.
- 54 X.-J. Wen, C.-G. Niu, L. Zhang and G.-M. Zeng, *Dalton Trans.*, 2017, 46, 4982–4993.
- 55 S.-I. Naya, K. Kimura and H. Tada, ACS Catal., 2013, 3, 10–13.
- 56 F. Chen, Q. Yang, J. Sun, F. B. Yao, S. N. Wang, Y. L. Wang, X. L. Wang, X. M. Li, C. G. Niu, D. B. Wang and G. M. Zeng, *ACS Appl. Mater. Interfaces*, 2016, 8, 32887–32900.
- 57 F. Chen, Q. Yang, Y. Zhong, H. X. An, J. W. Zhao, T. Xie, Q. X. Xu, X. M. Li, D. B. Wang and G. M. Zeng, *Water Res.*, 2016, 101, 555–563.
- 58 W. W. Zhao, C. B. Liu, L. M. Cao, X. G. Yin, H. L. Xu and B. Zhang, *RSC Adv.*, 2013, 3, 22944–22948.