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Abstract : 11,12-dihydm-4-deaeetyidoeetaxei was prepared from 10-deaeetylbaecatin III via its 
reduced derivative at C 11, C12. The tide compound is not active on m icrotubules disassembly. 

Taxoids are a series of new anticancer drugs 1 which inhibit cell growth by interacting with 

microtubules. 2 Among these substances, Taxol ® (paclitaxel) 13 and Taxotere ® (docetaxel) 24 are clinically 

active against ovarian, breast and lung cancers. In order to obtain new compounds with improved biological 

activity and to study the structure-activity relationships in this series, a number of structural modifications 

have been performed on paclitaxel and docetaxel. These modifications include mainly the ester groups at C-2, 

C-4, and C-13, the oxetane D ring as well as the oxygenated functions at C-7, C-9 and C-105. On the 

contrary, only few analogues modified at the C-I 1, C-12 positions have been preparedSe and, to date, no 

information is available on the direct influence of the A-ring double bond on the antitubulin activity. 
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We have previously described the synthesis of 11,12-dihydro-10-deacetylbaccatin III 4 and of its 7- 

triethylsilyl derivative 5 from 10-deacetylbaccatin III 36, a renewable precursor isolated from the leaves of 

the European yew tree, Taxus baccata. 7 Very recently, reduction of the C-11, C-12 double bond of baccatin 

III derivatives was also described by Appendino and coll.. 8 In order to obtain the 11,12- dihydro derivative of 

docetaxel, compound 5 was treated with 3 equivalents of the protected acid side chain 69 and a coupling 

agent (3 eq). Unfortunately, in our hands, no reaction occurred when we used the DCC or EDCI / DMAP 

procedure. On the other hand, treatment of 5 and acid side-chain 6 with NaHMDS / EDCI led to the 13- 

acetyl, 4-deacetyl derivative 7 (Scheme 1). The easy acyl transfer from C-4 to the hydroxyl group at O13 can 

be explained by the very close proximity of these two groups as seen in the X-ray crystallography study of 

11,12-dihydro-7-triethylsilyl- 10-deacetylbaccatin III 5.10 
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A solution to the C-13 acylation would be to introduce the proper acid side chain on the 4- 

deacetylated derivative 8 and then reacetylate the C-4 hydroxyl group. Selective approaches to the removal of 

the C-4 acetyl group from baccatin III derivatives have been described in the literature. 5e, 11-16 

OH :~ ORI~ O 
OCOPh 

4 (R 1 = AC, R2= H, R3= H) 
5 (RI= Ac, R2= SiEt 3, R3= H) " ~  a 
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5(RI=Ac, R2=SiEt3, R3=H) -~ a)6(3eq.), NaI-IMDS(3eq),EDCI(3eq.),Toluene, 0°C(50%) 
8 (RI= H, R2= SiEt 3, R3= H) ~ b b) t-BuOK, TI-IF, 0°C (56%) 

Scheme 1 

Following one of these procedures, 1 1 the treatment of 5 with potassium t-butoxide afforded the 

desired 4-deacylated derivative 8 (Scheme 1). Compound 8 was also obtained after reduction of the 13-oxo- 

4-deacetylated derivative 12. This compound was prepared from 7-TES-10-deacetylbaccatin III 9 by 

reduction of the acetyl group with Super-hydride 14 (compound 10). Oxidation of 10 with PCC provided the 

13-oxo derivative 11. Finally, the double bond and the keto group were respectively reduced by zinc 

(compound 12) and NaBH4 to offer compound 8 (Scheme 2). 
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Scheme 2 

The acid side chain 6 9 was then attached to 8, using the DCC, DMAP procedure 17 (compound 13). 

Compound 13 underwent stepwise deprotection leading In'st to the desilylated derivative and then to 11,12- 

dihydro-4-deacetyldocetaxel 14. Some epimerization at C-7 (compound 15) also occurred under the 
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deprotection conditions (Scheme 3). 11,12-dihydro-4-deacetyldocetaxel 14 and its 7-epimer 15 exhibit mass, 

1H-NMR and 13C-NMR spectra in agreement with the assigned structures. 18 

Many attempts have then been made to obtain 11,12-dihydrodocetaxel from the 4-deacetylated 

derivative 13, but, to our disappointment, the hindered hydroxyl group at C-4 could not be acetylated, even 

under forcing conditions. For exemple, no reaction occurred when a solution of compound 13 in pyridine was 

treated with Ac20 (20 eq), DMAP (20 eq) at 70°C. On the other hand, treatment with acetyl chloride under 

highly basic conditions (LiHMDS or NaHMDS) in THF led to the cleavage of the side-chain at C- 13. 

Ph H H , 
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.. OH 
@ ~  13 

OMe 

OH 

° 
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a) DCC, DMAP, Toluene, 60°C (62%), 14 (R= ~-OH), 15 (R= or-OH) 
b) APTS, MeOH, rt (14: 36%) 

Scheme 3 

Analogues 14 and 15 were evaluated in vitro on the disassembly process of microtubules into 

tubulin.19 11,12-Dihydro-4-deacetyldocetaxel 14 and its 7-epimer 15 are inactive. 20 In comparison, in the 
microtubule disassembly assay, 4-deacetyldocetaxe121 possesses an IC50 of 4. 10 -5 M. These results show 

that the A ring double bond is essential to the interaction of taxoids with microtubules. 
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