View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Ogawa and Y. Obora, *Chem. Commun.*, 2014, DOI: 10.1039/C3CC49626K.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Published on 15 January 2014. Downloaded by Heinrich Heine University of Duesseldorf on 15/01/2014 11:31:32.

Cite this: DOI: 10.1039/c0xx00000x

Iridium-catalyzed selective α-methylation of ketones with methanol[†]

Shinji Ogawa and Yasushi Obora*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

s Iridium-catalyzed selective α-dimethylation and α-methylation of ketones or phenylacetonitriles, using methanol as the methylating agent, were achieved. In addition, three-component cross α-methyl-alkylation was successfully performed using methyl ketones with methanol and primary
 10 alcohols with long-chain alkyl groups. This method provides a very convenient direct route to α-methylated ketones, using methanol.

The development of transition-metal-catalyzed C-C bond formation using sustainable feedstocks is vital for bulk and fine ¹⁵ chemical manufacture.¹ In particular, methylation is an essential function of biologically active molecules. The development of methyl functionalization is therefore a topic of current interest.² Ketone methylation using iodomethane or diazomethane as the methylating agent is a typical example.³ However, such methods 20 use toxic or extremely sensitive explosive reagents. It is well known that Ir and Ru complexes are efficient catalysts for transfer hydrogenation (also known as hydrogen borrowing) from alcohols to aldehydes and ketones.⁴ This important strategy has been applied to C-C bond formation in α - and β -alkylation 25 reactions, using alcohols as alkylating agents.⁵ Our group has reported Ir-catalyzed α-alkylations of ketones,^{6a} methyl esters,^{6b} acetonitrile,6d methylene compounds,^{6c} active and methylquinolines,6e and dimerizations of alcohols.6f-g In addition, we achieved Ir-catalyzed reactions of alcohols with alkynes or ³⁰ enones led to homoallylic alcohols, ^{7a} β -enones, ^{7b} and 1,3diketones.^{7c} These reactions were restricted to benzyl alcohols or aliphatic alcohols with long-chain alkyl groups; only a few reactions using methanol have been reported,⁸ although methanol is an abundant and renewable resource.⁹ In our previous study, 35 we showed that methyl esterification was selectively achieved by

the Ir-catalyzed reactions of methanol and alcohols with longchain alkyl groups,¹⁰ because methanol oxidation is relatively difficult; the reaction energy for methanol dehydrogenation (ΔH = 84 kJ mol⁻¹) is higher than those for the dehydrogenation of ⁴⁰ higher alcohols such as ethanol (ΔH = 68 kJ mol⁻¹).¹¹

In pioneering work on transfer hydrogenation using methanol, Krische reported Ir-catalyzed direct C–C coupling of methanol and allenes.¹² Li described Ir-catalyzed *N*-monomethylation of aromatic primary amines with methanol, and reported the ⁴⁵ reaction of indoles with methanol to give 3,3'bisindolylmethanes.¹³ Beller and Grützmacher reported Rucatalyzed dehydrogenation of methanol to hydrogen and carbon dioxide.¹⁴ Recently, Donohoe reported Rh-catalyzed O₂-assisted ketone methylation.15

⁵⁰ In this communication, we report a simple and versatile method for selective α -methylation of ketones or phenylacetonitriles, with methanol as the methylating agent, in the presence of an Ir catalyst and a base. In addition, we report the three-component one-step or one-pot α -methyl-alkylation of methyl ketones using ⁵⁵ methanol and primary alcohols with long-chain alkyl groups.

Initially, acetophenone (1a) and methanol (2) were used as model substrates for optimization of the α -methylation conditions; the results are shown in Table 1.

 Table 1. Ir-Catalyzed Reactions of Acetophenone (1a) with Methanol (2)

 60 under Various Conditions^a

° C	[Ir] (cat.) Base 120 °C, 15 h	O Me	+	OH Me Me
1a	2	3a	4a	
Entry	In optalizat	Deee	Yield (/%) ^b	
Enuy	ii catalyst	Dase	3a	4a
1	[Cp*IrCl ₂] ₂	KOH	87 (83)	<1
2°	[IrCl(cod)] ₂ /PPh ₃	KOH	39	9
3°	[Ir(OH)(cod)] ₂ /PPh ₃	KOH	55	12
4	[Cp*RhCl ₂] ₂	KOH	18	4
5	RuHCl(CO)(PPh ₃) ₃	KOH	12	12
6	[Cp*IrCl ₂] ₂	Cs_2CO_3	76	<1
7	[Cp*IrCl ₂] ₂	t-BuOK	51	11
8	[Cp*IrCl ₂] ₂	Na ₂ CO ₃	n.d. ^d	n.d.
9 ^e	[Cp*IrCl ₂] ₂	KOH	79	<1

^aConditions: **1a** (1 mmol), **2** (1.5 mL), Ir catalyst (0.05 mmol), and base (0.50 mmol) at 120 °C for 15 h under Ar. ^bGC yields based on **1a** used. The number in parentheses shows isolated yield. ^cPPh₃ (0.20 mmol) was used. ^dNot detected by GC. ^c[Cp*IrCl₂]₂ (0.005 mmol) was used.

For example, the reaction of **1a** (1 mmol) with **2** (1.5 mL) was performed in the presence of [Cp^{*}IrCl₂]₂ (0.05 mmol, 5 mol%) and KOH (0.5 mmol, 50 mol%) at 120 °C for 15 h, giving the αdimethylated product **3a** in 87% yield. This reaction was highly ⁶⁵ chemoselective (Table 1, entry 1). With regard to the Ir complex, [Cp^{*}IrCl₂]₂ gave **3a** in high yield with high selectivity. The use of [IrCl(cod)]₂/PPh₃ and [Ir(OH)(cod)]₂/PPh₃ gave **3a** in moderate yields, along with the formation of **4a** (9–12%; entries 2 and 3). When [Cp*RhCl₂]₂ and RuHCl(CO)(PPh₃)₃ were used as ⁷⁰ catalysts, the yields of ketone methylation products were low (entries 4 and 5). The methylation was influenced by the base used. KOH and Cs₂CO₃ were found to be suitable bases (entries 1 and 6). When *t*-BuOK, was used, **4a** was also detected (entry 7). However, weak bases such as Na₂CO₃ resulted in total inactivity ⁷⁵ under these conditions (entry 8).

This journal is © The Royal Society of Chemistry [year]

Published on 15 January 2014. Downloaded by Heinrich Heine University of Duesseldorf on 15/01/2014 11:31:32

^aReaction conditions: **1** (1.0 mmol), **2** (1.5 mL), Ir catalyst (0.05 mmol), and KOH (0.50 mmol) at 120 °C for 15 h under Ar. All yields are isolated yields. ^bReaction temperature was 130 °C. ^cThe stereochemistry is not determined. ^dReaction temperature was 150 °C. ^cKOH (1.0 mmol) was used. ^f**2** (0.75 mL) was used. ^gNa₂CO₃ (0.50 mmol) was used instead of KOH.

Furthermore, a reduced catalyst loading was found to give **3a** in 79% yield (entry 9). No reaction took place in the absence of an 5 Ir complex. The reaction proceeded with an excess of **2**, and the use of 1 equiv of **2** for **1a** was found to be sluggish under these conditions.

After obtaining these optimized conditions, we investigated the reactions of various ketones 1 with methanol (2) (Table 2). Various aryl methyl ketones (1b-1f) were allowed to react with 226K the optimized conditions (entries under 1-5).Methylacetophenone (1b), 4-methoxyacetophenone (1c), 4naphthylacetophenone (1d), 2-acetylfuran (1e), and 2methylacetophenone (1f) participated in the reaction and the corresponding α -dimethylated products **3b–3f** were obtained in 80-85% isolated yields, with high chemoselectivity. When butyrophenone (1g) was used, the monomethylated product 3gwas obtained in 89% yield (entry 6). Aliphatic and benzyl ketones (1h-1k) were also used in this reaction and the products 20 were isolated in 78-91% yields (entries 7-10). If Na₂CO₃ was used instead of KOH in the reaction of benzyl ethyl ketone (1k), monomethylation proceeded at the benzyl position with high chemoselectivity (entry 11). Time-course monitoring of the reaction of 1k with 2 showed initial formation of 3k', followed by 25 formation of 3k (See Fig. S1, ESI⁺); this is probably the result of

the different pK_a values at the benzyl and ethyl positions.¹⁶ We anticipated that this catalytic system would be compatible with other compounds. A series of phenylacetonitriles bearing electron-donating or electron-withdrawing groups gave the α -³⁰ methylated products **6a–6c** in good to excellent yields; the results are shown in Table 3.

Table 3. Ir-Catalyzed Reactions of Phenylacetonitriles 5 with Methanol $(2)^a$

^aReaction conditions: **3** (1.0 mmol), **2** (1.5 mL), Ir catalyst (0.05 mmol), and KOH (0.50 mmol) at 120 °C for 15 h under Ar. All yields are isolated yields. ^bCorresponding amide (<10%) was also obtained. ^cReaction temperature was 130 °C.

- ³⁵ With the results in hand for the selective α -dimethylation of methyl ketones using methanol, the catalytic system was successfully extended to three-component one-step or one-pot cross α -methyl-alkylations of methyl ketones using methanol and primary alcohols; the results are shown in Table 4.
- ⁴⁰ For example, the reaction of 1a (2 mmol) with 2 (1.0 mL) and benzyl alcohol (7a) (1 mmol) was performed in the presence of [Cp*IrCl₂]₂ (0.05 mmol, 5 mol%) and KOH (0.5 mmol, 50 mol%) at 140 °C for 15 h, giving the α-methyl-alkylated product 8aa in 81% yield, with high chemoselectivity (Table 4, entry 1).
 ⁴⁵ Ketones 1b and 1c participated in the reaction, and the corresponding products 8ba and 8ca were obtained in 83–84%
- yields (entries 2 and 3). Furthermore, acetone (11), one of the simplest ketones, was accommodated in this reaction and **8al** was isolated in good yield (entry 4). 4-Methylbenzyl alcohol (7b) and ⁵⁰ 4-methoxybenzyl alcohol (7c) participated in the reaction and the
- corresponding products **8ab** and **8ac** were obtained in good yields (entries 5 and 6). We performed one-pot-type methyl-alkylations

Published on 15 January 2014. Downloaded by Heinrich Heine University of Duesseldorf on 15/01/2014 11:31:32

of **1a**, first using aliphatic alcohols **7d** and **7e** and then with **2**. Methyl-alkylated products were obtained in high yields (entries 7 and 8). These methods generate various multisubstituted ketones from simple methyl ketones.

5 Table 4. Ir-Catalyzed Cross Methyl-Alkylations of Ketones 1 with Methanol (2) and Primary Alcohols 7^a

0	+ MeOH	+ OH	^{cat.} [Cp*lrCl ₂] ₂ KOH	
1	2	7	140 0, 1011	R' R' Me 8
Entry	$1(R^{1})$	7 (R ²)	Product (8)	Yield (%)
1	1a	C ₆ H ₅ 7a	8 aa	81
2	1b	7a	8ba	84
3	1c	7a	8ca	83
4	CH ₃ 11	7 a	Me C ₆ H	5 61
5	1 a	<i>p</i> -СН ₃ С ₆ Н ₄ 7b	8ab	79
6	1a	<i>p</i> -CH ₃ OC ₆ H ₄ 7c	8ac	72
7 ^b	1a	n-C ₅ H ₁₁ 7d	8ad	88
8 ^b	1a	<i>n</i> -C ₇ H ₁₅ 7e	8ae	90

^aReaction conditions: **1** (2.0 mmol), **2** (1.0 mL), **7** (1 mmol), Ir catalyst (0.05 mmol), and KOH (0.50 mmol) at 140 °C for 15 h under Ar. All yields are isolated yields. ^bReaction conditions: **1** (1.2 mmol), **7** (1 mmol), Ir catalyst (0.05 mmol), and KOH (0.50 mmol) at 80 °C for 2 h, and, after adding **2** (1.5 mL), 140 °C for 15 h under Ar.

Ketone methylation is believed to proceed according to a previously reported reaction pathway (Fig. S2, ESI[†]).⁶ ¹⁰ Dehydrogenation of methanol by an Ir complex leads to formaldehyde and an Ir–hydride species.¹⁷ Base-catalyzed aldol condensation of formaldehyde with the ketone then leads to formation of an α,β -unsaturated ketone, which reacts with the Ir–hydride complex to give the α -methylated product.

- In conclusion, an efficient α -methylation of ketones or phenylacetonitriles, using methanol, an Ir complex, and a base, was successfully developed. Furthermore, the catalytic system was successfully extended to three-component cross α -methylalkylations of methyl ketones using methanol and primary
- 20 alcohols. This reaction provides a simple and atom-economical direct route to various multisubstituted ketones in good yields.

This work was supported by Kansai University and the Strategic Project to Support the Formation of Research Bases at Private Universities (2010-2014), matching fund subsidy from the ²⁵ Ministry of Education, Culture, Sports, Science and Technology.

5 Ministry of Education, Culture, Sports, Science and Technolog

Notes and references

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan. Fax:+81-6-6339-4026; Tel:+81-6-6368-0876;

30 E-mail: obora@kansai-u.ac.jp.

[†] Electronic Supplementary Information (ESI) available: Fig. S1-2, Experimental procedures and compound characterization data (¹H NMR, ¹³C NMR) of the compounds. See DOI:10.1039/b000000x/

- 35 1 (a) C. S. Yeung and V. M. Dong, *Chem. Rev.*, 2011, **111**, 1215. (b) *Green Catalysis*, ed P. T. Anastas, Wiley-VCH, Weinheim, 2009.
 - 2 (a) E. J. Barreiro, A. E. Kümmerle and C. A. M. Fraga, Cheme Banne 2011, 111, 5215. (b) H. Schönherr and T. Ochak, Migel 3Chem. 6Bits Ed., 2013, 52, 2.
- 40 3 (a) E. Langhals and H. Langhals, *Tetrahedron Lett.*, 1990, **31**, 859.
 (b) K. Maruoka, A. B. Concepcion and H. Yamamoto, *Synthesis* 1994, 1283
- For selected reviews, see: (a) S. Ourida and J. M. J. Williams, *Top. Organomet. Chem.*, 2011, 34, 77. (b) J. Zhang, G. Leitus, Y. Ben-David and D. Milstein, *J. Am. Chem. Soc.*, 2005, 127, 10840. (c) F. Hanasaka, K. Fujita and R. Yamaguchi, *Organometallics* 2004, 23, 1490. (d) M. H. S. A. Hamid, P. A. Slatford and J. M. J. Williams, *Adv. Synth. Catal.*, 2007. 349. 1555. (e) J. F. Bower, I. S. Kim, R. L. Patman and M. J. Krische, *Angew. Chem. Int. Ed.*, 2009, 48, 34. (f) G. Guillena, D. J. Ramón and M. Yus, *Chem. Rev.*, 2010, 110, 1611. (g) G. E. Dobereiner and R. H. Crabtree, *Chem. Rev.*, 2010, 110, 681. (h) T. Suzuki, *Chem. Rev.*, 2011, 111, 1825. (i) R. Takeuchi and S. Kezuka, *Synthesis* 2006. 3349 and references therein.
- ⁵ For selected reviews, see: (a) C. S. Cho, B. T. Kim, T.-J. Kim and S. C. Shim, *J. Org. Chem.*, 2001, **66**, 9020. (b) A. S. Ndou, N. Plint and N. J. Coville, *Appl. Catal. A: Gen.*, 2003, **251**, 337. (c) C. S. Cho, B. T. Kim, H.-S. Kim, T.-J. Kim and S. C. Shim, *Organometallics* 2003, **22**, 3608. (d) R. Martínez, D. J. Ramón and M. Yus, *Tetrahedron* 2006, **62**, 8982. (e) K. Fujita, C. Asai, T. Yamaguchi, F. Hanasaka and R. Yamaguchi, *Org. Lett.*, 2005, **7**, 4017. (f) G. Onodera, Y. Nishibayashi and S. Uemura, *Angew. Chem. Int, Ed.*, 2006, **45**, 3819. (g) G. Guillena, D. J. Ramón and M. Yus, *Angew. Chem. Int, Ed.*, 2007, **46**, 2358. (h) T. D. Nixon, M. K. Whittlesey and J. M. J. Williams, *Dalton Trans.*, 2009, 753. (i) T. Kuwahara, T. Fukuyama and I. Ryu, *Org. Lett.*, 2012, **14**, 4703 and references therein
- 6 (a) K. Taguchi, H. Nakagawa, T. Hirabayashi, S. Sakaguchi and Y. Ishii, J. Am. Chem. Soc. 2004, 126, 72. (b) Y. Iuchi, Y. Obora and Y. Ishii, J. Am. Chem. Soc., 2010, 132, 2536. (c) M. Morita, Y. Obora and Y. Ishii, Chem. Commun., 2007, 2850. (d) T. Sawaguchi and Y.
- Obora, Chem. Lett., 2011, 40, 1055. (e) Y. Obora, S. Ogawa and N. Yamamoto, J. Org. Chem., 2012, 77, 9429. (f) Y. Obora, Y, Anno, R. Okamoto, T. Matsu-ura and Y. Ishii, Angew. Chem. Int, Ed., 2011, 50, 8618. (g) T. Matsu-ura, S. Sakaguchi, Y. Obora and Y. Ishii, J. Org. Chem., 2006, 71. 8306. (h) Y. Obora and Y. Ishii, Synlett., 2011, 30.
- 75 7 (a) Y. Obora, S. Hatanaka and Y. Ishii, *Org. Lett.*, 2009, 11, 3510. (b)
 S. Hatanaka, Y. Obora and Y. Ishii, *Chem. Eur. J.*, 2010, 16, 1883.
 (c) Y. Obora, K. Nakamura and S. Hatanaka, *Chem. Commun.*, 2012, 48, 6720.
- 8 (a) K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K.
 ⁸⁰ Jitsukawa and K. Kaneda, *Chem. Eur. J.*, 2006, **12**, 8228. (b) N.
 Ortega, C. Richter and F. Glorius, *Org. Lett.*, **2013**, *15*, 1776.
- 9 N. Yamamoto, Y. Obora and Y. Ishii, J. Org. Chem., 2011, 76, 2937.
- 10 The Methanol Institute: <u>http://www.methanol.org</u>.

95

- (a) M. Qian, M. A. Liauw and G. Emig, *Appl. Catal. A: Gen.*, 2003.
 238. 211. (b) W.-H. Lin and H.-F. Chang, *Catal. Today* 2004, 97, 181.
 (c) T. Yamagata, A. Iseki and K. Tani, *Chem. Lett.*, 1997, 1215. (d) K. Tani, A. Iseki and T. Yamagata, *Chem. Commun.*, 1999, 1821.
- 12 J. Moran, A. Preetz, R. A. Mesch and M. J. Krische, *Nat.. Chem.*, 2011, **3**, 287.
- 90 13 (a) F. Li, J. Xie, H.Shan, C. Sun and L. Chen, *Rsc Adv.*, 2012, 2, 8645.
 (b) C. Sun, X. Zou and F. Li, *Chem. Eur. J.*, 2013, 19, 14030.
 - 14 (a) M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali and M. Beller, *Nature* 2013, **495**, 85. (b) R. E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-Quinones and H. Grützmacher, *Nat. Chem.*, 2013, **5**, 342.
- 15 L. K. M. Chan, D. L. Poole, D. Shen, M. P. Healy and T. J. Donohoe, *Angew. Chem. Int. ed.*, 2013, **53**, 761.
- 16 F. G. Bordwell and J. A. Harrelson Jr., Can. J. Chem., 1990, 68, 1714.
- (a) M. J. Burk, R. H. Crabtree and D. V. McGrath, *J. Chem. Soc., Chem. Commun.*, 1985, 1829. (b) M. Gupta, C. Hagen, W. C. Kaska, R. E. Cramer and C. M. Jensen, *J. Am. Chem. Soc.*, 1997, **119**, 840.
 (c) F. Liu and A. S. Goldman, *Chem. Commun.*, 1999, 655.

This journal is © The Royal Society of Chemistry [year]