Total Syntheses of β-Carboline Alkaloids, (R)-(-)-Pyridindolol K1, (R)-(-)-Pyridindolol K2, and (R)-(-)-Pyridindolol

Naoko Kanekiyo, ${ }^{\dagger}$ Takeshi Kuwada, ${ }^{\ddagger}$ Tominari Choshi, ${ }^{\dagger}$ J unko Nobuhiro, ${ }^{\dagger}$ and Satoshi Hibino ${ }^{*, t}$
Graduate School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, J apan, and Process Chemistry Laboratory, M edicinal Research Laboratory, Taisho Pharmaceutical Co. Ltd., 1-403 Y oshino-cho, Saitama, Saitama 330-8530, J apan
hibino@fupharm.fukuyama-u.ac.jp

Received J une 4, 2001

Abstract

The total syntheses of β-carboline alkal oids, (R)-(-)-pyridindolols (1, 5, and $\mathbf{6}$) are described. The two key steps involved are (1) a thermal electrocyclic reaction of the 3 -alkenylindole2-aldoxime $\mathbf{1 0}$ and (2) a thermal cyclization of 3-alkynylindole-2-aldoxime $\mathbf{1 1}$ to construct the β-carboline N -oxides 8, which upon heating with acetic anhydride and sequential treatment with trifluoromethanesulfonic anhydride gave the triflates 18 . The Stille coupling reaction of $\mathbf{1 8}$ with vinylstannane, followed by cleavage of MOM ether, afforded the 1-ethenyl-3-hydroxymethyl- β carboline (7a). Subsequent acetylation of $\mathbf{7 a}$ yielded the acetate $\mathbf{7 b}$, which was subjected to the Sharpless asymmetric 1,2-dihydroxylation by AD-mix- β to produce (R)-(-)-pyridindolol K2 (6). Selective acetylation of $\mathbf{6}$ was effected by $\mathrm{Ac}_{2} \mathrm{O}$ and collidine to form (R)-(-)-pyridindolol K1 (5). By contrast, hydrolysis of 6 provided (R)-(-)-pyridindolol (1).

Introduction

Pyridindolol (1) was isolated from Streptomyces alboverticillatus as a β-galactosidase inhibitor by Umezawa and co-workers in 1975. ${ }^{1 \mathrm{a}}$ The structure has been elucidated by spectroscopic and X-ray crystall ographic analyses to be 1-[1(R),2-dihydroxy]-3-hydroxymethyl-9H-pyrido-[3,4-b]indole. ${ }^{1 \mathrm{~b}} \mathrm{~A}$ structure-activity study has al so been reported, with the data indicating that both hydroxy groups at $\mathrm{C}-14$ and $\mathrm{C}-15$ positions and the β-carboline nucleus are essential for the activity of pyridindolol in inhibiting β-galactosidase. ${ }^{1 \mathrm{C}}$ In addition, three pyridindolol glucosides (2-4) have been isolated from Streptomyces parvulus, strain Tu2480 by Hagmann and coworkers. ${ }^{2}$ Their structures were determined by spectroscopic investigations and degradation to pyridindolol and $\alpha, D-m e t h y I$ glucoside. Recently, the closely related pyridindolol K1 (5) and pyridindolol K2 (6) were isolated from Streptomyces sp. K93-0711 together with pyridindolol (1) by Omura and co-workers. ${ }^{3}$ The conversion of pyridindolol K2 (6) to pyridindolol (1) has been carried out with sodium methoxide in methanol, with the absolute structures of $\mathbf{5}$ and $\mathbf{6}$ subsequently being determined to have the same stereochemistry as 14 R of $\mathbf{1}$ by the CD spectrum. It has been also reported that pyridindolol K2

[^0]inhibits the adhesion of HL-60 cells to the LPS-activated HUVEC monolayer ($\mathrm{IC}_{50}=75 \mu \mathrm{~g} / \mathrm{mL}$).

$1: R^{1}=R^{2}=R^{3}=H$ (pyridindolol)
$2: R^{1}=R^{3}=H, R^{2}=14 \beta-D$-glucoside
$3: R^{1}=R^{2}=H, R^{3}=15 \beta-D$-glucoside
$4: R^{1}=16 \beta-D-$-glucoside, $R^{2}=R^{3}=H$
$5: R^{1}=R^{3}=A c, R^{2}=H$ (pyridindolol K 1)
$6: R^{1}=A c, R^{2}=R^{3}=H$ (pyridindolol K)
Two synthetic works regarding pyridindolol (1) have appeared. The first total synthesis of racemic pyridindolol (1) and (S)-(+)-pyridindolol (1) was reported by Cook and co-workers. ${ }^{4}$ They employed Pictet-Spengler condensation of dl-tryptophan methyl ester with (R)-glyceraldehyde acetonide (60% optical purity) to produce the 1,2,3,4-tetrahydro- β-carbol ine acetonide as a mixture of diastereomers, enriched in the S-isomer ($\left[\alpha{ }^{233_{\mathrm{D}}}-11^{\circ}\right.$), which were subjected to aromatization with $5 \% \mathrm{Pd}-\mathrm{C}$ in refluxing cumene to provide the optically inactive β-carboline acetonide al ong with racemization. However, the optically active β-carboline acetonide with dextrorotatory direction ($[\alpha]^{23}{ }^{\mathrm{D}}+5.5^{\circ}$) was obtained by DDQ oxidation in benzene. Finally, total syntheses of racemic pyridindolol (1) and (S)-(+)-pyridoindolol ($\mathbf{(})\left([\alpha]^{23} \mathrm{D}+7.7^{\circ}\right.$) were established by two additional steps. At approximately the same time, Hamaguchi and Ohki ${ }^{5}$ also reported that dehydrogena-

[^1]tion of trihydroxy-1,2,3,4-tetrahydro- β-carboline, prepared from the condensation of tryptophanol and glyceraldehyde, with Pd/C does not lead to pyridindolol (1), and Cook ${ }^{4}$ reported a similar failure for dihydroxy-1,2,3,4-tetrahydro- β-carboline.

In the course of our study, we have developed the syntheses of biol ogically active condensed heteroaromatic compounds, including natural products, based on a thermal electrocyclic reaction ${ }^{6}$ of either hexatriene ${ }^{7,8}$ or azahexatriene ${ }^{7,9}$ systems incorporating a principal aromatic or heteroaromatic moiety. Recently, we communicated the first enantioselective total synthesis of (R)-(-)-pyridindolol K2 (6) and its enantiomer. ${ }^{10}$ We here describe the details of the total synthesis of pyridindolol K2 (6) based on the construction of a β-carboline N -oxide framework 8 using two different ways of a thermal electrocyclic reaction of the 1-azahexatriene system 10 involving the indole 2,3-bond and a thermal cyclization of 3-alkynylindole-2-aldoxime $\mathbf{1 2}$ according to a modified Sakamoto's method, ${ }^{11}$ followed by asymmetric 1,2-dihydroxylation of 1-ethenyl- β-carboline 7 as depicted in the retrosynthetic Scheme 1. In addition, we describe the total syntheses of (R)-(-)-pyridindolol K1 (5) and (R)-(-)-pyridindolol (1), starting from (R)-(-)-pyridindolol K2 (6), respectively.

Results and Discussion

For the synthesis of β-carboline N -oxides $\mathbf{8}$ based on a thermal electrocyclic reaction of the 1-azahexatriene system 10, we chose 3-i odoindole-2-carbal dehyde (12a) ${ }^{8 a}$ and N -methoxymethyl(MOM)-3-iodoindole-2-carbaldehyde (12b) ${ }^{8 a}$ as starting materials. The palladiumcatalyzed cross-coupling reaction ${ }^{12}$ of 12a (or 12b) with tributyl[3-(MOM oxy)prop-1-en-1-yl]stannane (13), prepared from 3-(MOM oxy)prop-1-yne ${ }^{13}$ and tributyltin hy-

[^2]
Scheme 1

dride, in the presence of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Et}_{4} \mathrm{NCl}$ in DMF gave the 3-alkenylindole 14a (or 14b) in a 83\% (or 96\%) yield. After the aldehyde 14a (or 14b) was converted to the oxime 10a (or 10b) as a 1-azahexatriene system, it was subjected to a thermal electrocyclic reaction in o-dichlorobenzene to produce the β-carboline $\mathbf{9 a}$ (or 9b) in 71% and 98% yields from 10a and 10b, respectively. Subsequent oxidation of $\mathbf{9 a}$ (or $\mathbf{9 b}$) with m-chloroperbenzoic acid (mCPBA) afforded the β-carboline N -oxide 8a (97\%) [or 8b (89\%)]. By contrast, we utilized the same starting materials 12a and 12b for the synthesis of β-carboline N -oxides 8 based on thermal cyclization using a modified Sakamoto's method. ${ }^{11}$ Specifically, the pal-Iadium-catalyzed cross-coupling reaction of 12a (or 12b) with tributyl[3-(M OM oxy)prop-1-yn-1-yl]stannane (15), prepared from 3-(MOM oxy)prop-1-yne ${ }^{13}$ and tributyltin chloride with n-BuLi, in the presence of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Et}_{4} \mathrm{NCI}$ in DMF, gave the 3-alkynylindole 16a (or 16b) in a 48% (or 97%) yield. Treatment of 16a (or 16b) with hydroxylamine furnished the indole-3-aldoxime 11a (42\%) [or 11b (93\%)], which was then subjected to a thermal cyclization in o-dichlorobenzene to produce the β-carboline N -oxide 8a (45\%) [or 8b (95\%)] (Scheme 2). Two routes for the synthesis of β-carboline N -oxides 8 were established. The total yields of the former route in the four steps from 12a or $\mathbf{1 2 b}$ to $\mathbf{8 a}$ or $\mathbf{8 b}$ were 41.7% and 79.5%, respectively. In addition, the total yields of the latter route in the three steps from 12a or $\mathbf{1 2 b}$ to $\mathbf{8 a}$ or $\mathbf{8 b}$ were 9.1% and 85.7%, respectively. On the basis of these results, it is obvious that a protecting group of indole nitrogen atom is essential for both routes. Although the latter route resulted in a slightly better total

[^3]
a Reagents and conditions: (a) $\mathrm{Bu}_{3} \mathrm{Sn}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OMOM}$ 13, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$; (b) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{AcONa}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}$; (c) o-dichlorobenzene, $180^{\circ} \mathrm{C}$; (d) mCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (e) $\mathrm{Bu}_{3} \mathrm{Sn}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{OMOM} 15, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$.

Scheme 3^{a}

a Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}, 110^{\circ} \mathrm{C}$; (b) Tf 2 O , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (c) $\mathrm{Bu}_{3} \mathrm{Sn}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Et}_{4} \mathrm{NCl}, \mathrm{DMF}, 80$ ${ }^{\circ} \mathrm{C}$; (d) $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{MeOH}, \mathrm{CH}(\mathrm{OMe})_{3}, \mathrm{CH}_{3} \mathrm{NO}_{2}, 100^{\circ} \mathrm{C}$; (e) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, rt.
yield than the former route, the two types of thermal ring closures for the construction of this fused pyridine ring system provided excellent results.

Next, the synthesis of 1 -ethenyl- β-carboline 7 was attempted using the β-carboline N -oxides $\mathbf{8 a}$ and $\mathbf{8 b}$. As shown in Scheme 3, heating of $\mathbf{8 a}$ (or $\mathbf{8 b}$) with acetic anhydride at reflux temperature, followed by treatment of the resulting 1-hydroxy- β-carboline 17a (67\%) [or 17b (90\%)] with trifluoromethanesulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) and pyridine, afforded the triflates 18a (93\%) and 18b (99\%), respectively. The triflate 18a (or 18b) was subjected to the palladium-catalyzed cross-coupling reaction with ethenyl tributylstannane in the presence of $\mathrm{PdCl}_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Et}_{4} \mathrm{NCl}$ in DMF to give the 1-ethenyl- β carbolines 19a (87\%) and 19b (72\%). Synthesis of the 1,3disubstituted β-carboline nucleus 19 was completed in a three-step sequence.

Finally, deprotection of 19b with trifluoromethanesulfonic acid, MeOH , and trimethyl orthoformate in nitromethane at $100{ }^{\circ} \mathrm{C}^{9 i}$ yielded 1-ethenyl-3-hydroxy-methyl- β-carboline (7a) (93\%). The Sharpless asymmetric
dihydroxylation reaction ${ }^{14}$ of the resultant 7a with AD-mix-a or AD-mix-b in a 1:1 mixture of t-BuOH and water did not give any pyridindolol (1), which may have been due to a problem with the solubility of 7a. Thereupon, the alcohol 7a was converted by the usual procedure to the acetate $\mathbf{7 b}$ (98\%).
The asymmetric 1,2-dihydroxylation of $\mathbf{7 b}$ with AD-mix- α was carried out in a 1:1 mixture of $\mathrm{t}-\mathrm{BuOH}$ and water to provide (S)-(+)-pyridindolol K2 (6) in a 66% yield (ee 99.2\%). In contrast, the reaction of 7b with AD-mix- β was carried out similarly to produce (R)-(-)-pyridindolol (6) in a 68% yield (ee 99.6%). In addition, the selective acetylation of $\mathbf{6}$ with acetyl chloride and collidine ${ }^{15}$ at $-78{ }^{\circ} \mathrm{C}$ for 5 h afforded (R)-(-)-pyridindolol K1 (5) (76\%) together with (R)-(-)-pyridindolol triacetate (20) (15\%). Furthermore, hydrolysis of the acetate $\mathbf{6}$ with 1 $\mathrm{M}_{2} \mathrm{CO}_{3}$ in methanol according to the reported procedure ${ }^{3}$ afforded (R)-(-)-pyridindolol (1) (93\%) (Scheme 4). The synthetic (R)-(-)-pyridindol ol K2 (6), (R)-(-)-pyridindolol K1 (5), and (R)-(-)-pyridindolol (1) were identical in all respects, including their specific rotation, to data ${ }^{1,3}$ reported for the natural products.

Conclusions

The first enantioselective total synthesis of (R)-(-)pyridindolol K2(6) together with its enantiomer (S)-(+)-6 was established in a nine-step or ten-step sequence based on the construction of β-carboline N -oxide (8) through the thermal electrocydic reaction of a 1-azahexatriene system (10) involving the indole 2,3 -bond or the thermal cyclization of 3 -ethynylindole-2-carbaldehyde oxime (11), followed by the Sharpless asymmetric 1,2-dihydroxylation of 7b. In addition, the asymmetric total syntheses of (R)-(-)-pyridindolol K1 (5) and (R)-(-)-pyridindolol (1) were also completed using $\mathbf{6}$ as a starting material.

Experimental Section

General. Most reactions were conducted in flame-dried glassware under argon atmosphere. All air-sensitive reactions were run under argon atmosphere. THF was freshly distilled

[^4]
${ }^{\text {a }}$ Reagents and conditions: (a) AD-mix- α, t- $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (b) AD-mix- β, t-BuOH, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (c) AcCl , collidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) aq $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, rt.
from sodium benzophenone ketyl. DMF was freshly distilled under reduced pressure after drying over CaH_{2}. Silica gel (60100 mesh, Merck Art 7734) was used for the column chromatography. Melting points are uncorrected. Enantiomeric excesses of chiral products were determined by high-performance liquid chromatography (HPLC) (CHIRALCEL OD: 250 mm $\times 4.6 \mathrm{~mm} \phi$) using 40\% 2-propanol -hexane as an eluent (flow rate: $0.3 \mathrm{~mL} / \mathrm{min}$) along with UV detection at 245 nm . ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectra were obtained in CDCl_{3} using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard, unless otherwise stated. Low- and highresolution mass spectra were measured at 70 eV (EI).

Tributyl[3-(methoxymethyloxy)prop-1-en-1-yl]stannane (13). A mixture of 3-(methoxymethyloxy)prop-1-yne ${ }^{15}$ (10 $\mathrm{g}, 0.10 \mathrm{~mol}$), tributyltin hydride ($29.6 \mathrm{~mL}, 0.11 \mathrm{~mol}$), and AIBN ($328 \mathrm{mg}, 2 \mathrm{mmol}$) were heated at $80^{\circ} \mathrm{C}$ for 2 h . After being cooled to ambient temperature, the resultant was distilled under reduced pressure to give the alkenylstannane $\mathbf{1 3}$ (30 g , 84%). bp $153-156^{\circ} \mathrm{C} / 0.9$ Torr; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.38$ ($\mathrm{s}, 3 \mathrm{H}$), 4.09 (dd, J $=1,5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.65 (s, 2H), 6.06 (dd, J $=5,19 \mathrm{~Hz}$, 1 H), 6.25 (dd, J $=1,19 \mathrm{~Hz}, 1 \mathrm{H}$).

3-[3-(Methoxymethyloxy)prop-1-en-1-yl]indole-2-carbaldehyde (14a). A mixture of 3-iodoindole 12a ($500 \mathrm{mg}, 1.85$ $\mathrm{mmol})$, alkenyl stannane $13(1 \mathrm{~g}, 2.78 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCI}(306 \mathrm{mg}$, $1.85 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(65 \mathrm{mg}, 0.093 \mathrm{mmol})$ in dried DMF (20 mL) was heated at $80^{\circ} \mathrm{C}$ for 40 min . After being cool ed to ambient temperature, 30\% aqueous KF solution (30 mL) was added to the reaction mixture and then stirred at room temperature for 30 min , which was filtered through the Celite pad. The filtrate was extracted with EtOAc. The EtOAc layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 30 g) using EtOAc-hexane ($3: 17$) as an eluent to give the oily 3 -al kenylindole 14a ($375 \mathrm{mg}, 83 \%$). IR (neat) v : $1610,3200 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.45$ (s, 3H), 3.60 (dd, J $=1,6 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{dt}, \mathrm{J}=6,16 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (dd, J $=1,16 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H})$; MS m/z: $245\left(\mathrm{M}^{+}\right)$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}$ 245.1052, found 245.1068.

3-[3-(Methoxymethyloxy)prop-1-en-1-yl]-N-(meth-oxymethyl)indole-2-carbaldehyde (14b). The same procedure as above was carried out using 12b ($2 \mathrm{~g}, 6.35 \mathrm{mmol}$) to give the oily 3-alkenylindole 14b (96\%). IR (neat) v : 1670, 2990 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.30(\mathrm{~s}, 3 \mathrm{H})$, 3.34 ($\mathrm{s}, 3 \mathrm{H}$), 4.35 (dd, J $=2,6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.76 (s, 2H), 5.98 (s, 2H), 6.48 (td, J $=6,16$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, \mathrm{J}=2,16 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, \mathrm{J}=1,7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (td, J = 1, $8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (d, J = $7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (dd, J
$=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 10.22(\mathrm{~s}, 1 \mathrm{H})$; MS m/z: $289\left(\mathrm{M}^{+}\right)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$ 289.1314, found 289.1307.

3-[3-(Methoxymethyloxy)prop-1-en-1-yl]indole-2-carbaldehyde Oxime (10a). A suspention of 2 -formylindole 14a ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(57 \mathrm{mg}, 0.82 \mathrm{mmol}$), and AcONa ($67 \mathrm{mg}, 0.82 \mathrm{mmol}$) in EtOH (5 mL) was heated at 80 ${ }^{\circ} \mathrm{C}$ for 1 h . After being cooled to ambient temperature, the mixture was extracted with EtOAc. The EtOAc layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 5 g) using EtOAc-hexane (1:4) as an eluent to give a syn-anti mixture of the oxime 10a ($80 \mathrm{mg}, 73 \%$). $\mathrm{mp} 154-165{ }^{\circ} \mathrm{C}$ (MeOH); IR (KBr) $v: 3250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.30(\mathrm{~s}$, $12 / 5 \mathrm{H}), 3.31(\mathrm{~s}, 3 / 5 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 8 / 5 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=$ $6.6 \mathrm{~Hz}, 2 / 5 \mathrm{H}), 6.24-6.28(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 4 / 5 \mathrm{H}$), $7.60(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 / 5 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 1H), 8.39 ($\mathrm{s}, 1 \mathrm{H}$), 11.36 (br s, 4/5H), 11.40 (br s, 1H), 12.06 (br s, $1 / 5 \mathrm{H}$); MS m/z: $260\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}$, 64.60; H, 6.20; N, 10.76. Found: C, 64.79; H, 6.13; N, 10.90. Found: C, 64.83; H, 6.15; N, 11.01.
3-[3-(Methoxymethyloxy)prop-1-en-1-yl]-N-(meth-oxymethyl)indole-2-carbaldehyde Oxime (10b). The same procedure as above was carried out using $\mathbf{1 4 b}$ ($3 \mathrm{~g}, 10.38 \mathrm{mmol}$) to give the oxime 10b (95\%). mp 78-79 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR (KBr) v : $3250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 4.33$ (dd, J $=2,6 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 2 \mathrm{H}), 6.38(\mathrm{td}, \mathrm{J}=$ $6,16 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, \mathrm{J}=2,16 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, \mathrm{J}=1,8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.87 (dd, J $=1,8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.50(\mathrm{~s}, 1 \mathrm{H})$; MS m/z: $304\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.14; H, 6.62; $\mathrm{N}, 9.20$. Found: C, 63.26; H, 6.69; N, 9.05.

3-(Methoxymethyloxy)methyl-9H-pyrido[3,4-b]indole (9a). A solution of the oxime 10a ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) in o-dichlorobenzene (3 mL) was heated at $180{ }^{\circ} \mathrm{C}$ for 40 min . After being cooled to ambient temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (2:3) as an eluent to give the oily β-carboline 9a (32 mg, 71\%). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H})$, $4.90(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H})$; MS m/z: $242\left(\mathrm{M}^{+}\right)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$ 242.1055, found 242.1059.

3-(Methoxymethyloxy)methyl-N-methoxymethyl-9H-pyrido[3,4-b]indole (9b). The same procedure as above was carried out using 10b ($3 \mathrm{~g}, 9.86 \mathrm{mmol}$) to give the β-carboline 9b (98\%). mp 47-48 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.30$ (s , $3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 2 \mathrm{H}), 7.34$ $(\mathrm{m}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.97 (s, 1H); MS m/z: $286\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.12; H, 6.34; N, 9.78. Found: C, 67.08; H, 6.49; N, 9.66.

3-(Methoxymethyl)methyl-9H-pyrido[3,4-b]indole \mathbf{N} Oxide (8a). mCPBA ($43 \mathrm{mg}, 0.248 \mathrm{mmol}$) was added to a solution of β-carboline 9 a ($30 \mathrm{mg}, 0.124 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) under cooling with ice and then was stirred at r.t. for 2 h. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and was extracted with $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:9). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 10 g) using $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:9) as an eluent to give the β-carboline N -oxide 8a ($31 \mathrm{mg}, 97 \%$). mp $200-203{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.48(\mathrm{~s}, 3 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 5.05$ (s, $2 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (s, 1H), 8.69 (br s, 1H); MS m/z: $258\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 65.11 ; \mathrm{H}, 5.46 ; \mathrm{N}, 10.85$. Found: C, 64.98; H, 5.29; N, 10.91.

3-(Methoxymethyloxy)methyl-N-methoxymethyl-9H-pyrido[3,4-b]indole \mathbf{N}-Oxide (8b). The same procedure as above was carried out using 9b ($820 \mathrm{mg}, 2.86 \mathrm{mmol}$) to give the β-carbol ine N -oxide $\mathbf{8 b}(89 \%)$. $\mathrm{mp} 153-154{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 5.03$ (s, $2 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}) 8.06(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H})$; MS m/z: $302\left(\mathrm{M}^{+}\right)$. Anal. Calcd
for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.56; $\mathrm{H}, 6.00 ; \mathrm{N}, 9.27$. Found: C, 63.74; H, 6.18; N, 9.33.

3-[3-(Methoxymethyloxy)prop-1-yn-1-yl]indole-2-carbaldehyde (16a). A mixture of 3-iodoindole 12a ($250 \mathrm{mg}, 0.92$ mmol), [(methoxymethyloxy)propynyl] tributyltin 15 (535 mg , $1.38 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(152 \mathrm{mg}, 0.92 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(32 \mathrm{mg}, 0.046 \mathrm{mmol})$ in DMF (15 mL) was heated at $80^{\circ} \mathrm{C}$ for 40 min . After being cooled to ambient temperature, 30% aqueous KF solution (10 mL) was added to the reaction mixture and then stirred at room temperature for 30 min , which was filtered through the Celite pad. The filtrate was extracted with EtOAc. The EtOAc Iayer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (1:9) as an eluent to give the oily 3-propynylindole 16a (108 mg, 48\%). IR (neat) $v: 1650,3300 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.46(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 7.23$ $(\mathrm{m}, 1 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{br} \mathrm{s}$, 1H), 10.06 (s, 1H); MS m/z: 243 (${ }^{+}$). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$ 243.0895, found 243.0909.

3-[3-(Methoxymethyloxy)prop-1-yn-1-yl]-N-(meth-oxymethyl)indole-2-carbaldehyde (16b). The same procedure as above was carried out using 12b ($2 \mathrm{~g}, 6.35 \mathrm{mmol}$) to give the 3-propynylindole 16b (97\%). mp 70-70.5 ${ }^{\circ} \mathrm{C}$ (hexane); IR (KBr) v : $1655 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.45$ ($\mathrm{s}, 3 \mathrm{H}$), $4.59(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=1$, $8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (td, J $=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (dd, J $=1,8 \mathrm{~Hz}$, 1H), 7.48 (dd, J $=1,8 \mathrm{~Hz}, 1 \mathrm{H}$), 10.21 (s, 1H); MS m/z: 287 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 66.89; H, 5.96; $\mathrm{N}, 4.88$. Found: C, 67.03; H, 6.12; N, 4.83.

3-[3-(Methoxymethyloxy)prop-1-yn-1-yl]indole-2-carbaldehyde Oxime (11a). A suspention of 2-formylindole 16a ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(57 \mathrm{mg}, 0.82 \mathrm{mmol})$, and AcONa ($67 \mathrm{mg}, 0.82 \mathrm{mmol}$) in EtOH (5 mL) was heated at 80 ${ }^{\circ} \mathrm{C}$ for 30 min . After being cool ed to ambient temperature, the mixture was extracted with EtOAc. The EtOAc Iayer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (1:4) as an eluent to give the oily oxime 11a ($45 \mathrm{mg}, 42 \%$). IR (neat) v : $1650,3300 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.45(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H})$, $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H})$, 8.68 (br s, 1H); MS m/z: 258 (M ${ }^{+}$). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19}$ NO_{4} 258.1004, found 258.1015.
3-[3-(Methoxymethyloxy)prop-1-yn-1yl]-N-(meth-oxymethyl)indole-2-carbaldehyde Oxime (11b). The same procedure as above was carried out using 16b ($6 \mathrm{~g}, 20.88 \mathrm{mmol}$) to givethe oxime 11b (93\%). mp 79-80.5 ${ }^{\circ} \mathrm{C}$ (hexane); IR (KBr) $v: 3400 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, $4.57(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{td}, \mathrm{J}=1,8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33$ (td, J $=1,8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, J $=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$: $302\left(\mathrm{M}^{+}\right)$. Anal. Cal cd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 63.56 ; \mathrm{H}, 6.00 ; \mathrm{N}$, 9.27. Found: C, 63.46; H, 6.07; N, 9.38.

3-(Methoxymethyloxy)methyl-9H-pyrido[3,4-b]indole N -Oxide (8a) from 11a. A solution of the oxime 11a ($45 \mathrm{mg}, 0.17 \mathrm{mmol}$) in o-dichlorobenzene (3 mL) was heated at $180^{\circ} \mathrm{C}$ for 20 min . After being cooled to ambient temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:9) as an eluent to give the β-carboline N -oxide 8 a ($20 \mathrm{mg}, 45 \%$). The physical and spectral data of $\mathbf{8 a}$ from 11a were identical with those of $\mathbf{8 a}$ obtained from 9a.

3-(Methoxymethyloxy)methyl-N-methoxymethyl-9H-pyrido[3,4-b]indole N-Oxide (8b) from 11b. The same procedure as above was carried out using 11b ($805 \mathrm{mg}, 2.67$ mmol) to give the β-carbol ine N -oxide $\mathbf{8 b}$ (95\%). The physical and spectral data of $\mathbf{8 b}$ from $\mathbf{1 1} \mathbf{b}$ were identical with those of 8b obtained from 9b.

3-(Methoxymethyloxy)-9H-pyrido[3,4-b]indol-1(2H)one (17a). A solution of β-carboline N -oxide $\mathbf{8 a}$ ($36 \mathrm{mg}, 0.14$ mmol) in acetic anhydride (10 mL) was heated at $100^{\circ} \mathrm{C}$ for 3 h. After being cooled to ambient temperature, the reaction mixture was concentrated under reduced pressure. The residue
was purified by column chromatography (silica gel, 20 g) using EtOAc-hexane (2:3) as an eluent to give the oily pyridone 17a ($24 \mathrm{mg}, 67 \%$). IR (neat) $v: 1640,2950 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta: 3.46(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H})$, 8.91 (br s, 1H); MS m/z: $258\left(\mathrm{M}^{+}\right)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19}-$ $\mathrm{NO}_{4} 258.1004$, found 258.1021 .

3-(Methoxymethyloxy)methyl-N-methoxymethyl-9H-pyrido[3,4-b]indol-1(2H)-one (17b). The same procedure as above was carried out using $8 \mathrm{bb}(3.3 \mathrm{~g}, 10.93 \mathrm{mmol})$ to give the pyridone 17b (90\%). mp 214-216 ${ }^{\circ} \mathrm{C}$ (hexane); IR (KBr) v : $1640,2950 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta: 3.36(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{~s}, 3 \mathrm{H})$, $4.16(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{td}, \mathrm{J}$ $=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, \mathrm{J}=1,8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}: 302$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.56; H, $6.00 ; \mathrm{N}, 9.27$. Found: C, 63.59; H, 6.11; N, 9.15.

3-(Methoxymethyloxy)methyl-1-trifluoromethanesulfo-nyloxy-9H-pyrido[3,4-b]indole (18a). $\mathrm{Tf}_{2} \mathrm{O}$ ($20 \mu \mathrm{~L}, 0.12$ mmol) was added to a stirred solution of the pyridone 17a (20 $\mathrm{mg}, 0.078 \mathrm{mmol}$) and pyridine ($19 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) under cooling with ice. After stirring at room temperature for 10 min , the solution was treated with water, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (1:4) as an eluent to give the oily triflate 18a ($28 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.45(\mathrm{~s}, 3 \mathrm{H}), 4.83$ $(\mathrm{s}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=1,7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H})$, 7.62 (dd, J = 1, $7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.12 (d, J $=7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H})$, 8.65 (br s, 1H); MS m/z: $390\left(\mathrm{M}^{+}\right.$). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19}{ }^{-}$ $\mathrm{NO}_{4} 390.0497$, found 390.0502 .

3-(Methoxymethyloxy)methyl-N-methoxymethyl-1-tri-fluoromethanesulfonyloxy-9H-pyrido[3,4-b]indole (18b). The same procedure as above was carried out using 17 b (1 g , 3.31 mmol) to give the triflate $\mathbf{1 8 b}(99 \%)$. $\mathrm{mp} 50-52^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR (KBr) $v: 1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.45$ ($\mathrm{s}, 3 \mathrm{H}$), $4.57(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{td}, \mathrm{J}=1$, $8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, \mathrm{J}=1,7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73 (dd, J = 1, $7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.54 (s, 1H); MS m/z: 434 (M^{+}). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 47.00 ; \mathrm{H}, 3.94 ; \mathrm{N}, 6.45$. Found: C, 47.18; H, 4.10; N, 6.37.

1-E thenyl-3-(methoxymethyloxy)methyl-9H-pyrido-[3,4-b]indole (19a). A mixture of the triflate 18a ($25 \mathrm{mg}, 0.064$ mmol), vinyltributyltin ($31 \mathrm{mg}, 0.096 \mathrm{mmol}$), $\mathrm{Et}_{4} \mathrm{NCl}$ (11 mg , $0.064 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{mg}, 0.0032 \mathrm{mmol})$ in dried DMF (3 mL) was heated at $80^{\circ} \mathrm{C}$ for 40 min . After being cooled to ambient temperature, 30% aqueous KF solution (5 mL) was added to the reaction mixture and then stirred at room temperature for 30 min , which was filtered through the Celite pad. The filtrate was extracted with EtOAc. The EtOAc layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (1:9) as an eluent to give the oily 1-vinyl- β-carboline 19a (12 mg, 87\%). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ $3.49(\mathrm{~s}, 3 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{dd}, \mathrm{J}=2,11 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36(\mathrm{dd}, \mathrm{J}=2,17 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=11,17 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 1H), 8.36 (br s, 1H); MS m/z: 268 (M+). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$ 268.1212, found 268.1198 .

1-Ethenyl-3-(methoxymethyloxy)methyl-N-meth-oxymethyl-9H-pyrido[3,4-b]indole (19b). The same procedure as above was carried out using 18b ($2.3 \mathrm{~g}, 5.30 \mathrm{mmol}$) to give the 1 -vinyl $-\beta$-carboline 19b (72%). $\mathrm{mp} 84-86^{\circ} \mathrm{C}$ (hexane); ${ }_{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.93$ $(\mathrm{s}, 2 \mathrm{H}), 5.64(\mathrm{dd}, \mathrm{J}=2,11 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{dd}, \mathrm{J}=$ $2,18 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{dd}, \mathrm{J}=11,18$ $\mathrm{Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}: 312$ (M ${ }^{+}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 69.21 ; \mathrm{H}, 6.45 ; \mathrm{N}, 8.97$. Found: C, 69.45; H, 6.48; N, 8.69.

1-Ethenyl-3-hydroxymethyl-9H-pyrido[3,4-b]indole (7a). Trifluoromethanesulfonic acid ($1 \mathrm{~mL}, 11.52 \mathrm{mmol}$) was added to an ice-cooled mixture of N -M OM- β-carboline 19b ($1.2 \mathrm{~g}, 3.84$ $\mathrm{mmol}), \mathrm{MeOH}(1.56 \mathrm{~mL}, 38.40 \mathrm{mmol})$, and trimethyl orthoformate ($4.2 \mathrm{~mL}, 38.40 \mathrm{mmol}$) in nitromethane $(20 \mathrm{~mL})$. The
resulting mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h . After being cooled to ambient temperature, the mixture was extracted with EtOAc. The EtOAc layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (1:4) as an eluent to gi ve the N -deprotected β-carboline $7 \mathrm{aa}(800 \mathrm{mg}$, 93%). $\mathrm{mp} 115-117^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR (KBr) $v: 3150 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.92(\mathrm{~s}, 2 \mathrm{H}), 5.72$ (dd, J $\left.=2,11 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.43$ (dd, J $=2,17 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=11,17 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, \mathrm{J}=1$, $8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{dd}, \mathrm{J}=1,8$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.38 (br s, 1H); MS m/z: $224\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.98$; $\mathrm{H}, 5.39 ; \mathrm{N}, 12.49$. Found: C, 75.21 ; H, 5.45; N, 12.31.

3-(Acetoxy)methyl-1-ethenyl-9H-pyrido[3,4-b]indole (7b). Acetic anhydide ($0.51 \mathrm{~mL}, 5.76 \mathrm{mmol}$) was added dropwise to a solution of the β-carboline 7a ($645 \mathrm{mg}, 2.88$ mmol) in pyridine (20 mL) under cooled with ice, which was stirred at room temperature for 2 h . The resultant mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The EtOAc layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 50 g) using EtOAc-hexane (1:4) as an eluent to give the acetate 7b ($750 \mathrm{mg}, 98 \%$). mp 143-144 ${ }^{\circ} \mathrm{C}$ (hexane); IR (KBr) $v: 1690,3350 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.18(\mathrm{~s}, 3 \mathrm{H})$, $5.40(\mathrm{~s}, 2 \mathrm{H}), 5.75$ (dd, J $=1,11 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, \mathrm{J}=1,18$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=11,18 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, \mathrm{J}=1,7 \mathrm{~Hz}$, 1H), 7.55 (m, 1H), 7.95 (s, 1H), 8.13 (dd, J $=1,7 \mathrm{~Hz}, 1 \mathrm{H}), 8,35$ (br s, 1H); MS m/z: $266\left(\mathrm{M}^{+}\right.$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.16; H, 5.30; N, 10.52. Found: C, 72.00; H, 5.24; N, 10.71.
(S)-(+)-Pyridindolol K2 (6). The acetate 7b (100 mg, 0.45 mmol) was added to AD-mix- α ($1.3 \mathrm{~g}, 2 \mathrm{eq}$) in tert-butyl al cohol $-\mathrm{H}_{2} \mathrm{O}(1: 1,10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 24 h . After addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (1.5 g), the mixture was allowed to warm to room temperature and stirred for 30 min . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:9). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 5 g) using $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:19) as an eluent to give the (S)-(+)pyridindolol K2 (6) (30 mg, 66\%). mp $122-124^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right)$; $[\alpha]^{23} \mathrm{D}+33^{\circ}(\mathrm{c}=0.212, \mathrm{MeOH})$; IR (KBr) $v: 1250,1750,3400$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 5.18$ $(\mathrm{m}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{td}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, \mathrm{J}=$ $1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.16$ (dd, $\mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 20.9,67.0,68.4,76.0$, $113.0,114.3,120.7,122.0,122.5,129.6,131.6,134.7,142.8$, 144.1, 145.7, 172.7; MS m/z: $300\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.99; H, 5.37; N, 9.33. Found: C, 64.12; H, 5.48; N, 9.27.
(R)-(-)-Pyridindolol K2 (6). The same procedure as above was carried out using 7b ($200 \mathrm{mg}, 0.75 \mathrm{mmol}$) with AD-mix- β to give the (R)-(-)-pyridindolol K2 (6) (68\%). mp 123-124 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3}\right)$ (lit. $\left.123-124{ }^{\circ} \mathrm{C}\right) ;[\alpha]^{23} \mathrm{D}-33^{\circ}(\mathrm{c}=0.195, \mathrm{MeOH})$ (lit. $[\alpha]^{23} \mathrm{D}-35^{\circ}(\mathrm{c}=0.400, \mathrm{MeOH})$); IR (KBr) $v: 1250,1748,3400$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MeOH}-\mathrm{d}_{4}\right)$ d: $2.13(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 5.20$ $(\mathrm{m}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{td}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, \mathrm{J}=$ $1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}$, $1, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 20.9,67.0,68.4,76.1$, $112.0,113.0,114.3,120.7,122.0,122.5,129.6,131.6,134.7$, 142.8, 144.2, 145.7, 172.7; MS m/z: $300\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 63.99 ; \mathrm{H}, 5.37$; $\mathrm{N}, 9.33$. Found: C, $64.08 ; \mathrm{H}$, 5.49; N, 9.19.
(R)-(-)-Pyridindolol (1). Aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (1 M, 0.3 mL) was added to a sol ution of (R)-(-)-pyridindolol K2 (6) ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$. After stirring at room temperature for 1 h , the reaction mixture was extracted with $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:9). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by preparative TLC using $\mathrm{MeOH}-\mathrm{CHCl}_{3}(1: 4)$ as an eluent to give the (R)-(-)-pyridindolol (1) ($40 \mathrm{mg}, 93 \%$). mp 165-168 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right)$ (lit. $\left.167-168{ }^{\circ} \mathrm{C}\right) ;[\alpha]^{25} \mathrm{D}-41^{\circ}(\mathrm{c}=0.110, \mathrm{MeOH})$ (lit. $[\alpha]^{25} \mathrm{D}-49^{\circ}(\mathrm{c}=0.100, \mathrm{MeOH})$); IR (KBr) $v: 3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 3.95(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H})$, 7.22 (td, J $=1,7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 (td, J $=1,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~m}$, 1 H), $8.07(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (MeOH-d ${ }^{2}$) $\delta 64.5,65.4,74.4,109.8,112.2,118.8,120.4,121.3,127.7,128.9$, 132.3, 140.9, 144.6, 148.9; MS m/z: 258 (M+). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 65.11 ; \mathrm{H}, 5.46 ; \mathrm{N}, 10.85$. Found: C, 65.27 ; H , 5.51; N, 10.64.
(R)-(-)-Pyridindolol K1 (5) and 3-Acetoxymethyl-1-(1,2-diacetoxy)ethyl-9H-pyrido[3,4-b]indole (20). Acetyl chloride ($10 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added to a solution of (R)-(-)-pyridindolol K2 (6) ($30 \mathrm{mg}, 0.10 \mathrm{mmol}$) and collidine (13.3 $\mu \mathrm{L}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring at the same temperature for 5 h , the mixture was allowed to warm to room temperature and stirred for further 1 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The EtOAc layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (silica gel, 5 g) using EtOAc-hexane (3:7) as an eluent to give the (S)-(+)-pyridindolol K2 (5) ($16 \mathrm{mg}, 76 \%$) and the triacetate $\mathbf{2 0}(3 \mathrm{mg}, 15 \%) .5: \mathrm{mp} 124-125^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right)$; $[\alpha]^{25} \mathrm{D}-14^{\circ}\left(\mathrm{c}=0.200\right.$ in MeOH) (lit. $[\alpha]^{25} \mathrm{D}-16^{\circ}(\mathrm{c}=0.230$ in $\mathrm{MeOH})$); IR (KBr) $v: 1650,3380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 2.18$ $(\mathrm{s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H})$, 5.40 (br d, 1H), 7.28 (m, 1H), 7.59 (m, 2H), $8.00(\mathrm{~s}, 1 \mathrm{H}), 8.14$ $(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 9.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.1$, $21.2,67.4,70.5,71.5,112.0,113.8,120.3,121.1,121.7,128.7$, 130.3, 123.3, 140.0, 140.7, 143.2, 170.9, 173.0; MS m/z: 342 $\left(\mathrm{M}^{+}\right.$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 63.15; $\mathrm{H}, 5.30 ; \mathrm{N}, 8.18$. Found: C, 63.20; H, 5.44; N, 8.07. 20: mp 115-117 ${ }^{\circ} \mathrm{C}$ (hexane) (lit.116-119 ${ }^{\circ} \mathrm{C}$); IR (KBr) $v: 1740,3400 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H})$, $5.37(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{~s}$, 1 H), $8.12(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 9.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; MS m/z: $384\left(\mathrm{M}^{+}\right.$); $[\alpha]^{25} \mathrm{D}-19^{\circ}\left(\mathrm{c}=0.195\right.$ in MeOH) (lit. $[\alpha]^{27} \mathrm{D}-27.5^{\circ}(\mathrm{c}=0.125$ $\mathrm{MeOH})$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$: $\mathrm{C}, 62.49$; $\mathrm{H}, 5.24 ; \mathrm{N}$, 7.29. Found: C, 62.54; H, 5.45; N, 7.11.

Acknowledgment. We thank Professor T. Sakamoto (Graduate School of Pharmaceutical Sciences, Tohoku University) for useful suggestions of the thermal ring closure of 3-alkynylindole-2-aldoxime. We thank the Ministry of Education, Science, Sports and Culture of J apan [Grant-in Aid for Scientific Research (11672131)] for support of this work.

Supporting Information Available: Copies of ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds (R)-(-)-5 (S1-5), (R)-(-)-6 (S6-10), and (R)-(-)-1 (S11-16). This material is available free of charge via the Internet at http://pubs.acs.org.

[^5]
[^0]: * To whom correspondence should be addressed. Fax: +81-849-362024.
 ${ }^{\dagger}$ F Fukuyama University.
 \ddagger Taisho Pharmaceutical Co. Ltd.
 (1) (a) Aoyagi, T.; Kumagai, M.; Hazato, T.; Hamada, M.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1975, 28, 555-557. (b) Kumagai, M.; Naganawa, H.; Aoyagi, T.; Umezawa, H.; Nakamura, H.; I itaka, Y. J . Antibiot. 1975, 28, 876-880. (c) Kumagai, M.; Aoyagi, T.; Umezawa, H. J. Antibiot. 1976, 29, 696-703.
 (2) Hagemann, L.; Keller-Schierlein, W. J . Antibiot. 1988, 41, 289295.
 (3) Kim, Y.-P.; Takamatsu, S.; Hayashi, M.; Komiyama, K.; Omura, S. J. Antibiot. 1997, 50, 189-193.

[^1]: (4) Soerens, D.; Sandrin, J.; Ungemach, F.; Mokry, P.; Wu, G. S.; Yamanaka, F.; Hutchins, L.; DiPierro, M.; Cook, J . M. J . Org. Chem. 1979, 44, 535-546.
 (5) Hamaguchi, F.; Ohki, S. Heterocycles 1977, 8, 383-386.

[^2]: (6) (a) Woodward, R. B.; H offmann, R. J. Am. Chem. Soc. 1965, 87, 395-397. (b) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chemie: Weinheim, 1970; Chapter 5. (c) Freming, I. Frontier Orbital and Organic Chemistry; Wiley: London, 1976. (d) Marvel, E. N. Thermal Electrocyclic Reactions; Academic Press: New York, 1980; Chapter 2. (e) Okamura, W. H.; de Lera, A. R. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: New York, 1991; Vol. 5, pp 699-750.
 (7) Hibino, S.; Sugino, E. In Advances in Nitrogen Heterocycles; Moody, C. J., Ed.; J Al Press: Greenwich, CT, 1995; Vol. 1, pp 205227.
 (8) (a) Choshi, T.; Sada, T.; Fujimoto, H.; Nagayama, C.; Sugino, E.; Hibino, S. J. Org. Chem. 1997, 62, 2535-2543. (b) Hagiwara, H.; Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. Tetrahedron 2000, 56, 5807-5811. (c) Hagiwara, H.; Choshi, T. Nobuhiro, J.; Fujimoto, Hibino, S. Chem. Pharm. Bull. 2001, 49, 881-886 and related references therein.
 (9) (a) Choshi, T.; Yamada, S.; Sugino, S. Kuwada, T.; Hibino, S. Synlett 1995, 147-148. (b) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. J. Org. Chem. 1995, 60, 5899-5904. (c) Y oshioka, H.; Choshi, T.; Sugino, E.; Hibino, S. Heterocycles 1995, 41, 161-174. (d) Yoshioka, H.; Matsuya, Y.; Choshi, T.; Sugino, E.; Hibino, S. Chem. Pharm. Bull. 1996, 44, 709-714. (e) Choshi, T.; Y amada, S.; N obuhiro, J.; Mihara, Y.; Sugino, E.; Hibino, S. Heterocycles 1998, 48, 11-14. (f) Choshi, T.; Matsuya, Y.; Okita, M.; Inada, K.; Sugino, E.; Hibino, S. Tetrahedron Lett. 1998, 39, 2341-2344. (g) Kuwabara, N.; Hayashi, H.; Hiramatsu, N.; Choshi, T.; E. Sugino, E.; Hibino, S. Chem. Pharm. Bull. 1999, 47, 1805-1807. (h) Sugino, E.; Choshi, T.; Hibino, S. Heterocycles 1999, 50, 543-559. (i) Choshi, T.; Kuwada, T.; Fukui, M.; Matsuya, Y.; Sugino, E.; Hibino, S. Chem. Pharm. Bull. 2000, 48, 108113.
 (10) Kanekiyo, N.; Choshi, T.; Kuwada, T.; Sugino, E.; Hibino, S. Heterocycles 2000, 53, 1877-1880.
 (11) (a) Sakamoto, T.; K ondo, Y.; Miura, N.; Hayashi, K.; Yamanaka, H. Heterocycles 1986, 24, 2311-2314. (b) Sakamoto, T.; Numata, A.; Saitoh, H.; K ondo, Y. Chem. Pharm. Bull. 1999, 47, 1740-1743. (c) Sakamoto, T.; Numata, A.; K ondo, Y. Chem. Pharm. Bull. 2000, 48, 669-672.

[^3]: (12) (a) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 30333040. (b) Stille, J. K.; Sweet, M. P. Tetrahedron Lett. 1989, 30, 36453648. (c) Niwa, H.; Watanabe, M.; I nagaki, H.; Yamada, K. Tetrahedron 1994, 50, 7385-7400.
 (13) Martin, S. F.; Benage, B.; Williamson, S. A.; Brown, S. P. Tetrahedron 1986, 42, 2903-2910.

[^4]: (14) (a) Sharpless, K. B.; Amberg, W.; Bennami, Y. L.; Cripino, G. A.; Hartung, J.; J eong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.M.; Xu, D.; Zhang, X.-L. J . Org. Chem. 1992, 57, 2768-2771. (b) Sinha, S. C.; Sinha-Bagchi, A.; Keinami, E. J. Org. Chem. 1993, 58, 77897796.
 (15) Ishikura, K.; K urihara, H.; Yamamoto, H. J . Org. Chem. 1993, 58, 3791-3793.

[^5]: J 00105585

