
Tetrahedron Letters xxx (2017) xxx–xxx
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/locate / tet le t
Synthesis of benzo[c][2,7]naphthyridine-6-ones via cascade
aromatization/C(sp2)–H amidation of 1,4-dihydropyridines
http://dx.doi.org/10.1016/j.tetlet.2017.06.009
0040-4039/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: College of Pharmacy, Hubei University of Chinese
Medicine, Wuhan, Hubei 430065, China.

E-mail address: laichunluo@163.com (L. Luo).

Please cite this article in press as: Luo L., et al. Tetrahedron Lett. (2017), http://dx.doi.org/10.1016/j.tetlet.2017.06.009
Laichun Luo a,b,⇑, Qiang Wang a, Xiaozhi Peng a, Chunling Hu a, Hong Wang a

aCollege of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
bKey Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 May 2017
Revised 31 May 2017
Accepted 3 June 2017
Available online xxxx

Keywords:
1,4-Dihydropyridine
Benzo[c][2,7]naphthyridine-6-one
C(sp2)–H amidation
Aromatization
Cascade reaction
A K2S2O8-mediated cascade dehydrogenative aromatization/intramolecular C(sp2)–H amidation of 1,4-
dihydropyridines is described. This method provides an efficient access to multisubstituted benzo[c]
[2,7]naphthyridine-6-ones in 38–74% yields.
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Introduction

Phenanthridinone and its aza-analogues are important tricyclic
scaffolds in many natural alkaloids and synthetic products
(Fig. 1).1–3 Among them, benzo[c][2,7]naphthyridine-6-one exhibit
potent inhibitory activities against ROCK, AAK1, and ALK kinases.2

Besides, they are key synthetic blocks for amphimedine alkaloid
and some anti-malarial agents.3 Several synthetic methods
towards benzo[c][2,7] naphthyridine-6-ones have been developed
over the past decades. For instance, they were usually constructed
through intramolecular nucleophilic substitution of 4-phenyl pyr-
idine derivatives in step-wise or one-pot procedures (Sche-
me 1a).2–4 They were also achieved via palladium-catalyzed
arylation or AIBN/Bu3SnH-mediated radical cyclization of nicoti-
namide derivatives (Scheme 1b),5 Pictet-Spengler cyclization of
2-quinolinones with aromatic aldehydes (Scheme 1c),6 and
CpRuCl-catalyzed cycloaddition of a,x-diyne with ethyl cyanofor-
mate (Scheme 1d).7

Radical CAH functionalization has been broadly employed as a
powerful tool in heterocycle synthesis.8–11 For example, 3,4-benzo-
coumarins and phenanthridones were efficiently prepared from 2-
arylbenzoic acids9 and amides10 through intramolecular radical
cyclization. And recently, we developed a practical synthesis of
2-quinolinone via K2S2O8-mediated C(sp2)–H amidation of Knoeve-
nagel products.11 On the other hand, oxidative aromatization pro-
vides an efficient method for the preparation of arenes and
heterocycles.12–14 In particular, the aromatization of Hantzsch
1,4-dihydropyridines to pyridines were extensively studied.13,14

Inspired by these reports, and in continuation of our interest in
the synthesis of fused pyridine derivatives,11,15 herein we
described an efficient cascade aromatization/C(sp2)–H amidation
of 1,4-dihydropyridines to construct benzo[c][2,7]naphthyridine-
6-ones (Scheme 1e).
Results and discussion

Initially, 1,4-dihydropyridine 1a was used as the model sub-
strate to explore and optimize the reaction conditions. When 1a
was treated with 3 equiv of K2S2O8 in CH3CN/H2O (1:1, v/v) under
reflux (80 �C, oil bath temperature) for 2 h, the desired product 2a
was isolated in 57% yield (Table 1, entry 1). Comparable yields
were obtained when Na2S2O8 or (NH4)2S2O8 was used (Table 1,
entries 2 and 3). However, replacing K2S2O8 with other oxidants
including CuCl2, Ag2O, ceric ammonium nitrate (CAN), tert-butyl
hydroperoxide (TBHP), and H2O2, failed to give the desired product
(Table 1, entries 4–8). Persulfate was a strong oxidant with a high
redox potential of 2.01 V,14f which might make it an effective
oxidant for this cascade reaction. Then, several solvents were
screened. The CH3CN/H2O mixture was found to be superior to
other solvent systems, such as acetone/H2O, THF/H2O, and
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Fig. 1. Representative examples of phenanthridinones and benzo[c][2,7]naph-
thyridine-6-ones.

Table 1
Optimization of reaction conditions.a

Entry Oxidant Solvent Time (h) Yieldb (%)

1 K2S2O8 CH3CN/H2O (1:1) 2 57
2 Na2S2O8 CH3CN/H2O (1:1) 2 56
3 (NH4)2S2O8 CH3CN/H2O (1:1) 2 53
4 CuCl2 CH3CN/H2O (1:1) 2 0
5 Ag2O CH3CN/H2O (1:1) 2 0
6 CAN CH3CN/H2O (1:1) 2 0
7 TBHP CH3CN/H2O (1:1) 2 0
8 H2O2 CH3CN/H2O (1:1) 2 0
9 K2S2O8 Acetone/H2O (1:1) 2 23
10 K2S2O8 THF/H2O (1:1) 2 0
11 K2S2O8 DMSO/H2O (1:1) 2 49
12 K2S2O8 CH3CN/H2O (1:2) 2 52
13 K2S2O8 CH3CN/H2O (2:1) 1.5 65
14 K2S2O8 CH3CN/H2O (4:1) 1.5 63
15 K2S2O8 CH3CN/H2O (8:1) 4 24
16c K2S2O8 CH3CN/H2O (2:1) 4 0
17d K2S2O8 CH3CN/H2O (2:1) 1.5 62
18e K2S2O8 CH3CN/H2O (2:1) 1.5 55

a Reaction conditions: 1a (1 mmol), oxidant (3 mmol), solvent (30 mL), 80 �C (oil
bath).

b Isolated yields.
c Reaction occurred at 50 �C (oil bath).
d CuCl (10% mol) was added.
e AgNO3 (10% mol) was added.
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DMSO/H2O (Table 1, entries 9–11). Furthermore, the ratio of
CH3CN to H2O was examined (Table 1, 12–15), and the results
indicated that CH3CN/H2O (2:1, v/v) was the best choice (65%
yield, Table 1, entry 13). When the reaction temperature was
decreased to 50 �C, no desired product was observed (Table 1,
entry 16). Besides, the use of AgNO3 or CuCl as a catalyst did not
improve the yield (Table 1, entries 17 and 18).

With the optimized conditions in hand (Table 1, entry 13), the
scope of the reaction was investigated, and the results were shown
in Table 2. First, dihydropyridines 1b–k with a substituted phenyl
group at the C-4 position were examined. Substituents at the para-
position (Me, OMe, F, Cl, Br, CF3) andmeta-position (Me, OMe, Cl) of
the phenyl ring were tolerated, delivering products 2b–k in 38–
74% yields. Among them, a p-Me substituent (1b) was beneficial
to the reaction, while a strong electron-donating (p-OMe) or elec-
tron-withdrawing (p-CF3) group led to a much lower yield. The
CAH amidation exhibited high regioselectivity for substrates 1h–
k, which occurred at the less hindered site. Probably due to the
Scheme 1. Synthetic approaches towards
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steric hindrance effect, substrates with an ortho-substituent of
the phenyl ring failed to yield the desired products (not shown).
Then, dihydropyridines 1l–r bearing a substituted aniline moiety
were employed. Substrates with a Me (1l, 1o) or Cl (1m, 1q) group
benzo[c][2,7]naphthyridine-6-ones.
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Table 2
Synthesis of benzo[c][2,7]naphthyridine-6-ones 2 from 1,4-dihydropyridines 1.a,b

a Reaction conditions: 1 (1 mmol), K2S2O8 (3 mmol), CH3CN/H2O (2:1, 30 mL), reflux (80 �C, oil bath).
b Isolated yields.
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underwent the reaction smoothly, affording corresponding prod-
ucts in 67–73% yields. In contrast, the presence of an m-OCH3

(1n) or m-NO2 (1p) group reduced the reactivity, which resulted
in a longer reaction time and lower yield. Notably, the reaction
of ortho-dimethyl substituted substrate 1r proceeded well to give
Scheme 2. Preparation of 2a

Scheme 3. Plausible re
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product 2r in 65% yield. Moreover, symmetric substrate 1s contain-
ing two amide groups was also amenable to this protocol, affording
2s as the main product. When polyhydroquinoline 1twas used as a
substrate, tetracyclic product 2t was obtained in 46% yield.
in a two-step manner.

action mechanism.
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In order to investigate the mechanism of this reaction, 2 equiv
of the radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO) was added into the reaction of 1a under standard reaction
conditions. The desired product 2a was not observed, indicating
that the reaction might involve a radical mechanism. In addition,
2awas prepared in a two-step manner (Scheme 2). Under standard
reaction conditions, 1a was rapidly converted into pyridine inter-
mediate 1a0 in 90% yield. And the cyclization of 1a0 proceeded
smoothly under the same conditions to afford 2a in 71% yield.

On the basis of the experimental results and previous reports, a
possible mechanism for this transformation is proposed in
Scheme 3. Initially, sulfate radical anion is generated by thermal
decomposition of K2S2O8.9–11 Dihydropyridine 1a reacts with sul-
fate radical anion to give radical intermediate I via single electron
transfer/deprotonation or hydrogen-atom abstraction mechanism.
Further oxidation of radical I forms the aromatized intermediate
1a0.14b,d Then, intermediate 1a’ is converted into amidyl radical II
in the presence of sulfate radical anion, which undergoes
intramolecular cyclization to give aryl radical III.9–11 Finally, pro-
duct 2a is obtained by oxidation of intermediate III.

In summary, we have developed an efficient approach to benzo
[c][2,7]naphthyridine-6-ones from 1,4-dihydropyridines using
K2S2O8 as the oxidant under catalyst-free conditions. The transfor-
mation involves a cascade aromatization/C(sp2)–H amidation pro-
cess. The advantages of the present protocol include readily
accessible starting materials, broad substrate scope, short reaction
time, and easy operation.
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