Organic\& Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: E. Tayama, K. Watanabe and S. Sotome, Org. Biomol. Chem., 2017, DOI: 10.1039/C7OB01391D.

Organic\& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Journal Name

ARTICLE

Structural and mechanistic studies of the base-induced Sommelet-Hauser rearrangement of N - α-branched benzylic azetidine-2-carboxylic acid-derived ammonium salts

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x
www.rsc.org/

Eiji Tayama, ${ }^{\text {a }}$ Kazutoshi Watanabe ${ }^{\text {b }}$ and Sho Sotome ${ }^{\text {b }}$

The base-induced Sommelet-Hauser rearrangement of N - α-branched benzylic azetidine-2-carboxylic acid ester-derived ammonium salts to obtain α-arylazetidine-2-carboxylic acid esters was investigated. The substrates, two diastereomeric salts $\left(1 S, 2 S, 1^{\prime} S\right)$ - and ($\left.1 R, 2 R, 1^{\prime} S\right)-2$, showed different reactivities. The rearrangement of ($1 S, 2 S, 1^{\prime} S$)-2a proceeded with a perfect N-to-C chirality transfer to provide (R)-3a in 74% yield with 99% ee. However, the rerrangement of ($1 R, 2 R, 1 ' S$)-2a under the same conditions afforded (S)-3a in only 15% yield with a lower 66% ee, along with the competitive [1,2] Stevens rearrangement product 4a. Structural and mechanistic studies of this rearrangement were carried out to clarify the exact reason. Our results expand the scope and limitations of the Sommelet-Hauser rearrangement and provide unique synthetic access to amino acid derivatives.
of (S)-3a to 40% and 85%, respectively, but the formation of the undesired $\mathbf{4 a}$ could not be inhibited. The rateenhancement effect of the S-H rearrangement by the ringstrain proposed in our previous work (eqn (1)) was not observed upon changing the diastereomeric salt ($1 S, 2 S, 1^{\prime} S$)-2a into ($1 R, 2 R, 1^{\prime} S$)-2a. We started to investigate the baseinduced $\mathrm{S}-\mathrm{H}$ rearrangement of N - α-branched benzylic azetidine-2-carboxylic acid ester-derived ammonium salts $\mathbf{2}$ to clarify the exact reason and define the scope and limitations.

Results and discussion

We prepared the racemic N - α-methylbenzylic ammonium triflates ($1 S^{*}, 2 S^{*}, 1^{\prime} S^{*}$)- and ($1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}$)-2a-d as substrates by the N-quaternization of the precursor amines $\mathbf{1 a -} \mathbf{d}^{14}$ with methyl triflate (Scheme 2). ${ }^{15}$ The salts 2 were obtained in diastereomerically pure form because the adjacent 2 - and N substituents, as in 1, are in an equatorial position to avoid steric repulsion and the axial lone pair of the nitrogen atom reacts with methyl triflate. ${ }^{16}$

Scheme 2 Diastereoselective N-quaternization of ($2 S^{*}, 1^{\prime} S^{*}$)- and ($\left.2 R^{*}, 1^{\prime} S^{*}\right)$-1

First, the reactions of ($1 S^{*}, 2 S^{*}, 11^{\prime} S^{*}$)-2a-d that would be the preferred diastereomers for the $\mathrm{S}-\mathrm{H}$ rearrangement depicted in Scheme 1 were investigated (Table 1, entries 1-4). A reaction of N - α-methylbenzyl derivative ($1 S^{*}, 2 S^{*}, 1^{\prime} S^{*}$)-2a gave almost the same result as the chiral substrate (entry 1). The desired S-H product 3a was obtained in 80% yield with no detectable amount of the [1,2] Stevens product 4a. Similarly, the reactions of the para-bromo and tert-butoxycarbonyl derivatives, $\left(1 S^{*}, 2 S^{*}, 1^{\prime} S^{*}\right)$ - $\mathbf{1 b}$ and $\mathbf{1 c}$, afforded only $\mathbf{3 b}$ and $\mathbf{3 c}$ in approximately 80% yields (entries $2-3$), respectively. When the migrating group was substituted by an electron-donating group (EDG) such as para-methoxy (entry 4), the yield of 3d was decreased to 61% with the formation of two diastereomers $\mathbf{4 d} \mathbf{1}$ and $\mathbf{4 d} \mathbf{d}$ in a 12% combined yield ($8 / 2 \mathrm{dr}$, separable by silica gel column chromatography, $R_{\mathrm{f}}: \mathbf{4 d} \mathbf{1}>\mathbf{4 d 2}$). A deactivation effect of an EDG on the N-benzylic migrating
group in the S-H rearrangement was observed, similar to our previous results. ${ }^{5 e, 5 \mathrm{~g}}$

Table 1 Base-induced S-H rearrangement of ($1 S^{*}, 2 S^{*}, 11^{\prime} S^{*}$)- and ($\left.1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$ - $\mathbf{2}$

entry	diastereomer	R		3 (\%) ${ }^{\text {a }}$	$4^{b}(\%)^{a}$
1	(15* $\left., 2 S^{*}, 1{ }^{\prime} S^{*}\right)$	H	a	80	0
2	(1S* ${ }^{*} 2 S^{*}, 1$ ' ${ }^{*}$)	Br	b	83	0
$3^{\text {c }}$	(1S** $2 S^{*}, 1$ ' ${ }^{*}$)	CO_{2} tBu	c	81	0
4	(15**, $\left.2 S^{*}, 1^{\prime} S^{*}\right)$	OMe	d	61	$12^{\text {d }}$
5	(12 $\left.{ }^{*}, 2 R^{*}, 1 S^{*}\right)$	H	a	24	23^{e}
6	(12R* $\left.2 R^{*}, 1^{\prime} S^{*}\right)$	Br	b	63	13^{e}
$7{ }^{\text {f }}$	(1R $\left.{ }^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$	CO_{2} tBu	c	57	11^{e}
8	$\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$	OMe	d	5^{g}	37^{h}

${ }^{a}$ Isolated yield unless otherwise noted. ${ }^{b}$ The stereochemistry of compounds 4 was not determined. ${ }^{c}$ The Hoffmann eliminated product, tert-butyl 4vinylbenzoate (6) was formed in 3% yield, determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using mesitylene as an internal standard. ${ }^{d}$ Two diastereomers 4d1 and $\mathbf{4 d} \mathbf{2}(8 / 2 \mathrm{dr})$ were obtained. ${ }^{e}$ One diastereomer was isolated. ${ }^{f}$ The Hoffmann eliminated product 6 was isolated in 20% yield. ${ }^{g}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using mesitylene as an internal standard. ${ }^{h}$ Two diastereomers $\mathbf{4 d} \mathbf{1}$ and $\mathbf{4 d} \mathbf{2}(3 / 7 \mathrm{dr})$ were obtained.

Next, we examined the reactions of other diastereomers, ($1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}$)-2a-d (Entries 5-8), which would be disfavoured for the $\mathrm{S}-\mathrm{H}$ rearrangement depicted in Scheme 1. A reaction of $\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$-2a produced a similar result to the chiral substrate to give $\mathbf{3 a}$ in only 24% yield along with one diastereomer of $4 \mathbf{a}$ in 23% yield (entry 5). When the migrating group was substituted by a para-bromo or tert-butoxycarbonyl, the yields of 3 were improved to moderate levels (entries 6-7, 3b: 63\% yield, 3c: 57% yield) by the rate-enhancement effect of the $\mathrm{S}-\mathrm{H}$ rearrangement by an electron-withdrawing group (EWG) on the N-benzylic migrating group. ${ }^{5 e, 5 \mathrm{~g}}$ As the side product, one diastereomer of undesired 4 was obtained (4b: 13% yield, 4c: 11\% yield). Additionally, a Hoffmann elimination giving 5 and 6 (Scheme 3) was observed in the reaction of ($\left.1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$-2c (entry 7), and the styryl derivative 6 was isolated in 20% yield. Upon the use of the para-methoxy derivative ($1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}$)-2d as the substrate, the yield of $\mathbf{3 d}$ was minimized to 5\% (entry 8). An undesired [1,2] Stevens rearrangement proceeded and mainly provided the two diastereomers 4d1 and 4d2 in a 37\% combined yield (3/7 dr).

We applied this S-H rearrangement to the synthesis of an α -benzo-fused ring substituted azetidine-2-carboxylic ester 3e (Scheme 4), and the results clarified the difference of reactivity between the ($1 S, 2 S, 1^{\prime} S$)- and ($1 R, 2 R, 1^{\prime} S$)- $\mathbf{2}$ diastereomers. The stereoselective N-quaternization of N-(indan-1-yl)amine
($2 S^{*}, 1^{\prime} S^{*}$)-1e followed by the rearrangement of the resulting salt ($1 S^{*}, 2 S^{*}, 1^{\prime} S^{*}$)-2e provided the target $\mathbf{3 e}$ in 45% yield. The TLC analysis of the crude product showed some side products that might cause a lower yield of $\mathbf{3 e}$, but the undesired [1,2] Stevens product was not obtained. This reaction would proceed via the formation of the ylide B, the conformer C, $[2,3]$ sigmatropic rearrangement and aromatization. In the $[2,3]$ rearrangement step, the steric repulsion between the indane and azetidine moieties may inhibit the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond formation and decrease the yield of $\mathbf{3 e}$.

Scheme $\mathbf{3}$ Hoffman elimination to 5 and 6 from ($\left.1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$-2c

Scheme 4 Base-induced S-H rearrangement of (1S*,2S*,1'S*)-2e via conformer C

On the other hand, the N-quaternization of $\left(2 R^{*}, 1^{\prime} S^{*}\right)-1 \mathbf{e}$ gave a $9 / 1$ mixture of ($1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}$)-2 e^{17} and ($1 S^{*}, 2 R^{*}, 1^{\prime} S^{*}$)2e that was not separable by silica gel column chromatography (Scheme 5). The rearrangement of the $9 / 1$ mixture failed completely and gave a complicated mixture (dark purple). The possible conformer \mathbf{E}, derived from ($1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}$)-2e and the corresponding ylide \mathbf{D}, would be quite unfavourable for the [2,3] rearrangement because of the methylene-methyl eclipsed-like conformation. Although the exact reason for the formation of side products from $\mathbf{2 e}$ is unclear at present, the Hoffman elimination from $\mathbf{2 e}$ might proceed to give indene, which provides various side products under basic conditions.

Scheme 5 Base-induced S-H rearrangement of ($\left.1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)-1 \mathrm{e}$ via eclipsedlike conformer \mathbf{E}.

These results in hand, we proposed a reason for the lower yield in the $S-H$ rearrangement of ($1 R, 2 R, 1^{\prime} S$)-2a into (S)-3a involving the lack of ee (Scheme 1, eqn (2)). First, the ylide generated from ($15,2 S, 1^{\prime} S$)-2a, which is the desired diastereomer for the S-H rearrangement, enables the formation of the two conformers \mathbf{F} and \mathbf{G} (Scheme 6). \mathbf{F} is similar to that of \mathbf{C} described in Scheme 4. \mathbf{G} is in an eclipsedlike conformation, but the repulsions arising from the hydrogen-methyl and methyl-azetidinyl methylene eclipsing would be small. The $[2,3]$ rearrangement from both \mathbf{F} and \mathbf{G} provides a dearomatized intermediate \mathbf{H} followed by a 1,3prototropic shift in the presence of $t \mathrm{BuOK}$ and $t \mathrm{BuOH}$ to give aromatized (R)-3a in 74% with 99% ee (THF).

Scheme 6 Proposed mechanism for the S-H rearrangement of ($1 S, 1 S, 1^{\prime} S$)-2a

The other diastereomer ($1 R, 2 R, 1^{\prime} S$)-2a forms two conformers I and J (Scheme 7). The [2,3] rearrangement from I proceeds with a high degree of N -to-C chirality transfer to provide (S) - $\mathbf{3 a}$ with higher ee. \mathbf{J} is similar to that of \mathbf{E} described in Scheme 5. The methyl-methyl eclipsed-like conformation
inhibits the $[2,3]$ rearrangement, and a radical cleavage of the $\mathrm{N}-\mathrm{C}$ bond might occur to generate a radical pair intermediate K. The intermediate \mathbf{K} provides the [1,2] Stevens rearrangement product $\mathbf{4 a}$ with an N -to-C chirality transfer by recombination. ${ }^{10,13}$ The radical, as in the intermediate K, is delocalized by the phenyl ring to form other radical pair intermediates such as L. ${ }^{18}$ The radical recombination of \mathbf{L} followed by aromatization would afford (S)-3a with a lower degree of N-to-C chirality transfer. The use of DMPU as the solvent would improve the reactivity of the carbanionic ylide, and the rate of the $[2,3]$ rearrangement from I is enhanced to afford (S)-3a in better yield and ee (40% yield, 85% ee).

Scheme 7 Proposed mechanism for the $S-H$ rearrangement of $\left(1 R, 1 R, 1^{\prime} S\right)$ - $\mathbf{2 a}$

27\%, 89\% ee
(single diastereomer)

To support our proposed mechanism described in Scheme 7, we prepared the 2,6-dimethylbenzyl ammonium salt (15*,2S*)7^{19} and carried out the rearrangement (Scheme 8). The isolated products were the [1,2] Stevens rearrangement product 9 (56% yield) and the α-($3,4,5$-trimethylphenyl) derivative 10 (17% yield). The ylide \mathbf{M} generated from ($1 S^{*}, 2 S^{*}$)-7 did not give the $[2,3]$ rearrangement product 8 due to the steric repulsion arising from the two ortho-methyl substituents. ${ }^{20}$ The radical cleavage of \mathbf{M} generated the radical pair intermediates \mathbf{N} and \mathbf{O}, followed by recombination that would provide 9 and 10, respectively. This result proved our proposed reaction pathway from the intermediate \mathbf{L} into (S)-3a.

Finally, we examined the base-induced S-H rearrangement of other types of N - α-branched benzylic ammonium salts to define the substrate scope and limitations (Scheme 9). When a rearrangement of N-diphenylmethyl derivative (15*,2S*)11^{19} was carried out at $0{ }^{\circ} \mathrm{C}$, the corresponding $\mathrm{S}-\mathrm{H}(12)$ and
[1,2] (13) rearrangement products were obtained without selectivity (12: 21% yield, 13: 28% yield). In this case, a lower reaction temperature $\left(-40{ }^{\circ} \mathrm{C}\right)$ improved the ratio of $12 / 13$, and the desired 12 was obtained in 75% yield. The S-H rearrangement from the N - α, α-dimethylbenzyl salt ($1 R^{*}, 2 S^{*}$)14^{19} into 15 did not proceed. The [1,2] rearrangeed 16 was obtained as the only identifiable product.

Scheme 8 Formation of α-(3,4,5-trimethylphenyl) derivative 10 via ylide formation, radical cleavage, delocalization and recombination.

Scheme 9 Base-induced rearrangement of N - α-branched benzylic ammonium salts ($1 S^{*}, 2 S^{*}$)-11 and ($1 R^{*}, 2 S^{*}$)-14.

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using mesitylene as an internal standard.

Conclusions

In conclusion, we demonstrated the base-induced SommeletHauser (S-H) rearrangement of two diastereomeric salts of N -α-branched benzylic azetidine-2-carboxylic acid ester-derived ammonium salts 2 . The two diastereomeric salts 2 showed different reactivities. One diastereomer provided the desired S-H rearrangement product, α-arylazetidine- 2 -carboxylic acid esters 3, in good yield with excellent ee, but the other did not. Our experimental studies on this rearrangement clarified the reason for the difference and the reaction mechanisms.

The $\mathrm{S}-\mathrm{H}$ rearrangement still has structural limitations in that it requires the product to have an o-substituted aryl component. Our studies would expand the scope and limitations of this rearrangement and provide unique synthetic access to α-aryl amino acid derivatives. Further studies are in progress in our group to demonstrate the synthetic utility of the $\mathrm{S}-\mathrm{H}$ rearrangement.

Experimental

General

Infrared spectra (IR) were recorded on a Perkin Elmer Spectrum GX FT-IR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian or a Bruker 400 MHz spectrometers $\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz}\right.$, ${ }^{13} \mathrm{C}: 100 \mathrm{MHz}$). The splitting patterns are denoted as follows: s , singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and $b r$, broad peak. High-resolution mass spectra were measured on a Thermo Fisher Scientific LC/FT-MS spectrometer. Specific rotations were recorded on a JASCO polarimeter P-1010. Normal phase HPLC analyses were performed using a JASCO HPLC pump PU-2080 or PU-2089, and a UV/VIS detector UV2075. Reversed phase HPLC analyses were performed using a Shimazu HPLC pump LC-20AT and a UV/VIS detector SPD-20A. Reactions involving air- or moisture-sensitive compounds were conducted in appropriate round-bottomed flasks with a magnetic stirring bars under an argon atmosphere. Tetrahydrofuran (THF) was purchased from KANTO Chemical Co., Inc., Japan as an anhydrous solvent. 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) was purchased from Wako Pure Chemical Industries, Ltd., Japan and dried over molecular sieves 4Å. A 1.0 M potassium tert-butoxide (tBuOK) solution in THF were purchased from Tokyo Chemical Industry (TCI) Co., Ltd., Japan. For thin layer chromatography (TLC) analysis throughout this work, Merck TLC plates (silica gel 60 F_{254}) was used. The products were purified by preparative column chromatography on silica gel (silica gel 60N, spherical neutral, KANTO Chemical Co., Inc., Japan).
Representative procedure for preparation of ($15,2 S, 1^{\prime} S$)-2-(tert-butoxycarbonyl)-1-methyl-1-(1'-phenylethyl)azetidin-1-ium trifluoromethanesulfonate [(1S,2S,1'S)-2a]
A mixture of ($2 S, 1^{\prime} S$)-tert-butyl 1-(1'-phenylethyl)azetidine-2carboxylate $\left[\left(2 S, 1^{\prime} S\right)-1 \mathrm{a}\right](447 \mathrm{mg}, 1.71 \mathrm{mmol})$ and NaHCO_{3} $(0.43 \mathrm{~g}, 5.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.6 \mathrm{~mL})$ was treated with MeOTf ($387 \mu \mathrm{~L}, 3.42 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h at room temperature. The resulting mixture was evaporated to ca. 1/2
to $1 / 3$ volume and purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=15 / 1\right.$ to $7 / 1$ as the eluent) to obtain (1S, 2S, 1'S)-2a ($635 \mathrm{mg}, 87 \%$ yield) as a colourless gum. $[\alpha]^{22}{ }_{589}$ -26.2 (c 1.0 in EtOH); IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3059,2983,1736$, 1630, 1499, 1459, 1421, 1397, 1372, 1274, 1258, 1225, 1156, 1031, 993, 971, 934, 881, 839, 773, 756, 708; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.50-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $5.59(1 \mathrm{H}, \mathrm{dd}, J=9.8,9.8 \mathrm{~Hz}, 2-\mathrm{H}), 5.28\left(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $4.90(1 \mathrm{H}, \mathrm{ddd}, J=10.0,10.0,9.7 \mathrm{~Hz}, 4-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $9.7,9.7,3.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.96-2.75(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $1.75\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right), 1.54(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.8,131.0,130.8,130.0,129.4,120.7$ (q, J = $318 \mathrm{~Hz}), 86.0,72.9,71.3,61.4,39.6,27.8,17.9,14.0 ;$ HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2}$ [M-OTf] ${ }^{+}$276.1958, found 276.1948.
(1R,2R,1'S)-2-(tert-Butoxycarbonyl)-1-methyl-1-(1'-
phenylethyl)azetidin-1-ium trifluoromethanesulfonate [(1R,2R,1'S)-2a]

Prepared in 91% yield from ($2 R, 1^{\prime} S$)-tert-butyl 1-(1'-phenylethyl)azetidine-2-carboxylate [(2R,1'S)-1a]; colourless gum; $[\alpha]^{22}{ }_{589}+23.9$ (c 1.0 in EtOH); IR (film) $v_{\text {max }} / \mathrm{cm}^{-1} 3053$, 2983, 2935, 1732, 1497, 1459, 1423, 1397, 1371, 1351, 1259, 1224, 1155, 1101, 1030, 987, 935, 881, 836, 775, 756, 708; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.51-7.42(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 5.58(1 \mathrm{H}, \mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{q}, J=7.0$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 4.83(1 \mathrm{H}$, ddd, $J=9.6,9.6,9.6 \mathrm{~Hz}, 4-\mathrm{H}), 4.04(1 \mathrm{H}$, ddd, $J=9.6,9.6,3.8 \mathrm{~Hz}, 4-\mathrm{H}), 3.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.98-2.75(2 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 1.68\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right), 1.18(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C} N M R$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1,131.5,130.7,130.1,129.4,120.7$ (q, $J=318 \mathrm{~Hz}$), 84.9, 72.9, 69.9, 62.6, 39.3, 27.4, 18.1, 13.5; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{OTf}]^{+} 276.1958$, found 276.1949. (1S*, $2 S^{*}, 1^{\prime} S^{*}$)-2-(tert-Butoxycarbonyl)-1-methyl-1-(1'-phenylethyl)azetidin-1-ium trifluoromethanesulfonate [(1S*, $\left.\left.2 S^{*}, 1^{\prime} S^{*}\right)-2 a\right]$
Prepared in 83% yield from ($2 S^{*}, 1^{\prime} S^{*}$)-1a; white solid; mp 146$147{ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3053,2991,1742,1500,1462,1423$, 1390, 1371, 1261, 1225, 1155, 1104, 1071, 1058, 1031, 1015, 992, 968, 932, 871, 840, 776, 757, 709.
(1R*,2R*,1'S*)-2-(tert-Butoxycarbonyl)-1-methyl-1-(1'-phenylethyl)azetidin-1-ium trifluoromethanesulfonate [(1R*,2R*,1'S*)-2a]
Prepared in 96% yield from ($\left.2 R^{*}, 1^{\prime} S^{*}\right)-1$ a; colourless gum.
(1S*,2S*,1'S*)-1-(1'-(4''-Bromophenyl)ethyl)-2-(tert-
butoxycarbonyl)-1-methylazetidin-1-ium
trifluoromethanesulfonate [(1S*, $\left.2 S^{*}, 1^{\prime} S^{*}\right)$-2b]
Prepared in 95% yield from ($2 S^{*}, 1^{\prime} S^{*}$)-1b; colourless gum; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2984,1738,1593,1491,1466,1421,1398$, 1373, 1259, 1224, 1154, 1079, 1030, 1010, 934, 879, 833, 784, 756,$732 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, ArH), $7.49(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 5.58(1 \mathrm{H}, \mathrm{dd}, J=9.8,9.8 \mathrm{~Hz}$, $2-\mathrm{H}), 5.30\left(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.89(1 \mathrm{H}, \mathrm{ddd}, J=9.6,9.6$, $9.6 \mathrm{~Hz}, 4-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{ddd}, J=9.6,9.6,2.6 \mathrm{~Hz}, 4-\mathrm{H}), 3.01(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.97-2.75(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.74\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right)$, $1.54(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,132.7$, 131.7, 130.0, 125.5, 120.7 ($q, J=318 \mathrm{~Hz}$), 86.2, 72.1, 71.6, 61.5,
39.5, 27.8, 17.9, 14.0; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrNO}_{2}[\mathrm{M}-$ OTf] ${ }^{+} 354.1063$, found 354.1056
(12*,2R*, $\left.1^{\prime} S^{*}\right)$-1-(1'-(4"-Bromophenyl)ethyl)-2-(tert-
butoxycarbonyl)-1-methylazetidin-1-ium trifluoromethanesulfonate [(1R*,2R*, $\left.\left.1^{\prime} S^{*}\right)-2 \mathrm{~b}\right]$

Prepared in 89% yield from ($2 R^{*}, 1^{\prime} S^{*}$)-1b; colourless gum; IR (film) $v_{\max } / \mathrm{cm}^{-1} 2983,1733,1593,1491,1460,1421,1397$, $1370,1258,1225,1155,1077,1030,1010,990,934,880,831$, $786,757,728 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4$ $\mathrm{Hz}, \mathrm{ArH}), 7.52(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 5.56(1 \mathrm{H}, \mathrm{dd}, J=10.0,9.4$ $\mathrm{Hz}, 2-\mathrm{H}), 5.24\left(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.76(1 \mathrm{H}, \mathrm{ddd}, J=9.8$, $9.8,9.4 \mathrm{~Hz}, 4-\mathrm{H}$), 4.06 (1 H, ddd, $J=9.8,9.8,3.2 \mathrm{~Hz}, 4-\mathrm{H}$), 3.13 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.91(1 \mathrm{H}$, dddd, $J=11.9,10.0,9.8,9.8 \mathrm{~Hz}, 3-\mathrm{H})$, $2.79(1 \mathrm{H}$, dddd, $J=11.9,9.4,9.4,3.2 \mathrm{~Hz}, 3-\mathrm{H}), 1.66(3 \mathrm{H}, \mathrm{d}, J=$ $\left.7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right), 1.21(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.9,132.4,131.7,130.5,125.3,120.7$ (q, $J=319 \mathrm{~Hz}$), 85.2, 72.1, 70.2, 62.8, 39.1, 27.4, 17.8, 13.3; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrNO}_{2}$ [M-OTf] ${ }^{+}$354.1063, found 354.1056.
(15*, $\left.2 S^{*}, 1^{\prime} S^{*}\right)$-2-(tert-Butoxycarbonyl)-1-(1'-(4"-(tert-
butoxycarbonyl)phenyl)ethyl)-1-methylazetidin-1-ium trifluoromethanesulfonate [(1S*,2S*,1'S*)-2c]
Prepared in 94% yield from ($\left.2 S^{*}, 1^{\prime} S^{*}\right)-1 \mathbf{c}$; colourless amorphous; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2981,2935,1739,1715,1613$, 1460, 1426, 1396, 1371, 1276, 1258, 1224, 1159, 1120, 1064, 1030, 994, 970, 933, 870, 840, 778, 756, 716; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(2 \mathrm{H}, \mathrm{ddd}, J=8.6,2.0,2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.66(2 \mathrm{H}$, ddd, $J=8.6,2.0,2.0 \mathrm{~Hz}, \mathrm{ArH}), 5.66(1 \mathrm{H}, \mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}, 2-\mathrm{H})$, $5.42\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.99(1 \mathrm{H}, \mathrm{ddd}, J=10.3,9.6,9.6 \mathrm{~Hz}$, $4-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.3,6.9,5.0 \mathrm{~Hz}, 4-\mathrm{H}), 3.01(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.94-2.81(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.78\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right)$, $1.59(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.54(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.5,163.7,135.0,134.3,130.3,130.0,120.7$ (q, $J=318 \mathrm{~Hz}$), 86.2, 81.8, 72.2, 71.6, 61.7, 39.7, 28.1, 27.8, 18.1, 14.0; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{4}$ [M-OTf] ${ }^{+} 376.2482$, found 376.2465.
(1R*, 2R*, $\left.1^{\prime} S^{*}\right)$-2-(tert-Butoxycarbonyl)-1-(1'-(4"-(tert-
butoxycarbonyl)phenyl)ethyl)-1-methylazetidin-1-ium trifluoromethanesulfonate [($\left.\left.1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)-2 \mathrm{c}\right]$

Prepared in 94\% yield from ($2 R^{*}, 1^{\prime} S^{*}$)-1c; colourless gum; IR (KBr) $v_{\max } / \mathrm{cm}^{-1}$ 2982, 2937, 1731, 1716, 1614, 1578, 1459, 1426, 1396, 1371, 1257, 1225, 1160, 1122, 1080, 1065, 1031, 990, 934, 882, 866, 846, 778, 755, 715; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.67(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, ArH), $5.61(1 \mathrm{H}, \mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 4.85(1 \mathrm{H}, \mathrm{ddd}, J=10.0,9.6,9.6 \mathrm{~Hz}, 4-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{ddd}, J$ $=9.6,9.6,3.6 \mathrm{~Hz}, 4-\mathrm{H}), 3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.99-2.76(2 \mathrm{H}, \mathrm{m}, 3-$ H), $1.71\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right), 1.59(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.18(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,163.0,135.5,134.2$, $130.2,130.0,120.7$ ($q, J=318 \mathrm{~Hz}$), 85.2, 81.7, 72.3, 70.2, 62.9, 39.4, 28.0, 27.4, 18.1, 13.4; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{4}$ ${ }^{[\mathrm{M}-\mathrm{OTf}]^{+} 376.2482 \text {, found 376.2468. }}$
(1S*, $\left.2 S^{*}, 1^{\prime} S^{*}\right)$-2-(tert-Butoxycarbonyl)-1-(1'-(4"-
methoxyphenyl)ethyl)-1-methylazetidin-1-ium
trifluoromethanesulfonate [(1S*,2S*,1'S*)-2d]
Prepared in 96\% yield from ($2 S^{*}, 1^{\prime} S^{*}$)-1d; colourless gum; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2984,1738,1611,1519,1464,1397,1372$,

1257, 1224, 1156, 1030, 871, 839; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.50(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 5.50$ $(1 \mathrm{H}, \mathrm{dd}, J=9.6,9.2 \mathrm{~Hz}, 2-\mathrm{H}), 5.18\left(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.78$ (1H, ddd, $J=9.8,9.6,9.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.29(1 \mathrm{H}$, dd, $J=9.8,9.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.92(1 \mathrm{H}$, dddd, $J=$ $9.8,9.8,9.8,9.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{ddd}, J=9.8,9.6,9.2 \mathrm{~Hz}, 3-$ H), $1.72\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right), 1.54(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5,161.0,131.2,122.7,120.5$ (q, J = 319 Hz), 114.4, 85.7, 72.5, 70.9, 60.8, 55.1, 39.2, 27.5, 17.4, 13.9; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}-\mathrm{OTf}]^{+} 306.2064$, found 306.2052.
(1R*,2R*, $1^{\prime} S^{*}$)-2-(tert-Butoxycarbonyl)-1-(1'-(4'
methoxyphenyl)ethyl)-1-methylazetidin-1-ium
trifluoromethanesulfonate [(1R*,2R*, $\left.\left.\mathbf{1}^{\prime} S^{*}\right)-2 \mathrm{~d}\right]$
Prepared in 97% yield from ($2 R^{*}, 1^{\prime} S^{*}$)-1d; colourless gum; IR (film) $v_{\max } / \mathrm{cm}^{-1} 2983,2939,2842,1732,1611,1584,1518$, 1462, 1396, 1370, 1257, 1225, 1156, 1064, 1031, 989, 921, 876, 839, 785, 755, $732 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(2 \mathrm{H}$, $\mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 5.53(1 \mathrm{H}, \mathrm{dd}, J=$ $9.8,9.4 \mathrm{~Hz}, 2-\mathrm{H}), 5.17\left(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{ddd}, J=$ $10.0,9.8,9.4 \mathrm{~Hz}, 4-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{ddd}, J=9.8,9.8,3.0 \mathrm{~Hz}, 4-\mathrm{H})$, $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.90(1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=11.9$, $10.0,9.8,9.8 \mathrm{~Hz}, 3-\mathrm{H}$), 2.77 (1 H , dddd, $J=11.9,9.4,9.4,3.0 \mathrm{~Hz}$, $3-\mathrm{H}), 1.65\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right), 1.20(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,161.0,131.2,123.2,120.6$ (q, $J=319$ Hz), 114.3, 84.6, 72.5, 69.6, 62.0, 55.1, 38.9, 27.2, 17.5, 13.3; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}-\mathrm{OTf}]^{+}$306.2064, found 306.2057.
(1S*,2S*, 1'S*)-2-(tert-Butoxycarbonyl)-1-(2',3'-dihydro-1'H-inden-1^{\prime}-yl)-1-methylazetidin-1-ium trifluoromethanesulfonate [(1S*, $\left.\left.2 S^{*}, 1^{\prime} S^{*}\right)-2 e\right]$

Prepared in 94\% yield from ($2 S^{*}, 1^{\prime} S^{*}$)-1e; white solid; mp 126$127{ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3054,2989,2947,2862,1742,1462$, 1420, 1396, 1373, 1342, 1265, 1225, 1160, 1048, 1030, 1004, 975, 934, 910, 889, 860, 834, 805, 760, 713; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{ddd}, J=7.5,7.5$, $1.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.35(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.29$ ($1 \mathrm{H}, \mathrm{ddd}, J=7.5$, $7.5,1.0 \mathrm{~Hz}, \mathrm{ArH}), 5.68\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.65(1 \mathrm{H}, \mathrm{dd}, J=$ $9.6,9.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{ddd}, J=9.6,9.6,9.6 \mathrm{~Hz}, 4-\mathrm{H}), 3.85$ $(1 \mathrm{H}, \mathrm{ddd}, J=9.6,9.6,3.6 \mathrm{~Hz}, 4-\mathrm{H}), 3.17-2.83(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 2.80-2.68\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.50(1 \mathrm{H}$, dddd, $\left.J=15.8,9.0,9.0,9.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 1.52(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,146.2,133.6,131.2,127.9,125.92$, 125.91, 120.7 (q, $J=319 \mathrm{~Hz}$), 86.0, 79.4, 71.4, 62.7, 39.4, 30.9, 27.8, 25.8, 18.8; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}$ [M-OTf] ${ }^{+}$ 288.1958, found 288.1952.
(12*,2R*, $\left.1^{\prime} S^{*}\right)$-2-(tert-Butoxycarbonyl)-1-(2', 3^{\prime}-dihydro-1'H-inden-1^{\prime}-yl)-1-methylazetidin-1-ium trifluoromethanesulfonate [(1R*,2R*, $\left.\left.1^{\prime} S^{*}\right)-2 e\right]$
Prepared in 89% yield from $\left(2 R^{*}, 1^{\prime} S^{*}\right)-1 e .{ }^{1} \mathrm{H}$ NMR analysis showed a $9 / 1$ mixture of $\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$ and ($1 S^{*}, 2 R^{*}, 1^{\prime} S^{*}$) diastereomers; colourless gum; IR (film) $v_{\max } / \mathrm{cm}^{-1} 2981,1734$, 1463, 1396, 1371, 1356, 1259, 1224, 1154, 1052, 1030, 1004, $978,935,903,860,834,759,724 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.59\left(0.9 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArH}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right), 7.48-7.39(0.1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArH}_{\left(1 S^{*}, 2 R^{*}, 1 S^{*}\right)}\right), 7.42(0.9 \mathrm{H}, \mathrm{ddd}, J=7.6,7.6,1.0 \mathrm{~Hz}$,
$\left.\operatorname{ArH}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)}\right), 7.38\left(0.1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \operatorname{ArH}_{\left(1 S^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)}\right), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.26(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, \mathrm{ArH}), 5.67$ $\left(0.9 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2-\mathrm{H}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right), 5.63(0.9 \mathrm{H}, \mathrm{d}, J=8.4$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)}\right), 5.57\left(0.1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\left(1 S^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right)$, $5.03\left(0.1 \mathrm{H}, \mathrm{ddd}, J=9.2,4.0,2.0 \mathrm{~Hz}, 2-\mathrm{H}_{\left(1 S^{*}, 2 R^{*}, 1^{*} s^{*}\right)}\right), 4.95(0.1 \mathrm{H}$, ddd, $\left.J=10.0,10.0,9.6 \mathrm{~Hz}, 4-\mathrm{H}_{\left(1 s^{*}, 2 R^{*}, 1^{*} s^{*}\right)}\right), 4.75(0.9 \mathrm{H}, \mathrm{ddd}, J=$ $\left.10.0,10.0,10.0 \mathrm{~Hz}, 4-\mathrm{H}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right), 4.22(0.9 \mathrm{H}$, ddd, $J=10.0$, $\left.10.0,4.4 \mathrm{~Hz}, 4-\mathrm{H}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right), 4.14(0.1 \mathrm{H}$, dddd, $J=9.6,9.6,4.0$, $\left.2.0 \mathrm{~Hz}, 4-\mathrm{H}_{\left(1 S^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)}\right), 3.32(0.1 \mathrm{H}$, dddd, $J=12.4,9.6,9.6,9.6$ $\left.\mathrm{Hz}, 3-\mathrm{H}_{\left(1 S^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)}\right), 3.24-3.01(1.1 \mathrm{H}, \mathrm{m}), 3.01-2.74(3.1 \mathrm{H}, \mathrm{m})$, $2.86\left(2.7 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\left(1 R^{*}, 2 R^{*}, 1^{\prime} \mathrm{s}^{*}\right)\right.$), 2.64-2.45(1H, m, 2'-H), 2.34 ($\left.0.9 \mathrm{H}, \mathrm{ddd}, J=8.4,7.6,7.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)}\right), 2.30-2.21(0.1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-\mathrm{H}_{\left(1 s^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right), 1.58\left(0.9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}_{\left(1 s^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right), 1.41(8.1 \mathrm{H}, \mathrm{s}$, $\left.t \mathrm{Bu}_{\left(1 R^{*}, 2 R^{*}, 1^{\prime} s^{*}\right)}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [assigned only $\left.\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)\right]$ 163.5, 146.6, 133.2, 131.2, 127.6, 127.1, 125.5, 120.7 (q, J = 319 Hz), 85.6, 79.4, 71.2, 62.6, 40.1, 30.8, 27.7, 26.4, 18.2; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}$ [M-OTf] ${ }^{+}$ 288.1958, found 288.1948.

Representative procedure for base-induced rearrangement of (1R,2R,1'S)-2a

A solution of ($1 R, 2 R, 1^{\prime} \mathrm{S}$)-2a ($225 \mathrm{mg}, 0.529 \mathrm{mmol}$) in THF (4.8 mL) was treated with a 1 M solution of t BuOK in THF (0.63 mL , 0.63 mmol) at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere and stirred for 3 h at the same temperature. The resulting mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined extracts were washed with saturated aqueous NaHCO_{3} followed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification of the residue by chromatography on silica gel (n-hexane/EtOAc $=20 / 1$ to $5 / 1$ as the eluent, R_{f} : 3a $>4 a$) afforded (S)-3a ($21.2 \mathrm{mg}, 15 \%$ yield) as a colourless oil and 4 a ($39.4 \mathrm{mg}, 27 \%$ yield) as a colourless oil.
(R)-tert-Butyl 2-(2-ethylphenyl)-1-methylazetidine-2-carboxylate (R) $-3 \mathrm{a}^{7}$

Colourless oil; $[\alpha]^{23}{ }_{589}+159.9$ (c 1.0 in EtOH); 99\% ee [determined by HPLC analysis: Daicel Chiralcel OD-RH column $(15 \mathrm{~cm}), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}=30 / 70$ as the eluent, flow rate $=0.50$ $\mathrm{mL} / \mathrm{min}, t_{\mathrm{R}}=8.6 \mathrm{~min}$ for $(R)-3 \mathrm{a}(99.5 \%)$ and 9.6 min for $(S)-3 \mathrm{a}$ (0.5\%)]; IR (film) $v_{\max } / \mathrm{cm}^{-1} 3065,2971,2931,2852,2782,1714$, 1481, 1454, 1391, 1367, 1253, 1196, 1164, 1121, 1086, 1045, 1029, $975,952,908,845,822,760 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.54-7.48 (1H, m, ArH), 7.23-7.14 (3H, m, ArH), $3.48(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ $=8.5,6.0,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{ddd}, J=8.9,8.2,6.0 \mathrm{~Hz}, 4-\mathrm{H})$, $2.93(1 \mathrm{H}$, ddd, $J=10.5,8.2,2.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.355\left(1 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.351(1 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.19(1 \mathrm{H}, \mathrm{ddd}, J=10.5,8.9,8.5 \mathrm{~Hz}, 3-\mathrm{H}), 1.42(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 1.19\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,142.0,139.3,127.6,126.7,125.4,125.1,81.6$, 75.7, 52.2, 39.9, 29.8, 28.1, 24.3, 14.5; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$276.1958, found 276.1949.

(S)-tert-Butyl 2-(2-ethylphenyl)-1-methylazetidine-2-carboxylate

 (S)-3aColourless oil; $[\alpha]^{23}{ }_{589}-108.8$ (c 1.0 in EtOH); 66\% ee [determined by HPLC analysis: Daicel Chiralcel OD-RH column $(15 \mathrm{~cm}), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}=40 / 60$ as the eluent, flow rate $=0.50$ $\mathrm{mL} / \mathrm{min}, t_{\mathrm{R}}=13.4 \mathrm{~min}$ for $(R)-3 \mathrm{a}(16.9 \%)$ and 15.0 min for (S) 3a (83.1\%)].

(rac)-tert-Butyl 2-(2-ethylphenyl)-1-methylazetidine-2-carboxylate

 3aColourless crystals; mp 40-42 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3066$, 3010, 2974, 2934, 2875, 2840, 2778, 1710, 1480, 1453, 1389, 1366, 1287, 1252, 1235, 1207, 1197, 1167, 1126, 1087, 1033, 973, 957, 946, 906, 844, 822, 795, 765, 743.

tert-Butyl 1-methyl-2-(1'-phenylethyl)azetidine-2-carboxylate 4a

Colourless oil; $[\alpha]^{22}{ }_{589}-34.2$ (c 1.0 in EtOH); 89\% ee [determined by HPLC analysis: Daicel Chiralcel OJ-H column (25 $\mathrm{cm}), n$-hexane $/ i \mathrm{PrOH}=95 / 5$ as the eluent, flow rate $=0.50$ $\mathrm{mL} / \mathrm{min}, t_{\mathrm{R}}=9.0 \mathrm{~min}(94.3 \%)$ and $11.8 \mathrm{~min}(5.7 \%)$]; IR (film) $v_{\text {max }} / \mathrm{cm}^{-1} 3060,3027,2973,2931,2878,2832,2779,1717$, 1495, 1475, 1451, 1391, 1367, 1282, 1247, 1214, 1168, 1120, 1085, 1043, 1029, 981, 948, 910, 847, 828, 789, 770, 699; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.24-7.18(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 3.29\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.12(1 \mathrm{H}, \mathrm{ddd}, J=8.3,5.9$, $2.6 \mathrm{~Hz}, 4-\mathrm{H}), 2.90(1 \mathrm{H}$, ddd, $J=8.8,8.3,5.9 \mathrm{~Hz}, 4-\mathrm{H}), 2.36(1 \mathrm{H}$, ddd, $J=10.4,8.3,2.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.04(1 \mathrm{H}$, ddd, $J=10.4,8.8,8.3 \mathrm{~Hz}, 3-\mathrm{H}), 1.48(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.30(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,142.0$, 129.0, 127.6, 126.3, 81.4, 76.8, 51.4, 45.3, 40.0, 28.3, 25.0, 14.2; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$276.1958, found 276.1953.
(rac)-tert-Butyl 1-methyl-2-(1'-phenylethyl)azetidine-2-

carboxylate 4a

Colourless oil.
tert-Butyl 2-(5-bromo-2-ethylphenyl)-1-methylazetidine-2carboxylate 3b
Colourless crystals; mp $72-74{ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3065$, 3015, 2967, 2931, 2859, 2786, 1713, 1590, 1561, 1477, 1458, 1390, 1365, 1250, 1209, 1195, 1161, 1122, 1084, 1054, 974, 956, 944, 914, 892, 841, 832, 789, 768, 748; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.66(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.2$ $\mathrm{Hz}, \mathrm{ArH}), 7.04(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 3.47(1 \mathrm{H}, \mathrm{ddd}, J=8.6$, $6.0,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{ddd}, J=8.6,8.4,6.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.91$ (1 H, ddd, $J=10.3,8.4,2.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.29$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.14(1 \mathrm{H}, \mathrm{ddd}, J=10.3,8.6,8.6 \mathrm{~Hz}$, $3-\mathrm{H}), 1.43(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.17\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,144.2,138.4,129.7,129.4,128.3$, 119.5, 81.9, 75.1, 52.0, 39.6, 29.6, 28.1, 23.9, 14.3; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$354.1063, found 354.1055 .
tert-Butyl 2-(1'-(4-bromophenyl)ethyl)-1-methylazetidine-2-

carboxylate 4b

Colourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1}$ 2973, 2931, 2833, 2781, 1716, 1590, 1488, 1457, 1403, 1392, 1367, 1247, 1213, 1166, 1121, 1087, 1076, 1043, 1010, 974, 948, 911, 847, 822, 788, 766, $722 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.4,2.2,2.2$ $\mathrm{Hz}, \mathrm{ArH}), 7.09(2 \mathrm{H}, \mathrm{ddd}, J=8.4,2.2,2.2 \mathrm{~Hz}, \mathrm{ArH}), 3.24(1 \mathrm{H}, \mathrm{q}, J$ $\left.=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.08(1 \mathrm{H}, \mathrm{ddd}, J=8.4,6.0,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 2.90$ $(1 \mathrm{H}, \mathrm{ddd}, J=8.6,8.4,6.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.32(1 \mathrm{H}, \mathrm{ddd}, J=10.6,8.4$, $2.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.93(1 \mathrm{H}, \mathrm{ddd}, J=10.6,8.6,8.4$ $\mathrm{Hz}, 3-\mathrm{H}), 1.50(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.24\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.8$, 141.1, 130.9, 130.6, 120.2, 81.6, 76.6, 51.4, 44.1, 39.7, 28.3, 24.0, 14.0; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 354.1063$, found 354.1051.

tert-Butyl 2-(5-(tert-butoxycarbonyl)-2-ethylphenyl)-1-

 methylazetidine-2-carboxylate 3cColourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1}$ 2974, 2932, 2856, 2784, 1712, 1609, 1574, 1475, 1457, 1414, 1392, 1367, 1307, 1247, 1164, 1127, 1086, 1059, 981, 948, 917, 882, 845, 822, 789, 766, 735; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{ArH}), 7.82$ $(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, \mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 3.49$ $(1 \mathrm{H}, \mathrm{ddd}, J=8.5,6.0,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{ddd}, J=8.6,8.2$, $6.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.92(1 \mathrm{H}, \mathrm{ddd}, J=10.3,8.2,2.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.51(3 \mathrm{H}$, s, NCH_{3}), $2.39\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.15(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $10.3,8.6,8.5 \mathrm{~Hz}, 3-\mathrm{H}), 1.59(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.42(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.20$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6$, 166.1, 144.5, 142.2, 129.2, 127.8, 127.7, 126.6, 81.8, 80.4, 75.3, 52.1, 39.6, 29.7, 28.2, 28.1, 24.5, 14.3; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 376.2482$, found 376.2474 .
tert-Butyl 2-(1'-(4"-(tert-butoxycarbonyl)phenyl)ethyl)-1-methylazetidine-2-carboxylate 4c
Colourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1} 2975,2932,2834,2781,1712$, 1609, 1574, 1476, 1457, 1414, 1392, 1367, 1293, 1249, 1213, 1166, 1115, 1087, 1045, 1018, 975, 948, 911, 848, 779, 734, $711 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92$ (2 H, ddd, $J=8.2,1.6,1.6$ $\mathrm{Hz}, \mathrm{ArH}), 7.27(2 \mathrm{H}$, ddd, $J=8.2,1.6,1.6 \mathrm{~Hz}, \mathrm{ArH}), 3.34(1 \mathrm{H}, \mathrm{q}, J$ $\left.=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.06(1 \mathrm{H}$, ddd, $J=8.4,6.0,2.6 \mathrm{~Hz}, 4-\mathrm{H}), 2.90$ (1H, ddd, $J=8.6,8.2,6.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.33(1 \mathrm{H}, \mathrm{ddd}, J=10.4,8.2$, $2.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.96(1 \mathrm{H}$, ddd, $J=10.4,8.6,8.4$ $\mathrm{Hz}, 3-\mathrm{H}), 1.59(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.51(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.27(3 \mathrm{H}, \mathrm{d}, J=7.2$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,165.9,147.2$, 130.0, 129.1, 128.6, 81.6, 80.7, 76.7, 51.4, 44.6, 39.7, 28.3, 28.2, 24.0, 14.0; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 376.2482, found 376.2474 .
tert-Butyl 4-vinylbenzoate 6^{21}
Colourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1} 3089,2977,2930,1711,1629$, 1608, 1567, 1474, 1456, 1402, 1392, 1368, 1311, 1293, 1255, 1166, 1118, 1107, 1015, 989, 915, 861, 850, 783, 713; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.4,1.8,1.8 \mathrm{~Hz}, \mathrm{ArH})$, $7.44(2 \mathrm{H}, \mathrm{ddd}, J=8.4,1.8,1.8 \mathrm{~Hz}, \mathrm{ArH}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=17.6$, $\left.11.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.85\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.6,0.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.36$ $\left(1 \mathrm{H}, \mathrm{dd}, J=11.2,0.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 1.59(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,141.4,136.1,131.1,129.7,125.9$, 116.1, 80.9, 28.2.

Representative procedure for base-induced rearrangement of (1S*, $\left.2 S^{*}, 1 S^{*}\right)$-2d

A solution of ($1 S^{*}, 2 S^{*}, 1^{\prime} S^{*}$)-2d ($146 \mathrm{mg}, 0.321 \mathrm{mmol}$) in THF $(2.9 \mathrm{~mL})$ was treated with a 1 M solution of $t \mathrm{BuOK}$ in THF (0.39 $\mathrm{mL}, 0.39 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere and stirred for 3 h at the same temperature. The resulting mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined extracts were washed with saturated aqueous NaHCO_{3} followed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. First, ${ }^{1} \mathrm{H}$ NMR analysis of the crude material using mesitylene as an internal standard determined the yield of 3d (73\% yield), 4d1 (10\% yield) and 4d2 (3\% yield). Purification of the crude material by chromatography on silica gel (n-hexane/EtOAc $=7 / 1$ to $3 / 1$ as the eluent, R_{f} : 3d $>\mathbf{4 d 1}>$ 4d2) gave 3d ($60.2 \mathrm{mg}, 61 \%$ yield) as a colourless oil and 4d1
($8.5 \mathrm{mg}, 9 \%$ yield) as a colourless oil. The pure $\mathbf{4 d} \mathbf{d}$ could not be obtained because of inseparable impurities.
Representative procedure for base-induced rearrangement of (1R*, 2R*, $\left.1^{\prime} S^{*}\right)$-2d

The reaction was performed by the same procedure depicted above using ($1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}$)-2d ($123 \mathrm{mg}, 0.270 \mathrm{mmol}$), THF (2.4 mL), a 1 M solution of t BuOK in THF ($0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR analysis of the crude material using mesitylene as an internal standard determined the yield of 3d (5\% yield), 4d1 (10% yield) and $\mathbf{4 d 2}$ (33% yield). Purification of the crude material by chromatography on silica gel (n-hexane/EtOAc $=$ 7/1 to $\mathbf{3 / 1}$ as the eluent, R_{f} : $\mathbf{3 d}>\mathbf{4 d 1} \mathbf{~ > ~ 4 d 2}$) gave $\mathbf{4 d 2}$ (22.4 mg , 27% yield) as colourless crystals. The product 3d was not isolated because of small amount. The pure 4d1 could not be obtained because of inseparable impurities.
tert-Butyl 2-(2-ethyl-5-methoxyphenyl)-1-methylazetidine-2carboxylate 3d

Colourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1} 2969,2932,2853,2834,2782$, $1714,1609,1578,1496,1464,1424,1391,1367,1253,1216$, 1160, 1120, 1086, 1044, 978, 948, 931, 863, 844, 812, 773, 751,$705 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}$, ArH), $7.08(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=8.3,3.1 \mathrm{~Hz}$, ArH), $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.46(1 \mathrm{H}, \mathrm{ddd}, J=8.6,6.0,2.6 \mathrm{~Hz}, 4-$ $\mathrm{H}), 3.32(1 \mathrm{H}$, ddd, $J=8.8,8.0,6.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.91(1 \mathrm{H}$, ddd, $J=$ $10.5,8.0,2.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.29(2 \mathrm{H}, \mathrm{q}, J=7.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.17(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.5,8.8,8.6 \mathrm{~Hz}, 3-\mathrm{H}), 1.43(9 \mathrm{H}$, $\mathrm{s}, \mathrm{tBu}), 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.6,157.4,143.2,131.4,128.5,111.6,111.2,81.5$, 75.4, 55.0, 51.9, 39.6, 29.6, 28.0, 23.4, 14.6; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$306.2064, found 306.2054.
tert-Butyl 2-(1'-(4'"-methoxyphenyl)ethyl)-1-methylazetidine-2carboxylate 4d1
Colourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1} 2973,2931,2834,2779,1715$, 1612, 1582, 1512, 1457, 1391, 1367, 1274, 1246, 1215, 1177, 1129, 1094, 1063, 1039, 974, 948, 927, 913, 832, 787, 754; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(2 \mathrm{H}$, ddd, $J=8.6,2.6,2.6 \mathrm{~Hz}$, ArH), $6.78(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.6,2.6,2.6 \mathrm{~Hz}, \mathrm{ArH}), 3.76(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.33(1 \mathrm{H}$, ddd, $J=7.5,6.0,3.6 \mathrm{~Hz}, 4-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{q}, J=$ $\left.7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.02(1 \mathrm{H}$, ddd, $J=8.4,8.4,6.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.45-2.34$ ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right)$, $1.28(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,157.9$, 136.0, 129.0, 113.4, 80.9, 77.2, 55.2, 52.0, 42.4, 39.2, 28.0, 22.5, 17.6; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$306.2064, found 306.2053.
tert-Butyl 2-(1'-(4'"-methoxyphenyl)ethyl)-1-methylazetidine-2carboxylate 4d2
Colourless crystals; mp $52-57^{\circ} \mathrm{C}$; IR (KBr) $v_{\text {max }} / \mathrm{cm}^{-1} 2998,2972$, 2956, 2913, 2842, 2787, 1709, 1613, 1581, 1512, 1476, 1460, 1437, 1391, 1366, 1341, 1304, 1282, 1248, 1212, 1197, 1179, 1149, 1131, 1096, 1062, 1035, 1004, 980, 943, 911, 845, 822, $787,751,726 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14$ (2 H , ddd, $\mathrm{J}=$ $8.6,2.6,2.6 \mathrm{~Hz}, \mathrm{ArH}), 6.83(2 \mathrm{H}, \mathrm{ddd}, J=8.6,2.6,2.6 \mathrm{~Hz}, \mathrm{ArH})$, $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.23\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.13(1 \mathrm{H}, \mathrm{ddd}, J$ $=8.4,6.2,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{ddd}, J=8.4,8.2,6.2 \mathrm{~Hz}, 4-\mathrm{H})$, $2.34(1 \mathrm{H}$, ddd, $J=10.5,8.2,2.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$,
$2.01(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.5,8.4,8.4 \mathrm{~Hz}, 3-\mathrm{H}), 1.49(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.27$ $\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0$, 158.0, 134.0, 129.9, 113.0, 81.3, 76.9, 55.1, 51.4, 44.4, 40.0, 28.3, 24.8, 14.4; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 306.2064, found 306.2056.
tert-Butyl 2-(2,3-dihydro-1H-inden-4-yl)-1-methylazetidine-2carboxylate 3e
Yellow oil; IR (film) $v_{\max } / \mathrm{cm}^{-1} 3059,2964,2932,2844,1780$, 1716, 1592, 1472, 1447, 1391, 1367, 1286, 1252, 1200, 1163, 1123, 1086, 1063, 1014, 950, 915, 845, 819, 779, 744, 720; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(1 \mathrm{H}, \mathrm{dd}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.16$ $(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.0 \mathrm{~Hz}, \mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{ArH}), 3.47$ $(1 \mathrm{H}, \mathrm{ddd}, J=8.4,6.2,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{ddd}, J=8.9,8.2$, $6.2 \mathrm{~Hz}, 4-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{ddd}, J=10.5,8.2,2.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.87(2 \mathrm{H}$, $\mathrm{t}, J=7.4 \mathrm{~Hz}$, indenyl- CH_{2}), 2.67-2.51 $\left(2 \mathrm{H}, \mathrm{m}\right.$, indenyl $\left.-\mathrm{CH}_{2}\right), 2.50$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.15(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.5,8.9,8.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.09-$ $1.92\left(2 \mathrm{H}, \mathrm{m}\right.$, indenyl- $\left.\mathrm{CH}_{2}\right), 1.42(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.5,144.1,140.1,139.3,126.0,122.7,122.1,81.4$, 75.4, 52.2, 40.1, 32.5, 31.0, 28.7, 28.1, 25.3; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$288.1958, found 288.1957.
tert-Butyl 2-(2,6-dimethylbenzyl)-1-methylazetidine-2-carboxylate 9

Colourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1} 3066,3005,2971,2928,2854$, 2780, 1716, 1586, 1474, 1391, 1367, 1328, 1251, 1213, 1166, 1118, 1083, 1056, 1032, 999, 949, 903, 846, 814, 768; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06-6.97(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.07-2.98(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.32-2.21(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.28(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{3}\right), 1.87(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.0,8.6,8.6 \mathrm{~Hz}, 3-\mathrm{H}), 1.47(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,138.0,135.4,127.8$, 126.0, 81.0, 74.1, 51.8, 38.1, 34.1, 28.2, 26.1, 21.0; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$290.2115, found 290.2104.
tert-Butyl 1-methyl-2-(3,4,5-trimethylphenyl)azetidine-2-
carboxylate 10
Colourless crystals; mp $54-57^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2973,2929$, 2841, 2782, 1712, 1607, 1578, 1486, 1454, 1413, 1391, 1366, 1312, 1268, 1254, 1197, 1169, 1123, 1084, 1036, 1016, 993, 947, 931, 874, 845, 810, 766, 746, 715; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 3.33-3.23(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.81(1 \mathrm{H}$, ddd, $J=10.9,7.3,5.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.47-2.34(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.30$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.28\left(6 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{ArCH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{ArCH}_{3}\right)$, 1.47 ($9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,137.6$, 136.1, 133.9, 124.8, 81.2, 74.5, 51.3, 39.6, 29.3, 28.1, 20.8, 15.2; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 290.2115$, found 290.2106.

Representative procedure for base-induced rearrangement of (1S*, 2S*)-11

A solution of $\left(1 S^{*}, 2 S^{*}\right)$ - 11 ($102 \mathrm{mg}, 0.209 \mathrm{mmol}$) in THF (1.9 mL) was treated with a 1 M solution of t BuOK in THF $(0.25 \mathrm{~mL}$, 0.25 mmol) at $-40^{\circ} \mathrm{C}$ under an argon atmosphere and stirred for 3 h at the same temperature. The resulting mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with EtOAc. The combined extracts were washed with saturated aqueous NaHCO_{3} followed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. ${ }^{1} \mathrm{H} \mathrm{NMR}$ analysis of the crude
material using mesitylene as an internal standard determined the yield of 12 (85% yield) and 13 (7% yield). Purification of the crude material by chromatography on silica gel (n hexane/EtOAc = 15/1 to $7 / 1$ as the eluent) gave 12 (52.8 mg , 75% yield) as colourless crystals.
tert-Butyl 2-(2-benzylphenyl)-1-methylazetidine-2-carboxylate 12
Colourless crystals; mp $50-52{ }^{\circ} \mathrm{C}$; IR (KBr) $\nu_{\max } / \mathrm{cm}^{-1} 3061,3025$, 2972, 2934, 2856, 2782, 1715, 1599, 1495, 1479, 1452, 1391, 1364, 1253, 1236, 1196, 1161, 1124, 1085, 1038, 975, 953, 906, 844, 818, 767, 753, 741, 705; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, \mathrm{ArH}), 7.30-7.17(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.16-7.07$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.86(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.4,0.6 \mathrm{~Hz}, \mathrm{ArH}), 3.73(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.47(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.5,6.2,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.33(1 \mathrm{H}$, ddd, $J=8.8,8.1,6.2 \mathrm{~Hz}, 4-\mathrm{H}), 2.89(1 \mathrm{H}, \mathrm{ddd}, J=10.4,8.1,2.4$ $\mathrm{Hz}, 3-\mathrm{H}), 2.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.17(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.4,8.8,8.5 \mathrm{~Hz}$, $3-\mathrm{H}), 1.44(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7$, 142.5, 140.3, 136.3, 129.8, 129.4, 128.3, 126.7, 126.0, 125.9, 125.4, 81.9, 75.7, 52.2, 39.9, 37.6, 29.8, 28.2; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 338.2115$, found 338.2111 .
tert-Butyl 2-benzhydryl-1-methylazetidine-2-carboxylate 13
Colourless crystals; mp $80-82^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3087,3064$, 3026, 3001, 2966, 2930, 2825, 2776, 1711, 1497, 1472, 1449, 1392, 1370, 1280, 1269, 1250, 1217, 1168, 1153, 1118, 1086, 1031, 989, 949, 848, 760, 739, 702; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.23 (4H, m, Ph), 7.22-7.15 (4H, m, Ph), $7.12(1 \mathrm{H}, \mathrm{ddd}, J=$ $6.8,1.6,1.6 \mathrm{~Hz}, \mathrm{Ph}), 4.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 3.06-2.97(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $2.61(1 \mathrm{H}, \mathrm{ddd}, J=10.2,5.2,5.2 \mathrm{~Hz}, 3-\mathrm{H}), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.13(1 \mathrm{H}$, ddd, $J=10.2,8.6,8.6 \mathrm{~Hz}, 3-\mathrm{H}), 1.16(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.4,141.7,141.0,130.9,128.9$, 128.2, 127.3, 126.2, 126.1, 81.1, 76.8, 54.8, 52.6, 38.5, 27.7, 23.4; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 338.2115$, found 338.2111.
tert-Butyl 1-methyl-2-(2'-phenylpropan-2'-yl)azetidine-2carboxylate 16
Colourless oil; IR (film) $v_{\max } / \mathrm{cm}^{-1} 3089,3057,2977,2929,2834$, 2783, 1713, 1600, 1496, 1476, 1444, 1391, 1366, 1273, 1247, 1217, 1151, 1122, 1084, 1063, 1031, 976, 952, 908, 848, 822, 780, 760, 734, 699; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.21(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.15(1 \mathrm{H}, \mathrm{tt}, J=6.8,1.4 \mathrm{~Hz}, \mathrm{Ph}), 3.32(1 \mathrm{H}, \mathrm{ddd}, J=8.6$, $6.3,3.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{ddd}, J=8.8,8.6,6.3 \mathrm{~Hz}, 4-\mathrm{H}), 2.58$ $(1 \mathrm{H}, \mathrm{ddd}, J=10.8,8.6,3.0 \mathrm{~Hz}, 3-\mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{ddd}, J=10.8,8.8$, $8.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.51\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right) ; 1.41(3 \mathrm{H}, \mathrm{s}$, $\left.2^{\prime}-\mathrm{CH}_{3}\right), 1.18(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2$, 147.6, 127.6, 126.8, 125.7, 81.0, 79.7, 51.8, 43.2, 42.3, 27.85, 27.80, 24.4, 22.7; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 290.2115, found 290.2111 .

Acknowledgements

The authors are grateful to Prof. Dr. Mineo Sato at Niigata University (Faculty of Engineering) for the X-ray single-crystal structural analyses.

Notes and references

1 For reviews: (a) D. Antermite, L. Degennaro and R. Luisi, Org. Biomol. Chem., 2017, 15, 34; (b) F. Couty, B. Drouillat, G. Evano and O. David, Eur. J. Org. Chem., 2013, 2045.
2 Initial studies on S-H rearrangement: (a) K. P. Klein, D. N. Van Eenam and C. R. Hauser, J. Org. Chem., 1967, 32, 1155; (b) W. H. Puterbaugh and C. R. Hauser, J. Am. Chem. Soc., 1964, 86, 1108; (c) W. H. Puterbaugh and C. R. Hauser, J. Am. Chem. Soc., 1964, 86, 1105; (d) G. C. Jones, W. Q. Beard and C. R. Hauser, J. Org. Chem., 1963, 28, 199; (e) W. Q. Beard, Jr. and C. R. Hauser, J. Org. Chem., 1961, 26, 371; (f) W. Q. Beard, Jr. and C. R. Hauser, J. Org. Chem., 1960, 25, 334; (g) C. R. Hauser and D. N. Van Eenam, J. Org. Chem., 1958, 23, 865; (h) D. N. Van Eenam and C. R. Hauser, J. Am. Chem. Soc., 1957, 79, 5520; (i) C. R. Hauser and D. N. Van Eenam, J. Am. Chem. Soc., 1957, 79, 5512; (j) D. Lednicer and C. R. Hauser, J. Am. Chem. Soc., 1957, 79, 4449; (k) W. R. Brasen and C. R. Hauser, Org. Synth., 1954, 34, 61; (I) S. W. Kantor and C. R. Hauser, J. Am. Chem. Soc., 1951, 73, 4122; (m) M. Sommelet, C. R. Hebd. Seances Acad. Sci. 1937, 205, 56.

3 For a review on the S-H rearrangement: E. Tayama, Chem. Rec., 2015, 15, 789.
4 For reviews on ammonium ylide rearrangements: (a) E. Tayama, Heterocycles, 2016, 92, 793; (b) R. Bach, S. Harthong and J. Lacour, in Comprehensive Organic Synthesis, II, ed. P. Knochel and G. A. Molander, Elsevier, 2014, ch. 3.20, vol.3; (c) G. Lahm, J. C. O. Pacheco and T. Opatz, Synthesis, 2014, 46, 2413; (d) J. Clayden, M. Donnard, J. Lefranc and D. J. Tetlow, Chem. Commun., 2011, 47, 4624; (e) J. B. Sweeney, Chem. Soc. Rev., 2009, 38, 1027; (f) J. A. Vanecko, H. Wan and F. G. West, Tetrahedron, 2006, 62, 1043; (g) L. Kürti and B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Amsterdam, 2005; (h) Nitrogen, Oxygen and Sulfur Ylide Chemistry, ed. J. S. Clark, Oxford University Press, Oxford, 2002; (i) I. E. Markó, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, ch. 3.10, vol. 3; (j) S. H. Pine, in Organic Reactions, John Wiley \& Sons, Inc., New York, 1970, ch. 4, vol. 18.
5 Representative examples of base-induced $\mathrm{S}-\mathrm{H}$ rearrangements of ammonium salts: (a) A. C. Colgan, H. Müller-Bunz and E. M. McGarrigle, J. Org. Chem., 2016, 81, 11394; (b) G. Casoni, E. L. Myers and V. K. Aggarwal, Synthesis, 2016, 48, 3241; (c) E. Tayama, R. Sato, M. Ito, H. Iwamoto and E. Hasegawa, Heterocycles, 2013, 87, 381; (d) E. Tayama, R. Sato, K. Takedachi, H. Iwamoto and E. Hasegawa, Tetrahedron, 2012, 68, 4710; (e) E. Tayama, K. Takedachi, H. Iwamoto and E. Hasegawa, Tetrahedron, 2010, 66, 9389; (f) E. Tayama, K. Orihara and H. Kimura, Org. Biomol. Chem., 2008, 6, 3673; (g) E. Tayama and H. Kimura, Angew. Chem. Int. Ed., 2007, 46, 8869; (h) S. Hanessian, C. Talbot and P. Saravanan, Synthesis, 2006, 723; (i) J. M. Klunder, J. Heterocyclic Chem., 1995, 32, 1687; (j) T. Zdrojewski and A. Jończyk, Tetrahedron Lett., 1995, 36, 1355; (k) A. Jończyk, D. Lipiak and K. Sienkiewicz, Synlett, 1991, 493; (I) A. Jończyk and D. Lipiak, J. Org. Chem., 1991, 56, 6933.

6 Mechanistic studies on the S-H rearrangement: B. Biswas and D. A. Singleton, J. Am. Chem. Soc., 2015, 137, 14244.
7 E. Tayama, K. Watanabe and Y. Matano, Eur. J. Org. Chem., 2016, 3631.
8 Previous studies on the base-induced rearrangements of azetidine-2-carboxylic acid-derived ammonium ylides: (a) B. Drouillat, E. d'Aboville, F. Bourdreux and F. Couty, Eur. J. Org. Chem., 2014, 1103; (b) B. Drouillat, F. Couty and J. Marrot, Synlett, 2009, 767; (c) F. Couty, F. Durrat, G. Evano and J. Marrot, Eur. J. Org. Chem., 2006, 4214.
9 The stereochemistry of ($15,2 S, 1^{\prime} S$)-2a was determined by the single-crystal X-ray diffraction of the tetraphenylborate salt
$\left(1 S, 2 S, 1^{\prime} S\right)-\mathbf{2 a}-\mathrm{BPh}_{4}$ prepared by ion exchange. CCDC1553028 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Experimental details: see the ESI.
10 Asymmetric ammonium ylide rearrangements via N-to-C chirality transmission: (a) M. Ariza, A. Díaz, R. Suau and M. Valpuesta, Eur. J. Org. Chem., 2011, 6507; (b) L. Palombi, Catal. Commun., 2011, 12, 485; (c) P. Tuzina and P. Somfai, Org. Lett., 2009, 11, 919; (d) E. F. Duran-Lara, N. Shankaraiah, D. Geraldo and L. S. Santos, J. Braz. Chem. Soc., 2009, 20, 813; (e) E. Tayama, S. Nanbara and T. Nakai, Chem. Lett., 2006, 35, 478; (f) E. Tayama, H. Tanaka and T. Nakai, Heterocycles, 2005, 66, 95; (g) A. P. A. Arboré, D. J. CaneHoneysett, I. Coldham and M. L. Middleton, Synlett, 2000, 236; (h) K. W. Glaeske and F. G. West, Org. Lett., 1999, 1, 31.
11 Previous studies on ring-strained azetidinium ylides: (a) A. Alex, B. Larmanjat, J. Marrot, F. Couty and O. David, Chem. Commun., 2007, 2500; (b) F. Couty, O. David, B. Larmanjat and J. Marrot, J. Org. Chem., 2007, 72, 1058; see also, ref. 5b.
12 Recent studies on azetidinic carbanions: (a) G. Parisi, M. Zenzola, E. Capitanelli, C. Carlucci, G. Romanazzi, L. Pisano, L. Degennaro and R. Luisi, Pure. Appl. Chem., 2016, 88, 631; (b) G. Parisi, E. Capitanelli, A. Piero, G. Romanazzi, G. J. Clarkson, L. Degennaro and R. Luisi, Chem. Commun., 2015, 51, 15588; (c) L. Degennaro, M. Zenzola, P. Trinchera, L. Carroccia, A. Giovine, G. Romanazzi, A. Falcicchio and R. Luisi, Chem. Commun., 2014, 50, 1698.
13 The stereochemistry of the [1,2] Stevens rearrangement products 4 was not determined, but they can be predicted. Because the [1,2] Stevens rearrangement mainly proceeds via a radical pair intermediate with the retention of configuration. See ref. $4 b, 4 h$ and $4 i$. Thereby, $4 a$ was obtained in 89% ee. Other related examples: see ref. 10b, $10 \mathrm{c}, 10 \mathrm{e}$ and 10 h .
14 Diastereomers ($2 S^{*}, 1^{\prime} S^{*}$)- and ($\left.2 R^{*}, 1^{\prime} S^{*}\right)-1$ were easily separable by silica gel column chromatography. The stereochemistry of ($2 S, 1^{\prime} S$)- and ($2 R, 1^{\prime} S$)-1a was assigned in our previous work, see ref. 7. The stereochemistry of $\mathbf{1 b} \mathbf{- e}$ was assigned by analogy. Examples of chromatographic separation of other analogs of 1, see: (a) S.-h. Ma, D. H. Yoon, H.-J. Ha and W. K. Lee, Tetrahedron Lett., 2007, 48, 269; (b) F. Couty, G. Evano, M. Vargas-Sanchez and G. Bouzas, J. Org. Chem., 2005, 70, 9028.
15 Sodium hydrogen carbonate was added as a scavenger of triflic acid, which may cause the decomposition of the tertbutyl ester.
16 Studies on N-quaternization of N-benzylic 2-substituted azetidine derivatives: (a) F. Couty, O. David, F. Durrat, G. Evano, S. Lakhdar, J. Marrot and M. Vargas-Sanchez, Eur. J. Org. Chem., 2006, 3479; (b) F. Couty, F. Durrat, G. Evano and D. Prim, Tetrahedron Lett., 2004, 45, 7525; See also ref. 7.

17 The relative stereochemistry of $\left(1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$ - $\mathbf{2 e}$ was determined by the single-crystal X-ray diffraction of the tetraphenylborate salt [($\left.1 R^{*}, 2 R^{*}, 1^{\prime} S^{*}\right)$-2e-BPh ${ }_{4}$] prepared by ion exchange. CCDC-1553029 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Experimental details: see the ESI.
18 Previously, it was reported that this type of intermediate would be generated in an ylide rearrangement under aprotic conditions: S. Okazaki, N. Shirai and Y. Sato, J. Org. Chem., 1990, 55, 334; see also, ref. 4i.
19 The stereochemistry was tentatively determined by analogy with our previous work, see ref. 7.
20 Previous examples of isolation of dearomatized product from N -benzylic ammonium ylide: see ref. $2 \mathrm{~g}, 2 \mathrm{~h}$ and 2 i .

21 T. Tanako, K. Hiramatsu, Y. Kobayashi and H. Ohno, Tetrahedron, 2005, 61, 6726.

Previous work

Unreported result

$41 \times 21 \mathrm{~mm}(600 \times 600 \mathrm{DPI})$

$63 \times 48 \mathrm{~mm}(600 \times 600$ DPI)

$56 \times 37 \mathrm{~mm}(600 \times 600$ DPI)

$86 \times 93 \mathrm{~mm}(600 \times 600$ DPI $)$

$70 \times 59 \mathrm{~mm}(600 \times 600$ DPI)

$44 \times 24 \mathrm{~mm}(600 \times 600$ DPI)

The base-induced Sommelet-Hauser rearrangement of N - α-branched benzylic azetidine-2-carboxylic acid ester-derived ammonium salts was demonstrated.

$$
40 \times 21 \mathrm{~mm}(600 \times 600 \mathrm{DPI})
$$

