PHENOLIC COMPOUNDS FROM Urtica urens GROWING IN GEORGIA

N. Sh. Kavtaradze

UDC 547.992

The chemical composition of the aerial part of stinging nettle (*Urtica urens* L.) collected in Adigen region (Georgia) during flowering (June 2002) was investigated.

Compound 1 was isolated from the $CHCl_3$ extract of the aqueous alcohol extract of the aerial part of the plant by chromatography over a silica-gel column with elution by $CHCl_3:CH_3OH$ with increasing CH_3OH content.

Compound **1** was a crystalline white solid, mp 203-205°C. UV spectrum (λ_{max} , CH₃OH, nm): 230, 255, 300, 345; (KOH): 245, 390. IR spectrum (ν_{max} , KBr, cm⁻¹): 3340, 3140 (OH), 1740 (α -pyrone), 1615, 1570, 1520 (benzene ring). Monoacetate, mp 176-178°C. Compound **1** gave no melting-point depression when mixed with an authentic sample of scopoletin. The chromatogram contained one inseparable spot characterized as 6-methoxy-7-hydroxycoumarin (scopoletin) [1, 2].

Fractionation over a polyamide sorbent of the aqueous alcohol extract remaining after $CHCl_3$ extraction produced a fraction eluted with ethanol (45%). It was condensed. The amorphous powder was chromatographed over a polyamide column with elution by $CHCl_3$ and $CHCl_3$:ethylacetate with increasing ethylacetate concentration to afford compounds **2** and **3**.

Compound **2** was a white crystalline solid, mp 195-197°C. UV spectrum (λ_{max} , CH₃OH, nm): 240, 300, 325. Caustic fusion with KOH produced protocatechuic acid with $R_f 0.80$ (*n*-butanol:acetic acid:water, 4:2:1). The diacetyl derivative of **2** had mp 198-200°C.

Compound **3** was a white crystalline solid, mp 203-205°C. UV spectrum (λ_{max} , CH₃OH, nm): 240, 330; (CH₃COONa): 334; (C₂H₅ONa): 380, 260; (H₃BO₃+CH₃COONa): 375, 260; (AlCl₃): 360, 320, 245; [α]_D²⁰ -32.0° (*c* 1.0, CH₃OH). The pentaacetyl derivative of **3** melts at 185-187°C. Caustic fusion produced protocatechuic acid; acid hydrolysis, quinic and caffeic acids. The fact that a lactone was not formed indicates that the caffeic acid was bonded to quinic acid at the 3-position [3].

The physicochemical properties, UV and IR spectra, and samples mixed with authentic compounds are consistent with 2 and 3 being caffeinic and chlorogenic acids, respectively [4, 5].

REFERENCES

- 1. N. F. Komissarenko, P. P. Khvorost, and V. D. Ivanov, *Khim. Prir. Soedin.*, 102 (1983).
- 2. M. D. Alaniya, I. I. Moniava, N. F. Komissarenko, and E. P. Kemertezidze, *Khim. Prir. Soedin.*, 239 (1972).
- 3. H. Fischer and G. Dangschat, *Chem. Ber.*, **65**, 1009 (1932).
- 4. L. I. Dranik, *Khim. Prir. Soedin.*, 303 (1966).
- 5. V. A. Bandyukova, G. N. Zemtsova, N. V. Sergeeva, and V. I. Frolova, *Khim. Prir. Soedin.*, 388 (1970).

I. G. Kutateladze Institute of Pharmaceutical Chemistry, Academy of Sciences of Georgia, fax (99532) 25 00 26. Translated from Khimiya Prirodnykh Soedinenii, No. 3, p. 248, May-June, 2003. Original article submitted June 6, 2003.