ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: D. Tan, V. Štrukil, C. Mottillo and T. Friši, *Chem. Commun.*, 2013, DOI: 10.1039/C3CC47905F.

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/chemcomm Registered Charity Number 207890 Published on 31 October 2013. Downloaded by Lomonosov Moscow State University on 31/10/2013 18:30:09

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas

Davin Tan,^a Vjekoslav Štrukil,^{a,b} Cristina Mottillo^a and Tomislav Friščić^a*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

⁵ We demonstrate the first application of mechanochemistry to conduct the synthesis of sulfonyl-(thio)ureas, including known anti-diabetic drugs tolbutamide, chlorpropamide and glibenclamide, in good to excellent isolated yields by either stoichiometric base-assisted or copper-catalysed coupling of ¹⁰ sulfonamides and iso(thio)cyanates.

Mechanochemical reactions,¹ induced or sustained by mechanical force, represent one of the most successful modes of solvent-free synthesis. Whereas mechanochemistry has led to important improvements across chemical synthesis (e.g. pharmaceutical metallodrugs,² metal-organic 15 materials. frameworks,³ nanoparticles⁴), organic synthesis is one of the most rapidly developing areas of its application.⁵ Several groups have demonstrated the potential of mechanochemistry in important areas of organic chemistry, including organo-⁶ and transition ²⁰ metal-catalysed reactions,⁷ (oligo)peptide synthesis⁸ and enantioselective transformations.⁹ Importantly, Bonnamour et al. have recently demonstrated the synthesis of a relatively complex molecular target Leu-enkephaline¹⁰ using exclusively solvent-free synthetic steps. Recently, we used mechanochemistry for solvent-25 free click coupling of amines with iso(thio)cyanates to form (thio)ureas, providing a simple means for the desymmetrization of diamines and accessing chiral organocatalysts.¹¹

We now expand the mechanochemical reactivity of iso(thio)cyanates for the solvent-free synthesis of anti-diabetic¹² ³⁰ sulfonyl-ureas (Figure 1a) and related sulfonyl-thioureas. Whereas mechanosynthesis of sulfonyl-(thio)ureas has never previously been demonstrated, our work is inspired by the explicit calls from the pharmaceutical industry to develop cleaner, more efficient and low-solvent synthetic procedures.¹³

³⁵ We considered two routes (Figure 1b) for the mechanosynthesis of sulfonyl-ureas: coupling of sulfonamides with isocyanates (A) and coupling of sulfonyl-isocyanates with amines (B). The corrosive nature of sulfonyl-isocyanates¹⁴ led us to select A¹⁵ as the route more compatible with green chemistry.¹⁶

⁴⁰ We first explored the reaction of *p*-toluenesulfonamide with *n*butyl isocyanate, expected to generate the 1st generation antidiabetic drug tolbutamide (**1a**, Figure 1a). Milling[‡] of pure reagents did not lead to a reaction, most likely due to the poorly nucleophylic nature of sulfonamides, caused by the highly ⁴⁵ electron-withdrawing sulfonyl group.¹⁷ To activate the sulfonamide group, we explored a two-step approach in which the sulfonamide was first deprotonated by milling with one equivalent of K₂CO₃ and then milled in the same pot with one equivalent of isocyanate (Figure 1c). This procedure gave 1a in 50 88% yield after simple workup with aqueous HCl and filtration. Using 0.5 equivalents of K₂CO₃ gave 1a in 92% isolated yield, indicating that carbonate can be used as a divalent base.

Figure 1. (a) Pharmaceutically relevant sulfonyl-ureas; (b) retrosynthetic routes to sulfonyl-ureas; (c) base-assisted one-pot mechanosynthesis of sulfonyl-(thio)ureas. Fragment of crystal structure of: (d) 1b and (e) potassium salt of 1c, with the environment of K⁺ simplified for clarity.

The protocol was readily applicable to aromatic isocyanates and isothiocyanates, giving sulfonyl-(thio)ureas **1b-d** (Table 1).

 $_{60}$ Table 1. Results of two-step mechanosyntheses ‡ of sulphonyl-(thio)ureas using one equivalent of K_2CO_3

Compound	R_1	R2-NCO or R2-NCS	Yield (%)
1b	Me	phenyl-NCS	91ª
1c	Me	4-NO ₂ -phenyl-NCS	$80^{\rm a}$
1d	Me	phenyl-NCO	93 ^b

^aIsolated yield after aqueous workup; ^b based on ¹H NMR

That all reactions took place by milling, rather than upon

This journal is © The Royal Society of Chemistry [year]

subsequent work-up, was confirmed by Fourier-transform infrared attenuated total reflectance (FTIR-ATR, see ESI) spectra of crude reaction mixtures, which exhibited complete disappearance of iso(thio)cyanate. Formation of **1b** was ⁵ confirmed by X-ray structural characterisation of single crystals grown after workup. Also, recrystallisation from acetone of the crude reaction mixture from the synthesis of sulfonyl-thiourea **1c** gave single crystals of its potassium salt, confirming the role of K₂CO₃ in sulfonamide deprotonation (Figure 1d,e).

¹⁰ After demonstrating the synthesis of sulfonyl-(thio)ureas by using mechanochemistry, we explored synthetic procedures that might allow circumventing the use of stoichiometric base. In 1990, Cervello and Sastre reported the coupling of *p*toluenesulfonamide with isocyanates using CuCl as a catalyst.¹⁸ ¹⁵ The reactions were performed in *N*,*N*-dimethylformamide (DMF) and took between 16 to 24 hours. Intrigued by this report, we explored if **1a** could be synthesized by direct mechanochemical coupling of *p*-toluenesulfonamide and *n*-butylisocyanate with a CuCl catalyst (Scheme 1, R₁ = methyl, R₂= *n*-butyl).

Scheme 1. Copper-catalysed LAG mechanosynthesis of sulfonyl-ureas Indeed, the catalytic coupling took place and provided **1a** in good yield (68%) after only 2 hours milling with 5 mol% CuCl. With 20 mol% CuCl, yield was improved to 91% (Table 2, Entry 2).

25 Table 2. Selected results of optimisation and catalyst screening for the copper-catalysed mechanosynthesis[‡] of 1a.

entry	catalyst	loading (%mol)	time (h)	grinding liquid ^a	yield (%) ^b
1	CuCl	5	2	-	68
2	CuCl	20	2	-	91
3	CuCl	5	2	CH ₃ CN	54
4	CuCl	5	2	DMF	79
5	CuCl	5	2	toluene	85
6	CuCl	5	2	acetone	86
7	CuCl	5	2	CH ₃ NO ₂	90
8	CuCl ₂	5	2	Neat	86
9	CuCl ₂ .2H ₂ O	5	2	Neat	84
10	Cu(acetate) ₂ ·H ₂ O	5	2	Neat	83
11	CuBr	5	2	Neat	36
12	Cu powder	10	2	Neat	88
13	Cu ₂ O	5	2	Neat	75
14	_c	_ ^c	2	CH ₃ NO ₂	87
15	NiCl ₂	5	2	Neat	18
16	$ZnCl_2$	5	2	Neat	10
17	MgCl ₂	5	2	Neat	-
18	AgCl	5	2	Neat	-
19	FeCl ₂ ·2H ₂ O	5	2	Neat	-
20	FeCl ₃ ·6H ₂ O	5	2	Neat	-
	- 10	1			

a) LAG¹⁸ with η = 0.25 mL mg⁻¹; b) isolated yield; c) using one 10 mm diameter brass ball in a 10 mL stainless steel jar.

To optimise the reaction conditions we conducted liquid-³⁰ assisted grinding (LAG) with different catalytic liquid additives (Table 2, Entries 3-7).¹⁹ It was previously proposed that catalytic amounts of a liquid can be used to modify and optimise mechanochemical reactions.^{2,20} Indeed, LAG allowed the reaction to be rapidly improved to 90% isolated yield of **1a** at a 5 mol% ³⁵ catalyst loading (Table 2, Entry 7). Reaction mixtures after milling were amorphous, as evidenced by X-ray powder diffraction patterns which did not exhibit any sharp features. The product was isolated by adding aqueous EDTA to remove the metal catalyst and filtration.

⁴⁰ The coupling was catalysed not only by Cu(I) but also by Cu(II) additives and even copper powder; water did not seem to affect the reactivity (Table 2, Entries 8-13). The reaction also proceeded without external copper reagents,⁷ simply by using a brass milling ball (Table 2, Entry 14). We also explored catalytic ⁴⁵ activity of Zn, Mg, Ni(II), Ag(I) and Fe chlorides (Entries 15-20).

The reaction took place only with ZnCl₂ and NiCl₂, providing tolbutamide in poor yield (10% and 18%, respectively).

The LAG protocol (Scheme 1) provided further tolbutamide analogues, including the 1st generation drug chlorpropamide (**2a**, ⁵⁰ Figure 1a), in high isolated yields (Table 3). Catalytic coupling was, however, not applicable to aromatic isocyanates. Using the syntheses of **1a** and **1b** as examples of CuCl-catalysis and baseassisted grinding, respectively, we explored the scale-up of these reaction protocols. The two compounds were isolated in >1 gram ⁵⁵ amounts with yields of 95% (**1a**) and 80% (**1b**) (see ESI).

Table 3. Results of mechanosynthesis[‡] of tolbutamide analogues using CuCl catalyst (5 mol%) and LAG with nitromethane (η = 0.25 mL mg⁻¹)

R_1	R ₂	Yield (%) ^a
Me	Су	88
Me	n-Pr	86
Cl	n-Pr	92
Cl	n-Bu	92
Cl	Су	91
	R ₁ Me Cl Cl Cl Cl	$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $

^aisolated yields after aqueous workup.

Lastly, we set our sights on the 2nd generation drug glibenclamide ⁶⁰ (**3b**, Figure 1a), which we envisaged could be obtained from the simple starting material p-(2-aminoethyl)benzenesulfonamide in two mechanochemical steps (Scheme 2).

Scheme 2. Synthesis of glibenclamide (**3a**) in two mechanochemical steps ⁶⁵ First, we used our previously described²¹ mechanochemical amide coupling protocol to form the precursor **3a** in 74% isolated yield, comparable to solution synthesis (81%). The identity of **3a** was also confirmed by crystal structure determination (see ESI).

Next, **3b** was obtained by mechanochemical copper-catalysed ⁷⁰ coupling of **3a** with cyclohexylisocyanate.[¶] Conversion reached completion only with excess isocyanate (Table 4) due to a sidereaction forming dicyclohexylurea which cannot be simply separated from **3b** (product after aqueous EDTA workup contains 92% **3b**).[‡] However, quantitative conversion of **3a** into **3b** was ⁷⁵ achievable with only 5 mol% catalyst (Table 4, Entry 11), demonstrating the potential of mechanochemistry for the synthesis of glibenclamide.

Published on 31 October 2013. Downloaded by Lomonosov Moscow State University on 31/10/2013 18:30:09

Published on 31 October 2013. Downloaded by Lomonosov Moscow State University on 31/10/2013 18:30:09

 Table 4. Results of the Cu-catalysed mechanochemical[‡] coupling of 3a

 with cyclohexylisocyanate to form glibenclamide (3b).

-						
Entry	Catalvet	Isoovanata	Catalyst loading	Time	LAG or	Conversion
Entry	Catalyst	Isocyanate	(% mol)	(h)	neat ^a	of 3a (%) ^b
1	CuCl	1.0 eq	5	2	Neat	54
2	CuCl	1.0 eq	5	2	DMF	60
3	CuCl	1.0 eq	20	2	Neat	43
4	Cu powder	1.0 eq	20	2	Neat	38
5	CuCl	1.0 eq	20	2	CH ₃ NO ₂	83
6	CuCl	1.0 eq	20	4	CH ₃ NO ₂	87
7	Cu ₂ O	1.0 eq	20	2	Neat	50
8	CuCl ₂ .2H ₂ O	1.0 eq	20	2	Neat	30
9	CuCl ₂	1.0 eq	20	2	Neat	48
10	CuCl	1.2 eq	20	2	CH ₃ NO ₂	100
11	CuCl	1.2 eq	5	2	CH ₃ NO ₂	100
12	CuCl	1.1 eq	5	2	CH ₃ NO ₂	68
13	CuCl	1.0 eq	5	2	CH ₃ NO ₂	66
14	-	1.0 eq	-	2	CH ₃ NO ₂	-
		-				

^aLAG with η = 0.25 mL mg⁻¹; ^bdetermined using ¹H NMR.

In summary, we demonstrated two¹⁵ mechanochemical, room ⁵ temperature procedures for the synthesis of sulfonyl-(thio)ureas, an important family of pharmaceutically relevant molecules. First generation anti-diabetic drugs tolbutamide and chlorpropamide were isolated in >90% yield *via* a catalytic mechanochemical procedure which was also incorporated into a two-step ¹⁰ mechanochemical protocol for making the more complex second generation drug glibenclamide in ~70% overall yield. Both Cucatalysed and base-assisted protocols were readily scaled to 1 gram. By demonstrating the mechanosynthesis of molecules used in treating a wide-spread disease, such as diabetes¹² (estimated²² to be affecting ~5% of world population) the presented work

- ¹⁵ to be affecting ~5% of world population), the presented work aims to encourage further development of mechanochemical methods for cleaner, more efficient synthesis of medicinal targets. We are currently exploring the metal-catalysed coupling of sulphonamides and isocyanates.
- We acknowledge the support of McGill University, Canada Foundation for Innovation (CFI), NSERC Discovery Grant and NSERC CREATE in Green Chemistry (D.T.). Prof. D. S. Bohle and Mr A. Katsenis are acknowledged for aid in obtaining single crystal structures and Dr A. Wahba for help in obtaining MS data.

25 Notes and references

 ^a Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Canada. Fax: +1 514 398 3757; Tel: +1 514 398 3959; E-mail:tomislav.friscic@mcgill.ca
 ^b On leave from the Division of Organic Chemistry and Biochemistry.

³⁰ Ruder Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia
 † Electronic Supplementary Information (ESI): experimental procedures,
 FTIR-ATR, ¹H and ¹³C NMR, HR-MS and crystallographic data in CIF format. See DOI: 10.1039/b000000x/

[±] In a typical procedure the reaction was milled in a 10 mL stainless steel ³⁵ jar with one 10 mm diameter ball made of stainless steel or brass, using a

- Retsch MM400 mill operating at 30Hz. Aqueous workup and filtration were sufficient for the purification of all compounds except **1d** and **3b** where moisture-induced isocyanate dimerisation yielded small amounts of a urea sideproduct whose separation requires chromatography.
- ⁴⁰ ¶ Synthesis of pharmaceutially relevant sulfonyl-ureas in solution requires stoichiometric base and excess isocyanate for sulfonamide-isocyanate coupling, see: H. Ruschig, W. Aumüller, G. Korger, H. Wagner, J. Scholz, A. Bander, "New benzene sulfonyl ureas; composition and process for lowering blood sugar therewith" US2968158 A (1961).
- 45 Crystal data. 1c (K⁺ salt, acetone solvate): C₁₄H₁₂KN₃O₄S₂·1.25(CH₃)₂CO, CCDC 965656, triclinic, a=7.366(1) Å, b=16.466(3) Å, c=18.699(3) Å,

α=107.650(2)°, β=93.736(2)°, γ=96.762(2)°, V=2134.1(6) Å³, space group PT, Z=4, R₁=0.0582, wR₂=0.1269 ($I>2\sigma_{1}$), S=0.965; **1b**:C₁₄H₁₄N₂O₂S₂, CCDC 965657, triclinic, a=7.557(4) Å, b=9.922(5) Å, c=11.266(6) Å, so α=106.421(6)°, β=103.828(6)°, γ=98.312(6)°, V=766.0(7) Å³, space group PT, Z=2, R₁=0.0533, wR₂=0.1281 ($I>2\sigma_{1}$), S= 0.973; **2a**: C₁₃H₁₇CIN₂O₃S, CCDC 965659, monoclinic, a=9.3333(8) Å, b=16.065(1) Å, c=19.644(2) Å, β=97.580(1)°, V=2919.6(4) Å³, space group P2₁/c, Z=8, R₁=0.0336, wR₂=0.0836 ($I>2\sigma_{1}$), S=1.026; **3a**: C₁₆H₁₇CIN₂O₄S, CCDC 965658, s5 triclinic, a=9.634(2) Å, b=10.046(2) Å, c=10.667(2) Å, α=64.209(3)°, β=69.198(2)°, γ=72.313(2)°, V=855.1(3) Å³, space group PT, Z=2,

- $p=69.198(2)^\circ$, $\gamma=72.313(2)^\circ$, V=855.1(3) A^o, space group P1, $Z_{R_1}=0.0388$, wR₂=0.0922 ($I>2\sigma_1$), S=0.989;
- S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L.
 Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C. Waddell, *Chem. Soc. Rev*, 2012, 41, 413.
- 2 V. André, A. Hardeman, I. Halasz., R. S. Stein., G. J. Jackson, D. G. Reidl, M. J. Duer, C. Curfs, M. T. Duarte and T. Friščić, *Angew. Chem. Int. Ed.*, 2011, **50**, 7858.
- 65 3 T. Friščić, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier and M. J. Duer Angew. Chem. Int. Ed. 2010, 49, 712.
- 4 P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutková, E. Gaffet, F. José Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii and K. Wieczorek-Ciurowa, *Chem. Soc. Rev.*, 2013, **42**, 7571.
- 5 (a) A. Stolle, T. Szuppa, S. E. S. Leonhardt and B. Ondruschka *Chem. Soc. Rev.* 2011, 40, 2317; (b) G.-W. Wang, *Chem. Soc. Rev.*, 2013, 42, 7668.
- 6 J. G. Hernández and E. Juaristi, Chem. Commun., 2012, 48, 5396.
- 75 7 (a) T. L. Cook, J. A. Walker and J. Mack, *Green Chem.* 2013, **15**, 617; (b) R. Thorwirth, A. Stolle and B. Ondruschka *Green Chem.* 2010, **12**, 985; (c) D. A. Fulmer. W. C. Shearouse, S. T. Medonza and J. Mack, *Green Chem.*, 2009, **11**, 1821.
- 8 (a) J. G. Hernández and E. Juaristi, J. Org. Chem., 2010, 75, 7107;
 80 (b) F. Lamaty, J. Martinez, P. Nun and V. Declerck, Angew. Chem. Int. Ed. 2009, 48, 9318.
- 9 (a) A. M. Flock, C. M. M. Reucher and C. Bolm, *Chem. Eur. J.*, 2010, 16, 3918; (b) B. Rodríguez, T. Rantanen and C. Bolm, *Angew. Chem. Int. Ed.*, 2006, 41, 7078.
- 85 10 J. Bonnamour, T.-X. Métro, J. Martinez and F. Lamaty, *Green Chem.*, 2013, 15, 1116.
 - (a) V. Štrukil, D. Margetić, M. D. Igrc, M. Eckert-Maksić and T. Friščić, *Chem. Commun.*, 2012, 48, 9705; (b) V. Štrukil, M. D. Igrc, M. Eckert-Maksić and T. Friščić, *Chem. Eur. J.*, 2012, 18, 8464.
- 90 12 (a) S. Amoroso, H. Schmid-Antomarchi, M. Fosset and M. Lazdunski, *Science*, 1990, **247**, 852; (b) H. Schmid-Antomarchi, J. D. Weille, M. Fosset and M. Lazdunski, *J. Bio. Chem.*, 1987, **33**, 15840.
- 13 (a) C. Jiménez-González, D. J. C. Constable and C. S. Ponder, *Chem. Soc. Rev.*, 2012, **41**, 1485; (b) W. C. Shearouse, D. C. Waddell and J.
- 95 Mack, Curr. Opin. Drug Discov. Develop. 2009, 12, 772; (c) H-J. Federsel, Green Chem. 2013, DOI: 10.1039/c3gc41629a
 - 14 H. Ulrich, Chem. Rev., 1965, 3, 369.
- Route B is a viable alternative for the mechanosynthesis of sulfonylureas, which we avoided due to corrosive nature of the reagent: neat milling of *p*-toluenesulfonyl-isocyanate and *n*-butylamine readily gave 1a (93% yield) without additional base or catalyst (see ESI).
 - 16 P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301.
 - 17 A. Martínez-Asencio, D. J. Ramón and M. Yus, *Tetrahedron Lett.*, 2010, **51**, 325.
- 105 18 J. Cervello and T. Sastre Synthesis, 1990, 221.
 - 19 The amount of liquid is expressed as η, the ratio of the liquid volume (in μL) to the weight of reaction mixture (in mg): T. Friščić, S. L. Childs, S. A. A. Rizvi and W. Jones, *CrystEngComm*, 2009, **11**, 418.
- 20 T. Friščić, A. V. Trask, W. Jones and W. D. S. Motherwell, *Angew.* 110 *Chem. Int. Ed.*, 2006, **45**, 7708.
 - 21 V. Štrukil, B. Bartolec, T. Portada, I. Đilović, I. Halasz and D. Margetić, *Chem. Commun.*, 2012, **48**, 12100.
- G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowen, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y.-H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson and M. Ezzati, *Lancet*, 2011, **378**, 31.