BIS-BENZYLISOQUINOLINE ALKALOIDS FROM ABUTA PAHNI

PASCALE DUTÉ, JEAN-FRÉDÉRIC WEBER, ALAIN FOURNET*, ADRIEN CAVɆ and JEAN BRUNETON‡

Laboratoire de Pharmacognosie, Centre d'Etudes des Plantes Médicinales, Faculté de Pharmacie, 16 bd Daviers, 49000 Angers, France; *O.R.S.T.O.M.-I.B.B.A., CP 824, La Paz, Bolivia; †C.C.I.P.E., BP 5055, 34033 Montpellier Cedex, France

(Revised received 1 October 1986)

Key Word Index—Abuta pahni; Menispermaceae; bis-benzylisoquinoline alkaloids; 2'-N-nordaurisoline; 2-N-methyllindoldhamine; 2'-N-methyllindoldhamine.

Abstract—From the stems of *Abuta pahni*, eight isoquinoline alkaloids were isolated and identified by spectroscopic methods and chemical correlations. Three of the *bis*-benzylisoquinoline alkaloids are new and were assigned the structures 2'-N-nordaurisoline, 2-N-methyllindoldhamine and 2'-N-methyllindoldhamine. The other known alkaloids were coclaurine, daurisoline, lindoldhamine, dimethyllindoldhamine, stepharine and thalifoline.

INTRODUCTION

The genus Abuta (Menispermaceae, Anomospermae) spreads widely throughout tropical America. Out of its 30 species [1] only a few have been studied from a chemical point of view. They all contain isoquinoline alkaloids of several types, namely bis-benzylisoquinolines [2, 3], oxoaporphines [4, 5], azafluoranthenes [5], tropoloisoquinolines [6] and isoquinolobenzazepines [7]. As *A. pahni* [8] is part of Amazonian curare mixtures, we thought it worthwhile carrying out the analysis of the alkaloidal composition of this species.

RESULTS AND DISCUSSION

Extraction and separation of the non-quaternary alkaloids, according to a conventional process, led to the isolation and characterization of eight alkaloids. Five of them are known, an isoquinolone, thalifoline, a benzylisoquinoline, (+)-coclaurine, a proaporphine, (+)stepharine and two *bis*-benzylisoquinolines, (-)daurisoline 1 and (-)-lindoldhamine 3.

The three remaining alkaloids are new. They are all of the single bridged *bis*-benzylisoquinoline type, as suggested by mass spectroscopy by the very low intensity of the $[M]^+$ peak [9]. The ¹H NMR spectra (360 MHz, FT) (cf. Table 1) display much analogy. There appears, in particular, the constant presence of an ABX system, and of an A₂B₂ system, respectively, assigned to the protons in the 10,13,14 and 10',11',13',14' positions, a characteristic feature of the 11,12' single bridged *bis*-coclaurine [2, 3]. Each of the three spectra also shows only one singlet assignable to a *N*-methyl group at ca 2.5 ppm. The other nitrogen atom is therefore engaged in a secondary amino function as established by the very strong deshielding of the 1- or 1'-proton (ca 4.1-4.2 ppm).

Alkaloid 2, $C_{36}H_{40}N_2O_6$, $[M]^+ m/z$ 596, presents a ¹H NMR spectrum that differs little from that of daurisoline 1. Methylation of 2 (HCHO-NaBH₄) affords a compound identical in every respect to 1. The use of NOEs helps establish the respective positions of the N-H

and of the N-Me. Irradiation of the N-Me singlet induces a 4% increase of the signal at 3.61 ppm; when this last signal is irradiated, increases of 2% on the H-8 signal (at 6.31 ppm) and of 1.2% on the doublet of the X proton of the ABX system in the ring C (H-10 at 6.49 ppm) can be observed. Therefore, the nitrogen in position 2 carries the methyl group and alkaloid 2 is assigned the structure 2'-N-nordaurisoline.

Alkaloids 4 and 5 exhibit the same molecular formula $C_{35}H_{38}N_2O_6$, $[M]^+ m/z 582$. Like 2, they both carry a secondary amino function, which on methylation (HCHO-NaBH₄) gives one product only, the (-)-N,N-dimethyllindoldhamine 6 (= guattegaumerine [10]), identified by comparison with authentic samples [11]. As above, the respective positions of the secondary amino and tertiary amino groups in alkaloid 4 are determined through NOE measurements (*cf.* values in the Experimental). It can then be given the structure 2-N-methyllindoldhamine. Consequently alkaloid 5 corresponds to 2-N-methyllindoldhamine.

Like (-)-daurisoline 1 and (-)-lindoldhamine 3 the three new alkaloids have a 1R, l'R configuration as established by the superimposability of their CD curves.

Thus, A. pahni displays an array of isoquinoline alkaloids close in composition to other Abuta species. Yet

-	••	,		,	**	***
3	R ¹ =	H,	R ² =	Н,	R ³ =	Н
4	R ¹ =	Me,	R ² =	Н,	R ³ ≖	Н
5	R ¹ =	H,	R ² =	Me,	R ³ =	Н
6	R ¹ =	Me,	R ² =	Me,	R ³ =	Н

[‡]To whom reprint requests should be sent.

Short Reports

	(• FF, ••• •••, ••• •••,									
	1	2	3	4	5	6				
2-N-CH3	2.47 s	2.43 s		2.46 s		2.50 s				
2'-N-CH ₃	2.53 s		_	_	2.47 s	2.45 s				
H-1	3.62 dd	3.61 dd	4.05 dd	3.61 dd	4.16 dd	3.62 dd				
H-1'	3.77 dd	4.15 dd	4.15 dd	4.11 dd	3.61 dd	3.72 dd				
H-5	6.46 s	6.45 s	6.51 s	6.45 s	6.45 s	6.48 s				
H-5'	6.57 s	6.60 s	6.58 <i>s</i>	6.57 s	6.62 s	6.54 s				
H-8	6.34 s	6.32 s	6.69 s	6.30 s	6.66 s	6.24 s				
H-8'	6.14 s	6.69 s	6.69 s	6.77 s	6.35 s	6.32 s				
H-10	6.53 d	6.49 d	6.66 d	6.48 d	6.48 d	6.61 d				
H-13	6.90 d	6.90 d	6.89 d	6.87 d	6.90 d	6.87 d				
H-14	6.84 dd	6.84 dd	6.91 dd	6.84 dd	6.85 dd	6.76 dd				
H-10' and 14'	7.03 d	7.16 d	7.17 d	7.14 d	7.17 d	7.02 d				
H-11' and 13'	6.81 d	6.83 d	6.87 d	6.82 d	6.84 d	6.82 d				
CH3O-6	3.80* s	3.81† s	3.86‡ s	3.85§ s	3.85 s	3.85¶ s				
CH ₃ O-6'	3.83* s	3.86† s	3.85‡ s	3.81§ s	3.81 s	3.84¶ s				
CH ₃ O-7	3.62 s	3.84 s	_		_	_				
-										

Table 1. ¹H NMR chemical shifts of compounds 1–6 (δ ppm, 360 MHz, CDCl₃, TMS as internal standard)

*†‡ \$#¶Assignments with the same superscript are interchangeable for a given compound.

only A. candicans and A. grisebachii contain bisquaternary alkaloids which could be responsible for a muscle relaxant activity and therefore for a curare-like toxicity. Due to the lack of detailed investigations on the activity of tertiary bis-benzylisoquinolines on muscle, the part played by the other Abuta species in the arrow poison mixtures still remains unclear.

EXPERIMENTAL

Plant material. Stems of Abuta pahni (Martius) Krukoff and Barneby (1.5 kg) were collected in August 1984 by one of us (A.F.) in Alto-Beni, Marimono, Bolivia, at 850 m altitude.

Extraction and chromatography. After removal of lipids with petrol, the stem powder was made alkaline and extracted with CH_2Cl_2 in a Soxhlet apparatus. The alkaloidal mixture was further purified by the usual acid-base treatment, then separated by $\mathcal{C}C$ on Merck 60 silica gel or by TLC on Merck 60 H silica gel and by prep. TLC on Merck HF_{254} silica gel.

Identification of compounds. Data (¹H NMR, MS, UV, comparative TLC) of the known compounds were in total accordance with those published. For thalifoline refer to [12], for (+)coclaurine and (+)-stepharine to [13], for (-)-daurisoline 1 to [3], for (-)-lindoldhamine 3 to [2] and for N,Ndimethyllindoldhamine 6 to [11] (except 360 MHz ¹H NMR data of 1, 3 and 6: cf. Table 1).

2'-N-Nordaurisoline 2. $[\alpha]_D$: negative. MS m/z (rel. int.): 596 [M]⁺ (< 1), 192 (100). 360 MHz ¹H NMR: cf. Table 1. Main observed NOEs: 2-N-CH₃ on H-1: +4% (reciprocal); H-1 on H-8: +2% (reciprocal); H-1 on H-10: +1.2% (reciprocal). 2-N-Methyllindoldhamine 4. $[\alpha]_D = -185^{\circ}$ (MeOH; c = 0.10). UV (EtOH) X_{max} nm (log): 213 (4.965), 225 sh (4.829), 285 (4.364). MS m/z (rel. int.): 582 [M]⁺ (< 1), 192 (100), 178 (20). 360 MHz ¹H NMR: cf. Table 1. Main observed NOEs: 2-N-CH₃ on H-10: +1.5% (reciprocal); H-1' on H-8': +5% (reciprocal); H-1' on H-10', 14': +2.5% (reciprocal).

2'-N-Methyllindoldhamine 5. $[\alpha]_D = -47'$ (MeOH; c = 0.17). MS m/z (rel. int.): 582 [M]⁺ (< 1), 192 (47), 178 (100) 360 MHz ¹H NMR: cf. Table 1. N-Methylation reactions. 37% formalin (1 ml) was added slowly into samples of 2, 4 and 5 (10 mg) in MeOH (5 ml) and the solns stirred under reflux for 45 min, then cooled. NaBH₄ (50 mg) was then added and the solns stirred under reflux for another 45 min. After cooling, HoAc was added to decompose excess reagent and the mixtures made alkaline with NH₃ and then extd with CHCl₃. Solvent was removed in vacuum, and the residues purified by prep. TLC.

REFERENCES

- 1. Hegnauer, R. (1964) Chemotaxonomie der Pflanzen 3, Birkhaüser, Basel.
- 2. Guha, K. P., Mukherjee, B. and Mukherjee, R. (1979) J. Nat. Prod. 42, 1.
- 3. Schiff, P., Jr. (1983) J. Nat. Prod. 46, 1.
- 4. Guinaudeau, H., Lebœuf, M. and Cavé, A. (1979) J. Nat. Prod. 42, 325.
- Guinaudeau, H., Lebœuf, M. and Cavé, A. (1983) J. Nat. Prod. 46, 761.
- Menachery, M. D. and Cava, M. P. (1980) Heterocycles 14, 943.
- 7. Hocquemiller, R., Cavé, A. and Fournet, A. (1984) J. Nat. Prod. 47, 539.
- 8. Barneby, R. C. and Krukoff, B. A. (1971) Mem. N.Y. Bot. Gard. 22, 1.
- Baldas, J., Bick, I. R. C., Ibuka, T., Capil, R. S. and Porter, Q. N. (1972) J. Chem. Soc. Perkin 1 592.
- Dehaussy, H., Tits, M. and Angenot, L. (1983) Planta Med. 49, 25.
- Jossang, A., Lebœuf, M., Cabalion, P. and Cavé, A. (1983) Planta Med. 49, 20.
- Bick, I. R. C., Sévenet, T., Sinchai, W., Skelton, B. W. and White, A. H. (1981) Aust. J. Chem. 34, 195.
- Kametani, T. (1969) The Chemistry of Isoquinoline Alkaloids, Tokyo Hyrokawa, Amsterdam.