# Gold-catalyzed cycloisomerization of alk-4-yn-1-ones†

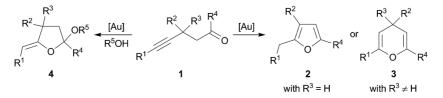
## Volker Belting and Norbert Krause\*

Received 5th November 2008, Accepted 17th December 2008 First published as an Advance Article on the web 5th February 2009 DOI: 10.1039/b819704k

Depending on the substitution pattern and the solvent, the gold-catalyzed cyclization of alk-4-yn-1-ones **1** affords different oxygen heterocycles under mild reaction conditions. Alkynones with one substituent at C-3 undergo a *5-exo-dig* cycloisomerization to substituted furans **2**, whereas a *6-endo-dig* cyclization to 4*H*-pyrans **3** is observed with substrates bearing two substituents at C-3. In alcoholic solvents, alkylidene/benzylidene-substituted tetrahydrofuranyl ethers **4** are formed in a tandem nucleophilic addition/cycloisomerization.

# Introduction

The development of new methods for the synthesis of heterocycles is of particular interest in organic chemistry. Due to their atom efficiency, transition metal-catalyzed cycloisomerizations belong to the most powerful tools in organic synthesis. Whereas gold catalysis had received little attention in the past (mainly because gold was considered to be inert and expensive), the use of gold salts in homogeneous catalysis has attracted more and more interest in the last decade because of their ability to activate carbon-carbon multiple bonds.<sup>1</sup> Thus, a variety of nucleophiles can be added under extremely mild conditions to these activated multiple bonds.

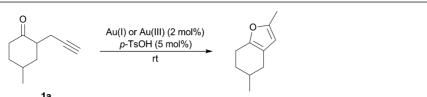

Due to their unique electronic structure and reactivity,<sup>2</sup> alkynes are the substrates of choice in homogeneous gold catalysis.<sup>1</sup> They are much more reactive than the corresponding alkenes. In gold-catalyzed cycloisomerization reactions, various internal nucleophiles such as nitrogen,<sup>3</sup> oxygen,<sup>4</sup> and even sulfur<sup>5</sup> groups have been used for addition to the activated triple bond, thereby granting access to a high diversity of heterocyclic products. Of particular interest is the use of carbonyl groups since they can undergo tandem reactions, consisting of a nucleophilic addition to this function followed by cyclization. Various heterocycles have been synthesized using this approach in homogeneous gold catalysis.6 Godet et al. recently reported a tandem acetalization/cycloisomerization of quinoline derivatives providing pyranoquinolines with a high conversion rate.<sup>6a</sup> 1-Alkynyl-1H-isochromenes were synthesized by Li and coworkers in an alkynylation-cyclization sequence of terminal alkynes

with alkynylaryl aldehydes,<sup>6b</sup> whereas cyclization of 2-oxobut-3-ynoates with nucleophiles provides a general route to 3(2H)furanones.<sup>6c</sup> Pyrroles can be obtained by cycloisomerization of imines formed *in situ* from alkynones.<sup>6d</sup>

Furans play a special role in the field of oxygen heterocycles. Because of their importance as intermediates in organic synthesis<sup>7</sup> and their occurrence in a variety of natural compounds<sup>8</sup> and important pharmaceuticals,8,9 many methods for the synthesis of furans have been developed.<sup>10</sup> Whereas some examples for the cyclization of pentynones leading to furans under strong acidic<sup>11</sup> or basic<sup>12</sup> conditions were reported in literature, only a few examples of transition metal-catalyzed cycloisomerizations of alk-4-yn-1-ones to substituted furans are known. Besides Pd catalysis at elevated temperatures (>60 °C),13 Nishizawa and coworkers reported a Hg(OTf)<sub>2</sub>-catalyzed cycloisomerization of pentynones to methylfurans in benzene at room temperature.14 Also gold-catalyzed cycloisomerizations of functionalized alkynes play an important role: (Z)-alk-2-en-4-yn-1-ols,15 alka-2,3-dien-1ones,16 alk-3-yn-1-ones17 and alkynyloxiranes18 can be converted to substituted furans. Herein we report the results of our study on the gold-catalyzed cycloisomerization of alk-4-yn-1-ones 1 which, depending on the substitution pattern of the substrate and the reaction conditions, can afford furans 2, 4H-pyrans 3, or tetrahydrofuranyl ethers 4 (Scheme 1).

### **Results and discussion**

The starting materials are readily available either by FeCl<sub>3</sub>catalyzed nucleophilic substitution of propargyl acetates with enoxysilanes<sup>10a</sup> or by reaction of an enolate with propargyl bromide.<sup>6d</sup> Different aryl groups were introduced into terminal alk-4-yn-1-ones by Sonogashira coupling.<sup>19</sup> Initial cycloisomerization experiments were performed with ketone **1a** as model substrate using different gold precatalysts (2 mol%) and catalytic




Scheme 1 Gold-catalyzed cycloisomerization of alk-4-yn-1-ones 1.

Dortmund University of Technology, Organic Chemistry, Otto-Hahn-Straße 6, D-44227, Dortmund, Germany. E-mail: norbert.krause@tu-dortmund.de; Fax: +49(231)7553884

<sup>†</sup> Electronic supplementary information (ESI) available: Experimental details and NMR spectra. See DOI: 10.1039/b819704k

#### Table 1 Optimization of reaction conditions for the gold-catalyzed cycloisomerization of alkynone 1a to furan 2a



|            |                   | Ia                    | 2a        |        |                     |
|------------|-------------------|-----------------------|-----------|--------|---------------------|
| Entry      | Solvent           | Precatalyst           | Additive  | Time   | Yield/%             |
| 1 <i>ª</i> | toluene           | Ph <sub>3</sub> PAuCl | AgOTf     | 1 h    | 80                  |
| 2          | toluene           | Ph <sub>3</sub> PAuCl | AgOTf     | 20 min | 91                  |
| 3          | toluene           | Ph <sub>3</sub> PAuCl | $AgSbF_6$ | 20 min | 85                  |
| 4          | toluene           | Ph <sub>3</sub> PAuCl | $AgBF_4$  | 20 min | 57                  |
| 5          | toluene           | AuCl <sub>3</sub>     | _         | 5 h    | traces <sup>b</sup> |
| 6          | toluene           | AuCl                  |           | 5 h    | traces <sup>c</sup> |
| 7          | toluene           | HAuCl <sub>4</sub>    |           | 3 h    | 63                  |
| 8          | toluene           | Au(OAc) <sub>3</sub>  |           | 4 h    | 35 <sup>d</sup>     |
| 9          | toluene           | AuBr <sub>3</sub>     |           | 3 h    | 57                  |
| 10         | toluene           | _                     | AgOTf     | 5 h    |                     |
| 11         | toluene           | _                     | _         | 5 h    |                     |
| 12         | $CH_2Cl_2$        | Ph <sub>3</sub> PAuCl | AgOTf     | 20 min | 82                  |
| 13         | Et <sub>2</sub> O | Ph <sub>3</sub> PAuCl | AgOTf     | 20 min | 70                  |
| 14         | THF               | Ph <sub>3</sub> PAuCl | AgOTf     | 3 h    | 47                  |
| 15         | MeCN              | Ph <sub>3</sub> PAuCl | AgOTf     | 3 h    | 44                  |

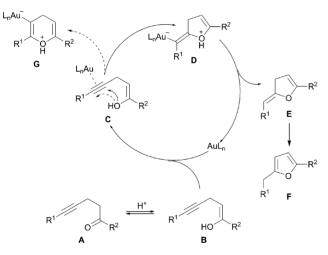
<sup>*a*</sup> In the absence of *p*-TsOH · H<sub>2</sub>O. <sup>*b*</sup> 84% of starting material was reisolated. <sup>*c*</sup> 78% of starting material was reisolated. <sup>*d*</sup> 50% of starting material was reisolated.

amounts of *p*-TsOH  $\cdot$  H<sub>2</sub>O (5 mol%) in various solvents at room temperature (Table 1).

In contrast to the cyclization of alk-4-ynones with *p*-TsOH which requires refluxing in toluene,<sup>10a</sup> the furan **2a** was obtained with 80% yield at room temperature in the presence of just 2 mol% of the cationic gold precatalyst Ph<sub>3</sub>PAuOTf generated *in situ* from Ph<sub>3</sub>PAuCl and AgOTf (entry 1). Combining gold and acid catalysis by addition of 5 mol% of *p*-TsOH  $\cdot$  H<sub>2</sub>O led to a slightly increased reaction rate and chemical yield (entry 2). In contrast to this, other cationic (entries 3, 4) or neutral gold precatalysts (entries 5–9) gave inferior results. AgOTf and *p*-TsOH  $\cdot$  H<sub>2</sub>O alone are

inactive under the reaction conditions (entries 10, 11). Besides toluene, other weakly coordinating solvents (dichloromethane, diethyl ether; entries 12, 13) can be used as well, whereas low reaction rates and yields were observed in THF or acetonitrile (entries 14, 15).

Since the gold-catalyzed cycloisomerization of alk-4-yn-1-ones can be performed in the presence or absence of the Brønsted acid *p*-TsOH, both stable and acid-labile substrates can be converted to substituted furans under the appropriate reaction conditions. The generality of the method was proven by applying the optimized reaction conditions to various alk-4-yn-1-ones **1** (Table 2). Both


#### Table 2Gold catalyzed cycloisomerization of alk-4-yn-1-ones 1 to substituted furans $2^a$

|       | $R^{1} \qquad R^{3} \qquad R^{4} \qquad Ph_{3}PAuCl/AgOTf (2 mol \%) \qquad P-TsOH (5 mol\%) \qquad P-TsOH (5 mol\%) \qquad R^{2} \qquad R^{3} \qquad R^{4} \qquad R^{1} \qquad R^$ |                                                   |                       |                                        |                                    |           |                   |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|----------------------------------------|------------------------------------|-----------|-------------------|--|--|
| Entry | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{R}^1$                                    | <b>R</b> <sup>2</sup> | <b>R</b> <sup>3</sup>                  | $\mathbb{R}^4$                     | Time/min  | 2 (Yield/%)       |  |  |
| 1     | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                                                 | Н                     | Н                                      | Ph                                 | 20 (30)   | <b>2b</b> 87 (82) |  |  |
| 2     | 1c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                                                 | Н                     | Н                                      | 4-MeOC <sub>6</sub> H <sub>4</sub> | 20        | <b>2c</b> 77      |  |  |
| 3     | 1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                                                 | Н                     | <i>i</i> -Pr                           | <i>i</i> -Bu                       | 120 (180) | 2d 76 (74)        |  |  |
| 4     | 1e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                                                 | Н                     | CH <sub>2</sub> C≡CH                   | 4-MeOC <sub>6</sub> H <sub>4</sub> | 60        | <b>2e</b> 64      |  |  |
| 5     | 1f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4-BrC_6H_4$                                      | Н                     | Н                                      | Ph                                 | 60        | <b>2f</b> 84      |  |  |
| 6     | 1g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-MeO <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> | Н                     | Н                                      | 4-MeOC <sub>6</sub> H <sub>4</sub> | 45        | <b>2g</b> 57      |  |  |
| 7     | 1ĥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4-BrC_6H_4$                                      | Н                     | CH <sub>2</sub> CHMeCH <sub>2</sub> CH | $\mathbf{I}_2$                     | 45        | <b>2h</b> 72      |  |  |
| 8     | 1i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4-BrC_6H_4$                                      | Η                     | Me                                     | Et                                 | 60        | <b>2i</b> 81      |  |  |
| 9     | 1j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4-BrC_6H_4$                                      | Н                     | <i>i</i> -Pr                           | <i>i</i> -Bu                       | 300       | <b>2</b> j 69     |  |  |
| 10    | 1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4-MeOC_6H_4$                                     | Η                     | Me                                     | Et                                 | 60        | <b>2k</b> 71      |  |  |
| 11    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ph                                                | Ph                    | Н                                      | Ph                                 | 30 (40)   | <b>2l</b> 63 (67) |  |  |
| 12    | 1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ph                                                | Ph                    | Me                                     | <i>i</i> -Pr                       | 90        | <b>2m</b> 75      |  |  |

<sup>*a*</sup> Reaction time and yield given in parentheses refer to cyclizations performed in the absence of p-TsOH · H<sub>2</sub>O.

terminal (entries 1–4) and internal alkynes (entries 5–12) can be cyclized with similar efficiency to afford the furans **2** with 57–87% yield. The presence of sterically demanding groups (entries 3, 9, 12) led to slightly increased reaction times, but full conversion was reached within 1.5–5 h. The method also tolerates the presence of electron-rich (entries 2, 4, 6, 10) or electron-deficient aryl groups (entries 5–9), of additional triple bonds (entry 4) as well as ester groups (entries 6, 10). It should be noted that even the tetrasubstituted furan **2m** is accessible with good yield (75%) by our method. Performing the cycloisomerization in the absence of *p*-toluenesulfonic acid resulted in slightly slower reactions, but very similar yields (entries 1, 3, 11).

On the basis of the accelerating affect of the Brønsted acid *p*-TsOH, we propose the reaction mechanism shown in Scheme 2. The catalytic cycle is initiated by coordination of the gold catalyst to the triple bond of enol **B** to afford the  $\pi$ -complex **C** which is transformed into the zwitterionic intermediate **D** by 5-exo-dig attack of the oxygen at the activated triple bond. Protodemetalation of **D** releases the gold catalyst into the catalytic cycle and affords the alkylidene derivative **E** which undergoes a rapid isomerization to the substituted furan **F**. The accelerating effect of the Brønsted acid *p*-TsOH may be twofold: it catalyzes the equilibrium between the starting alkynone **A** and its enol form **B**, and it might also be involved in the protodemetalation of intermediate **D**.



Scheme 2 Proposed mechanism for the gold-catalyzed cycloisomerization of alk-4-yn-1-ones to furans.

 Table 3
 Gold-catalyzed cycloisomerization of alk-4-yn-1-ones 1 to 4H-pyrans 3

Interestingly, the formation of a six-membered ring **G** by *6-endo-dig* cyclization of intermediate **C** was not observed with the alk-4-yn-1-ones used so far. However, this pathway becomes accessible if the substrate bears two substituents at C-3 which prevent formation of a furan **2**. Treatment of the alkynones **1n–q** with 2 mol% of Ph<sub>3</sub>PAuCl and AgOTf afforded the corresponding 4*H*-pyrans **3** with 53–67% yield after 20–45 min reaction time at room temperature (Table 3). With AgOTf alone, no conversion of substrate **1n** was observed (entry 1). The butyl-substituted alkynone **1q** (entry 4) was found to cyclize faster than the phenyl-substituted counterparts **1n–o** (entries 1–3) and gave the highest yield. In contrast to the formation of furans **2**, addition of *p*-TsOH  $\cdot$  H<sub>2</sub>O does not affect the rate of the *6-endo-dig* cyclization.

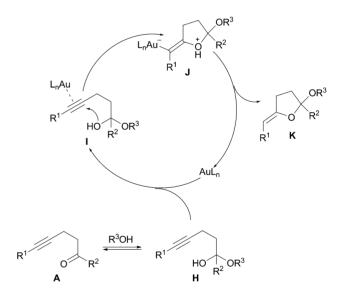
A third pathway for the gold-catalyzed cyclization of alk-4-yn-1-ones was opened by changing the solvent from toluene to an alcohol. This acts not only as solvent, but also as nucleophile and induces formation of alkylidene/benzylidene-substituted tetrahydrofuranyl ethers **4** instead of furans **2** or 4*H*-pyrans **3**. The scope of this tandem nucleophilic addition/cycloisomerization reaction is summarized in Table 4.

Whereas treatment of the terminal alkynone 1a with 2 mol% of Ph<sub>3</sub>PAuCl and AgOTf in methanol resulted in the formation of a complex product mixture, various alkynones 11-t with an internal triple bond and one (entries 1, 2) or two substituents at C-3 (entries 3-14) afforded the 5-exo-dig cyclization products 4 with 53-87% yield. The substrate was consumed after 10-30 min at room temperature when primary alcohols were used while 60 min were required in the reaction of alkynone 10 with isopropanol (entry 6). No conversion of ketone 1n or 1r was observed in the absence of Ph<sub>3</sub>PAuCl (entries 3, 9). Similar to the other cyclization modes of alkynones 1, the formation of the tetrahydrofuranyl ethers 4 is not affected by the substituent pattern. Besides various benzylidene-substituted tetrahydrofuranyl ethers, the alkylidene-substituted product 4qa was obtained with 53% yield from alkynone 1q and ethanol (entry 8). Even the cyclohexyl-substituted ketone 1n furnished the corresponding spiro compounds 4na/4nb with good yield (66/76%, entries 3, 4). In the case of substrates bearing two different substituents at C-3, the tandem nucleophilic addition/cycloisomerization leads to the formation of diastereomeric products; the diastereoselectivities are low and range from 55:45 to 80:20 (entries 1, 2, 5-8). All tetrahydrofuranyl ethers were formed as a single isomer with regard to the excocyclic double bond. The configuration of product 40a was determined with the aid of an NOE experiment; a strong

|                  | $R^{1} \qquad R^{1} \qquad R^{1$ |                                |                |                                                   |                      |                      |                                                                                          |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|---------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------------------------------|--|
| Entry            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbb{R}^1$                 | R <sup>2</sup> | <b>R</b> <sup>3</sup>                             | R <sup>4</sup>       | Time/min             | 3 (Yield/%)                                                                              |  |
| 1<br>2<br>3<br>4 | 1n<br>1o<br>1p<br>1q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ph<br>Ph<br>Ph<br><i>n</i> -Bu | Ph<br>Ph<br>Ph | (CH <sub>2</sub> ) <sub>5</sub><br>Me<br>Me<br>Me | Ph<br>Ph<br>Me<br>Ph | 45<br>40<br>40<br>20 | <b>3n</b> (53) <sup><i>a</i></sup><br><b>3o</b> (58)<br><b>3p</b> (64)<br><b>3q</b> (67) |  |
| " No convers     | ion in the absenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e of Ph <sub>3</sub> PAuCl.    |                |                                                   |                      |                      |                                                                                          |  |

Table 4Gold-catalyzed tandem nucleophilic addition/cycloisomerization alk-4-yn-1-ones 1 to tetrahydrofuranyl ethers 4

|       | $R^{1} \qquad R^{2} \qquad R^{3} \qquad R^{4} \qquad Ph_{3}PAuCl/AgOTf (2 mol \%) \qquad R^{5}OH, rt \qquad R^{4} \qquad R^{1} \qquad $ |                  |                |                       |                |                     |          |                              |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------------|----------------|---------------------|----------|------------------------------|--|--|
| Entry | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R <sup>1</sup>   | R <sup>2</sup> | <b>R</b> <sup>3</sup> | R <sup>4</sup> | 4<br>R <sup>5</sup> | Time/min | <b>4</b> (yield/%)           |  |  |
| 1     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Ph             | Н                     | Ph             | Me                  | 20       | <b>4la</b> (75) <sup>a</sup> |  |  |
| 2     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Ph             | Н                     | Ph             | Et                  | 40       | <b>4lb</b> (67) <sup>a</sup> |  |  |
| 3     | 1n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | (Cl            | $H_2)_5$              | Ph             | Me                  | 10       | 4na (76) <sup>b</sup>        |  |  |
| 4     | 1n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | (Cl            | $H_2)_5$              | Ph             | Et                  | 30       | <b>4nb</b> (66)              |  |  |
| 5     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Ph             | Me                    | Ph             | Me                  | 20       | <b>40a</b> (87) <sup>c</sup> |  |  |
| 6     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Ph             | Me                    | Ph             | <i>i</i> -Pr        | 60       | <b>4ob</b> (59) <sup>c</sup> |  |  |
| 7     | 1p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Ph             | Me                    | Me             | Me                  | 20       | <b>4pa</b> $(78)^d$          |  |  |
| 8     | 1q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>n</i> -Bu     | Ph             | Me                    | Ph             | Et                  | 30       | <b>4qa</b> (53) <sup>e</sup> |  |  |
| 9     | 1r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Me             | Me                    | Ph             | Me                  | 10       | 4ra (62) <sup>b</sup>        |  |  |
| 10    | 1r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Me             | Me                    | Ph             | Et                  | 30       | <b>4rb</b> (64)              |  |  |
| 11    | 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Et             | Et                    | Ph             | Me                  | 10       | <b>4sa</b> (76)              |  |  |
| 12    | 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Et             | Et                    | Ph             | Et                  | 20       | <b>4sb</b> (75)              |  |  |
| 13    | 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph               | Et             | Et                    | Ph             | <i>n</i> -Pr        | 20       | <b>4sc</b> (70)              |  |  |
| 14    | 1t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4-MeO_2CC_6H_4$ | Me             | Me                    | Ph             | Me                  | 20       | 4ta (59)                     |  |  |


cross peak between the vinylidene proton and the methyl group at C-4 of the tetrahydrofuran ring proves the Z-configuration.

Interestingly, the addition of the Brønsted acid *p*-toluenesulfonic acid has a pronounced influence on the course of the gold-catalyzed cyclization of alk-4-yn-1-ones **1** in alcohols. Whereas treatment of alkynone **11** with catalytic amounts of Ph<sub>3</sub>PAuCl, AgOTf, and *p*-TsOH  $\cdot$  H<sub>2</sub>O in methanol or ethanol furnished the furan **21** (67/71% yield) instead of the tetrahydro-furanyl ethers **4la/4lb**, the substrate **10** with two substituents at C-3 gave a 1:3-mixture of the 4*H*-pyran **30** and the ether **40a**, accompanied by other non-identified products.

Similar to the tandem cycloisomerization-hydroalkoxylation of homopropargylic alcohols to tetrahydrofuranyl ethers,<sup>4e</sup> the formation of the heterocycles **4** may be explained by a hydroalkoxylation of 2,3-dihydrofurans **E** (Scheme 2). However, it seems difficult to explain why no attack of the alcohol at the exocyclic double bond of intermediate **E** is observed. In order to account for this experimental finding, we assume that the reaction is initiated by a (gold-catalyzed?) formation of the hemiacetal **H** which then undergoes addition to the activated triple bond in intermediate **I** (Scheme 3). This leads to the zwitterionic species **J**, protodemetalation of which affords the tetrahydrofuranyl ether **K** with *Z*-configuration at the exocyclic double bond.

# Conclusions

In this paper, we describe three efficient pathways for the goldcatalyzed cycloisomerization of alk-4-yn-1-ones. Substrates 1a-m with a terminal or internal triple bond undergo a 5-exodig cycloisomerization to the corresponding multisubstituted furans 2 under very mild conditions by using the cationic gold complex Ph<sub>3</sub>PAuOTf in toluene. Addition of catalytic amounts of p-TsOH  $\cdot$  H<sub>2</sub>O accelerates the reaction, but is not mandatory. Various functional groups are tolerated in this transformation, which uses much milder and/or environmentally benign conditions than previous methods. A change in regioselectivity was observed



Scheme 3 Proposed mechanism for the gold-catalyzed tandem nucleophilic addition/cycloisomerization alk-4-yn-1-ones to tetrahydrofuranyl ethers.

with alkynones **1n–q** bearing two substituents at C-3 which furnish 4*H*-pyrans **3** by *6-endo-dig* cycloisomerization. Finally, both substrate types afford alkylidene/benzylidene-substituted tetrahydrofuranyl ethers **4** when the reaction was carried out in an alcoholic solvent. These transformations probably proceed *via* enols or hemiacetals which act as internal nucleophiles for the attack at the triple bond which is activated by the gold catalyst. Our results underline the power of gold catalysis for the synthesis of structurally diverse heterocycles.

# References

For representative reviews see: (a) Z. Li, C. Brouwer and C. He, *Chem. Rev.*, 2008, **108**, 3239; (b) A. Arcadi, *Chem. Rev.*, 2008, **108**, 3266; (c) H. C. Shen, *Tetrahedron*, 2008, **64**, 3885; (d) A. Fürstner and P. W.

Davis, Angew. Chem., 2007, **119**, 3478; A. Fürstner and P. W. Davis, Angew. Chem. Int. Ed., 2007, **46**, 3410; (e) A. S. K. Hashmi, Chem. Rev., 2007, **107**, 3180; (f) E. Jimenez-Nunez and A. M. Echavarren, Chem. Commun., 2007, 333; (g) A. Hoffmann-Röder and N. Krause, Org. Biomol. Chem., 2005, **3**, 387.

- 2 D. A. Plattner, Y. Li, K. N. Houk, in *Modern Acetylene Chemistry* (Eds.: P. J. Stang, F. Diederich), VCH, Weinheim, 1995, pp. 1–32.
- 3 Selected examples: (a) X. Y. Liu, P. Ding, J. S. Huang and C. M. Che, Org. Lett., 2007, 9, 2645; (b) J. E. Kang, H. B. Kim, J. W. Lee and S. Shin, Org. Lett., 2006, 8, 3537; (c) D. J. Gorin, N. R. Davis and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 11260; (d) A. Arcadi, G. Bianchi and F. Marinelli, Synthesis, 2004, 610; (e) Y. Fukuda and K. Utimoto, Synthesis, 1991, 975.
- 4 Selected examples: (a) E. Marchal, P. Uriac, B. Legouin, L. Toupet and P. van de Weghe, *Tetrahedron*, 2007, **63**, 9979; (b) T. Jin and Y. Yamamoto, Org. Lett., 2007, **9**, 5259; (c) X.-Z. Shu, X.-Y. Liu, H.-Q. Xiao, K.-G. Ji, L.-N. Guo, C.-Z. Qi and Y.-M. Liang, Adv. Synth. Catal., 2007, **349**, 2493; (d) A. S. K. Hashmi, R. Salathe and W. Frey, Synlett, 2007, 1763; (e) V. Belting and N. Krause, Org. Lett., 2006, **8**, 4489; (f) R. Robles-Machin, J. Adrio and J. C. Carretero, J. Org. Chem., 2006, **71**, 5023.
- 5 (a) I. Nakamura, T. Sato and Y. Yamamoto, *Angew. Chem.*, 2006, **118**, 4585; I. Nakamura, T. Sato and Y. Yamamoto, *Angew. Chem. Int. Ed.*, 2006, **45**, 4473; (b) I. Nakamura, T. Sato, M. Terada and Y. Yamamoto, *Org. Lett.*, 2007, **9**, 4081; (c) L. Peng, X. Zhang, S. Zhang and J. Wang, *J. Org. Chem.*, 2007, **72**, 1192.
   6 (a) T. Godet, C. Vaxelaire, C. Michel, A. Milet and P. Belmont, *Chem.*
- 6 (a) T. Godet, C. Vaxelaire, C. Michel, A. Milet and P. Belmont, *Chem.-Eur. J.*, 2007, 13, 5632; (b) X. Yao and C. J. Li, *Org. Lett.*, 2006, 8, 1953; (c) Y. Liu, M. Liu, S. Guo, H. Tu, Y. Zhou and H. Gao, *Org. Lett.*, 2006, 8, 3445; (d) T. J. Harrison, J. A. Kozak, M. Corbella-Pane and G. R. Dake, *J. Org. Chem.*, 2006, 71, 4525.
- 7 (a) R. Benassy, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Eds., Pergamon, Oxford, 1996, Vol. 2, pp. 259–295; (b) H. Heaney, J. S. Ahn, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Eds.; Pergamon, Oxford, 1996, Vol. 2, pp. 297–350; (c) W. Friedrichsen, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Eds.; Pergamon, Oxford, 1996, Vol. 2, pp. 397–350; (c) W. Friedrichsen, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Eds.; Pergamon, Oxford, 1996, Vol. 2, pp. 351–393; (d) A. B. Keay, P. W. Dibble, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Eds.; Pergamon, Oxford, 1996, Vol. 2, pp. 395–436; (e) B. H. Lipshutz, Chem. Rev., 1986, 86, 795.
- 8 (a) J. A. Marshall and X. J. Wang, J. Org. Chem., 1992, 57, 3387;
  (b) J. A. Marshall and E. M. Wallace, J. Org. Chem., 1995, 60, 796;
  (c) J. Mendez-Andino and L. A. Paquette, Org. Lett., 2000, 2, 4095 and references cited therein.
- 9 X. L. Hou, Z. Yang, H. N. C. Wong, in *Progress in Heterocyclic Chemistry*, G. W. Gribble, T. L. Gilchrist, Eds.; Pergamon, Oxford, 2003, Vol. 115, pp. 167–205.

- 10 Selected examples: (a) Z. P. Zhan, X. B. Cai, S. P. Wang, J. L. Yu, H. J. Liu and Y. Y. Cui, J. Org. Chem., 2007, 72, 9838; (b) S. F. Kirsch, Org. Biomol. Chem., 2006, 4, 2076; (c) H. Kawai, S. Oi and Y. Inoue, Heterocycles, 2006, 67, 101; (d) S. Ma, Z. Gu and Z. Yu, J. Org. Chem., 2005, 70, 6291; (e) M. H. Suhre, M. Reif and S. F. Kirsch, Org. Lett., 2005, 7, 3925; (f) C. P. Casey and N. A. Strotman, J. Org. Chem., 2005, 70, 2576.
- 11 (a) K. E. Schulte, J. Reisch and K. H. Kauder, Arch. Pharm. Ber. Dtsch. Pharm. Ges., 1962, 295, 800; (b) K. E. Schulte, J. Reisch and G. L. Tittel, Arch. Pharm. Ber. Dtsch. Pharm. Ges., 1966, 299, 457; (c) J. Reisch, Arch. Pharm. Ber. Dtsch. Pharm. Ges., 1966, 299, 798; (d) S. Cook, D. Henderson, K. A. Richardson, R. J. K. Taylor, J. Saunders and P. G. J. Strange, J. Chem. Soc., Perkin Trans. 1, 1987, 1825; (e) J. Barluenga, M. Tomas and A. Suarez-Sobrino, Synlett, 1990, 11, 673.
- 12 (a) K. E. Schulte, J. Reisch and A. Mock, Arch. Pharm. Ber. Disch. Pharm. Ges., 1962, 295, 627; (b) K. E. Schulte, J. Reisch and D. Bergenthal, Chem. Ber., 1968, 101, 1540; (c) R. Vieser and W. Eberbach, Tetrahedron Lett., 1995, 36, 4405; (d) A. Arcadi, F. Marinelli, E. Pini and E. Rossi, Tetrahedron Lett., 1996, 37, 3387; (e) D. I. MaGee, J. D. Leach and S. Setiadji, Tetrahedron, 1999, 55, 2847.
- 13 (a) A. Arcadi, S. Cacchi, R. C. Larock and F. Marinelli, *Tetrahedron Lett.*, 1993, 34, 2813; (b) P. Wipf, L. T. Rahman and S. R. Rector, J. Org. Chem., 1998, 63, 7132; (c) M. Picquet, C. Bruneau and P. H. Dixneuf, *Tetrahedron*, 1999, 55, 3937; (d) A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli and L. M. Parisi, *Tetrahedron*, 2003, 59, 4661; (e) For a single example of a Ru/Au-catalyzed furan formation from an alkynone intermediate, see: Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. D. Milton, M. Hidai and S. Uemura, *Angew. Chem.*, 2003, 115, 2785; Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. D. Milton, M. Hidai and S. Uemura, *Angew. Chem.*, 102, 2681.
- 14 (a) H. Imagawa, T. Kurisaki and M. Nishizawa, Org. Lett., 2004, 6, 3679; (b) For the related cyclization of alkynyl-1,3-cycloalkanediones, see: H. Imagawa, S. Kotani and M. Nishizawa, Synlett, 2006, 642.
- 15 Y. Liu, F. Song, M. Liu and B. Yan, Org. Lett., 2005, 7, 5409.
- 16 (a) A. S. K. Hashmi, L. Schwarz, J. H. Choi and T. M. Frost, Angew. Chem., 2000, 112, 2382; A. S. K. Hashmi, L. Schwarz, J. H. Choi and T. M. Frost, Angew. Chem. Int. Ed., 2000, 39, 2285; (b) C. Y. Zhou, P. W. H. Chan and C. M. Che, Org. Lett., 2006, 8, 325.
- 17 (a) J. Zhang and H. G. Schmalz, Angew. Chem., 2006, 118, 6856; J. Zhang and H. G. Schmalz, Angew. Chem. Int. Ed., 2006, 45, 6704;
  (b) T. Yao, X. Zhang and R. C. Larock, J. Org. Chem., 2005, 70, 7679;
  (c) T. Yao, X. Zhang and R. C. Larock, J. Am. Chem. Soc., 2004, 126, 11164; (d) X. Liu, Z. Pan, X. Shu, X. Duan and Y. Liang, Synlett, 2006, 1962.
- 18 A. S. K. Hashmi and P. Sinha, Adv. Synth. Catal., 2004, 346, 432.
- 19 (a) K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, 4467; (b) Review: H. Doucet and J.-C. Hierso, *Angew. Chem.*, 2007, **119**, 850; H. Doucet and J.-C. Hierso, *Angew. Chem. Int. Ed.*, 2007, **46**, 834.