Enzyme Catalysis

Direct Observation of an Oxepin from a Bacterial Cytochrome P450-Catalyzed Oxidation

Jeanette E. Stok,^[a] Sharon Chow,^[a] Elizabeth H. Krenske,^[a] Clementina Farfan Soto,^[a] Csongor Matyas,^[b] Raymond A. Poirier,^[b] Craig M. Williams,^{*[a]} and James J. De Voss^{*[a]}

In memory of John (Kappa) Cornforth

Abstract: The cytochromes P450 are hemoproteins that catalyze a range of oxidative C-H functionalization reactions, including aliphatic and aromatic hydroxylation. These transformations are important in a range of biological contexts, including biosynthesis and xenobiotic biodegradation. Much work has been carried out on the mechanism of aliphatic hydroxylation, implicating hydrogen atom abstraction, but aromatic hydroxylation is postulated to proceed differently. One mechanism invokes as the key intermediate an arene oxide (and/or its oxepin tautomer). Conclusive isolation of this intermediate has remained elusive and, currently, direct formation of phenols from a Meisenheimer intermediate is believed to be favored. We report here the identification of a P450 [P450_{cam} (CYP101A1) and P450_{cin} (CYP176A1)]-generated arene oxide as a product of in vitro oxidation of tert-butylbenzene. Computations (CBS-QB3) predict that the arene oxide and oxepin have similar stabilities to other arene oxides/oxepins implicated (but not detected) in P450mediated transformations, suggesting that arene oxides can be unstable terminal products of P450-catalyzed aromatic oxidation that can explain the origin of some observed metabolites.

The cytochromes P450 (P450s) comprise a superfamily of hemoproteins with over 11,000 members, which catalyze an array of oxidative transformations.^[1] Found in most kingdoms of life, they play integral roles in the biosynthesis of crucial cellular components, for example, sterols, secondary metabolites, and in the biodegradation of xenobiotics for cellular protection and energy generation.^[2] Archetypically, they activate molecu-

_	
[a]	Dr. J. E. Stok, Dr. S. Chow, Dr. E. H. Krenske, C. Farfan Soto,
	Prof. C. M. Williams, Prof. J. J. De Voss
	School of Chemistry and Molecular Biosciences
	The University of Queensland, Brisbane Qld 4072 (Australia)
	E-mail: c.williams3@uq.edu.au
	j.devoss@uq.edu.au
[b]	C. Matyas, Prof. R. A. Poirier
	Department of Chemistry
	Memorial University of Newfoundland
	St. John's NL A1B 3X7 (Canada)
	Supporting information and ORCIDs from the authors for this article is
Ð	available on the WWW under http://dx.doi.org/10.1002/chem.201600246.

lar oxygen with two electrons derived ultimately from a nicotinamide cofactor, and insert an oxygen atom into their substrate through a mechanism that involves a complex catalytic cycle (Scheme 1).

The prototypical P450-catalyzed hydroxylation of alkanes involves initial H atom abstraction by a highly reactive ironoxo porphyrin cation radical^[3,4] followed by recombination of an intermediate carbon-centered radical with the iron-tethered hydroxyl. This gives rise to the hydroxylated product that is then released from the enzyme (Scheme 1).^[3a,5] P450-mediated hydroxylation of aromatic substrates is an intriguing and important reaction in both biosynthetic and drug metabolism contexts, but is still not fully understood. Direct H atom abstraction is much less likely with an aromatic substrate than an aliphatic one, due to the greater strength of aromatic C-H bonds. Moreover, aromatic hydroxylation is accompanied by the so-called 'NIH shift', a rearrangement observed in isotopically labelled substrates in which a deuterium originally present at the site of oxidation moves to an adjacent carbon.^[6] The formation of arene oxides (A, Scheme 1) as obligate intermediates in P450-catalyzed oxidation of an arene (e.g., 1, Scheme 2) has been invoked to explain both the NIH shift and the extensive array of subsequent transformations that are seen coupled to aromatic oxidation (e.g., production of diols and glutathione

Scheme 1. The mechanism of P450-catalyzed oxidation of substrates (SH), which may be either aliphatic (R–H) or aromatic (Ar–H). Hydroxylation of the latter has been proposed to proceed via an intermediate arene oxide **A**.

Chem. Eur. J. 2016, 22, 4408-4412

Wiley Online Library

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 2. Possible pathways for P450-catalyzed oxidation of *tert*-butyl benzene (1).

adducts (in drug metabolism)^[7] and the dearomatization of substituted benzenes).^[8] In addition, cyclizations in the biosynthesis of a variety of secondary metabolites have also been rationalized via the formation of arene oxides.^[9] Conversion of an arene oxide to the corresponding phenol via a ketone (**2** to **4**, Scheme 2) would be subject to a significant isotope effect in the enolization step, thus explaining the deuterium retention observed in the classical NIH shift.^[6,10]

Considerable effort has been expended to identify the proposed arene oxide intermediates involved in P450-catalyzed aromatic oxidations and minor amounts have been identified from oxidation of isolated aromatic systems by in vivo systems. Benzene oxide itself was detected in the blood of rats after administration of benzene. Arene oxides were also detected after catalytic oxidation by liver microsomes of benzene or chlorobenzene; the latter using radioisotope dilution assays.^[11] Whilst these results supported the hypothesis that arene oxides were intermediates, kinetic isotope effects found in the hydroxylation of chlorobenzene^[12] and the regiochemistry of fluorobenzene oxidation, suggested other mechanisms.[13] Recent computational studies provided evidence that P450-catalyzed aromatic oxidations do not involve arene oxide intermediates (A, Scheme 1),^[12-14] but rather that aromatic hydroxylation occurs instead via a Meisenheimer tetrahedral intermediate (5, Scheme 2). This directly introduces the hydroxyl group onto the aromatic ring^[14a, 15] and a 1,2-hydride shift then yields the ketone 3, which tautomerizes to the phenol. This process proceeds with the required isotope effect to yield the deuterium retention of the NIH shift. In this scenario, arene oxides---if they are formed at all-would be terminal side products and would only be converted to phenols through a non-enzymatic, acid-catalyzed reaction.[14a,c,d]

Chemically, arene oxides exist in a valence tautomeric equilibrium with the corresponding, less-reactive oxepins (e.g., **6**).^[16] This valence-tautomeric equilibrium is influenced by both the substituents on the aromatic ring as well as the solvent

and temperature.^[6,10] The formation of arene oxides or oxepins has never been directly observed with a purified, reconstituted P450 system in vitro. In this study, we report the first direct observation of an oxepin (**6**) as a product of a P450-catalyzed oxidation and this, somewhat counter-intuitively, provides evidence that it is not an intermediate but a somewhat unstable product in aromatic oxidations.

Our investigations focused on the catalytic oxidation of the C₁₀ hydrocarbon, *tert*-butylbenzene (1, Scheme 2) by two P450s [P450_{cam} (CYP101 A1) and P450_{cin} (CYP176 A1)]. The native substrates of these enzymes are the similarly sized C₁₀ monoterpenes (1R)-(+)-camphor and 1,8-cineole, respectively.^[2a, 18] In principle, P450-catalyzed hydroxylation of 1 could yield any of the species depicted in Scheme 2. The oxidations of 1 by P450_{cam} and P450_{cin} were observed to give the expected four products, alcohol 7 and phenols 4a-c in different ratios (Table 1). The 3- and 4-tert-butyl phenols 4b and 4c were found to co-elute under the coupled GC-MS conditions employed (Figure 1), but could be separated after acetylation, allowing determination of the product distribution. Broadly, the physical parameters for the interaction of $1\ \text{with}\ \text{P450}_{\text{cam}}$ and P450_{cin} are similar. However, the differences observed (see Table 1) are consistent with varying ratios of 4 and 7 produced when these P450s catalyze the oxidation of 1. Though the dissociation constants (K_d) of P450_{cam} and P450_{cin} with **1** were similar, P450_{cin} showed both a greater change in spin state [low spin Fe^{III}·H₂O (417 nm) to high spin Fe^{III} (392 nm)] upon substrate binding, usually indicative of substrate binding closer to the heme iron. P450_{cin} also exhibited a higher rate of NAD(P)H (nicotinamide cofactor) consumption in the presence of 1 but P450_{cam} was found to be more efficient at coupling NAD(P)H consumption to substrate oxidation. The interaction of 1 with P450_{cam} has been investigated previously^[17] and the results reported are in good qualitative agreement with those observed here (Table 1).

Table 1. Characterization and analysis of oxidation products of tert-butyl benzene (1) by cytochromes P450 _{cam} and P450 _{cin} .						
	P450 _{cam} ^[c]	P450 _{cin} ^[d]				
K_{d} [μM] High spin [%] ^[a] Rate of NAD(P)H consumption [%] ^[a] [μM min ⁻¹ μM ⁻¹ P450] Coupling [%] ^[b]	639 ± 71 48 ± 1 $28^{(17)}$ $89^{(17)}$ $33^{(17)}$	542 ± 87 90 ± 1 106 ± 4 258 ± 9 14 ± 1				
Products [%]						
Alkyl hydroxylation 7 Aromatic hydroxylation - <i>ortho</i> 4a Aromatic hydroxylation - <i>meta</i> 4b Aromatic hydroxylation - <i>para</i> 4c Oxepin formation 6	73 (51) ^[c] 11 (22) ^[c] 10 (18) ^[c] 5 (9) ^[c] 1 (-) ^[c]	$\begin{array}{c} 2 \ (2)^{[d]} \\ 47 \ (40)^{[d]} \\ 44 \ (48)^{[d]} \\ 5 \ (6)^{[d]} \\ 2 \ (4)^{[d]} \end{array}$				
[a] The percentage spin state and rate of consumption were standardized agains	f NADH (P450 _{cam})/N/	ADPH (P450 _{cin})				

consumption were standardized against camphor and cineole with the respective P450, assuming P450_{cam}:camphor and P450_{cin}:cineole was 100%. [b] The ratio of the amount of NAD(P)H consumed to the amount of product formed. [c] Numbers in parentheses are previously reported results.^[17] [d] Numbers in parentheses indicate percentage of product at 6 min.

Chom	Fur 1	2016	22	4408 - 44	12
Chem.	Lui. J.	2010,	ZZ ,	4400 - 44	12

www.chemeurj.org

Figure 1. A) GCMS chromatogram of the products from oxidation of *tert*butyl benzene 1 catalyzed by P450_{cin}; B) synthetic oxepin **6** as the standard.

GCMS analysis of the products of $P450_{cin}$ catalyzed oxidation of **1** revealed the presence of a fifth, unexpected product, comprising up to approximately 4% of the total metabolites formed. This compound eluted much earlier during GCMS analysis than either alcohol **7** or phenols **4a–c** (R_t 5.8 min, Figure 1 A). Interestingly, however, the observed molecular ion (m/z 150) was consistent with incorporation of a single oxygen atom into the substrate (c.f. **1**, M^{+.} m/z 134), strongly supporting the catalytic production of oxepin **6**/benzene oxide **2a** during oxidation of **1**.

Thus, an authentic sample of oxepin 6 was prepared (Scheme 3) using the generalized synthetic procedure reported by Vogel.^[16a] Birch reduction of tert-butyl benzene (1) gave 1tert-butyl-1,4-cyclohexadiene (8) as reported.[19] Subsequent oxidation with meta-chloroperbenzoic acid (mCPBA) at the more reactive double bond afforded the regioisomerically pure epoxide 9, which was reacted with bromine to give 10 as a mixture of two chromatographically inseparable diastereomers. Finally, treatment of dibromide 10 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) afforded the volatile target oxepin 6 with expected spectroscopic properties. The ¹H NMR spectrum of 6 in CDCl₃ revealed that the equilibrium between 6 and 2a, which is expected to be fast on the NMR timescale, lies predominantly towards the oxepin. The diagnostic signal is that for the proton α to the oxygen, which would be expected to occur at approximately 4 ppm in arene oxide 2a and at 6 ppm in oxepin 6; the experimental value (reflecting a

Scheme 3. The synthetic route utilized to access 2-*tert*-butyloxepin (6). *m*CPBA = *meta*-chloroperbenzoic acid; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

concentration-weighted average of the two tautomers) is 5.70 ppm.

Co-injection of synthetic oxepin 6 with the products from the P450_{cin}-catalyzed oxidation of 1 confirmed that the additional product was indeed 6. To our knowledge, this constitutes the first reported observation of significant quantities of an oxepin arising from a P450-catalyzed oxidation of a simple aromatic compound in vitro. A time course experiment (Supporting Information, Supplementary Figure 1) revealed that all products, including 6, increased linearly for the first six minutes of the reaction after which time the reaction is complete. Products 4a-c and 7 then remained unchanged whilst **6** slowly decomposed ($t_{1/2}$ approximately 13 min). This behavior is consistent with 6 being an (unstable) product formed concomitantly with 4a-c and 7 and inconsistent with it being an intermediate. However, despite its apparent stability under assay conditions, oxepin 6 was not previously reported among the products of oxidation of 1 catalyzed by P450_{cam}.^[17] Upon careful examination of the P450_{cam} catalyzed oxidation of 1, we found that a small amount of oxepin 6 was indeed formed, constituting approximately 1% of the total oxidized product after 30 min. Given that neither of the P450s employed are specific for 1, this suggests that production of 6 is a function of the substrate structure and not a specific enzyme effect. Thus, we sought examples of other aromatic oxidations in which a benzene oxide has been proposed as a key intermediate.

In work on the oxidation, and particularly the dearomatization of ortho-xylene (11) by P450_{BM-3} (Scheme 4), Wong and co-workers reported the isolation of 6,6-dimethylcyclohexa-2,4dienone (12) and 2,6-dimethylphenol (15) which were suggested to arise from rearrangement of benzene oxide intermediate 13. It is known from experimental studies that the tautomeric equilibrium between ortho-xylene 1,2-oxide (13) and 2,7-dimethyloxepin (14) lies overwhelmingly toward the oxepin.^[16a] However, no oxepin formation was detected in the P450_{BM-3}catalyzed reaction. Wong et al. proposed that it did not form because the ring opening of 13 to give a zwitterionic intermediate was faster than valence tautomerization to give 14.^[8] In order to determine if this might be due to fundamental chemical differences between the 2a/6 and 13/14 pairs, we repeated the $P450_{BM-3}$ catalyzed oxidation of 11 with sampling times and analysis methods identical to that used for $\mathrm{P450}_{\mathrm{cin}}$ catalyzed oxidation of 1. The product distributions were identi-

Scheme 4. Mechanism proposed by Wong et al. for the P450_{BM-3} catalyzed oxidation of *ortho*-xylene (**11**) to 6,6-dimethylcyclohexa-2,4-dienone (**12**).^[8]

Chem. Eur. J. 2016, 22, 4408-4412

www.chemeurj.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

cal to those previously reported, $^{\scriptscriptstyle [8]}$ within experimental error, and showed no trace of 14.

One of the primary difficulties in identifying arene oxides as intermediates is their rapid rearrangement to more stable compounds (e.g., phenols) under physiological conditions.^[6] If arene oxides are produced in the oxidations of both 1 and 11, then the failure to detect oxepin 14 could in principle be due to either a much slower valence bond isomerisation of arene oxide 13 to 14, as proposed by Wong et al.,^[8] or to a lower stability of oxepin 14 under the experimental conditions. We thus investigated the differences between oxepins 6 and 14 experimentally and computationally. An authentic, synthetic sample of 14 was prepared using Vogel's reported route.^[16a, 20, 21]

High-accuracy CBS-QB3 calculations (see the Supporting Information) were performed to evaluate the stabilities of oxepins 6 and 14 (Scheme 5).^[22] The isomerization of *tert*-butyl benzene oxide 2a to oxepin 6, and of dimethyl benzene oxide 13 to oxepin 14 (Scheme 5a), are both computed to have small activation barriers ($\Delta G^{\dagger} \approx 5 \text{ kcal mol}^{-1}$), indicating that equilibrium will be rapidly attained for both pairs. The values of ΔG (-1.5 and -2.5 kcalmol⁻¹, respectively) predict that in both cases the oxepin will be the dominant species at equilibrium and that, in fact, the arene oxide/oxepin equilibrium for 13/14 lies more strongly towards the oxepin than that of 2a/6 (although the equilibrium position in polar solvents may contain somewhat more benzene oxide).^[16a] These computational data agree well with our experimental observations, where NMR and GCMS analysis suggested that both 6 and 14 were stable to rearrangement at room temperature in organic solvents and at high temperature in the gas phase and that the equilibrium between 6 and 2a lay largely toward 6. Vogel had previously reported that the 13/14 equilibrium similarly strongly favored 14 even in polar solvents.^[16a]

Furthermore, calculations predict that, under acidic conditions, the conversion of both oxepin **6** to phenol **4a**, and of oxepin **14** to cyclohexadienone **12** (Scheme 5 b), are strongly exergonic reactions, with low barriers (7–8 kcal mol⁻¹). Computations suggest that, in the absence of acid, the ring opening

Scheme 5. a) Computed activation barriers and energetics (kcal mol⁻¹) of a ring opening of benzene oxides to oxepins, and b) conversion of oxepin 6 to phenol 4a and of oxepin 14 to cyclohexadienone 12 under acidic conditions, calculated with CBS-QB3.

of benzene oxide 13 by C-O bond cleavage is very unfavorable. A pathway for C–O bond cleavage to give the zwitterionic intermediate proposed by Wong et al. (Scheme 4) could not be located on the potential energy surface, and only became feasible when the oxygen was protonated. Thus we believe the mechanism of decomposition of both oxepins involves conversion to the protonated benzene oxide, followed by C-O bond cleavage (and further 1,2 alkyl shifts in the case of 14). (Supporting Information, Scheme S1). Surprisingly, however, experiments with 6 and synthetic 14, revealed significant differences in the stabilities of the two oxepins towards decomposition. Whereas *tert*-butyloxepin **6** decomposed with a $t_{1/2}$ of 13 min in aqueous buffer (pH 7.4 50 mm Tris), the decomposition of dimethyloxepin 14 under similar conditions (or even in unbuffered water) was complete in < 1 min by GCMS analysis, giving a mixture of cyclohexadienone 12 and 2,6-dimethylphenol (15). The ratio of these two products was essentially the same as observed in the enzyme-mediated dearomatization of 11. In contrast, 14 did not decompose noticeably in a less-polar solution (ethyl acetate, methanol) at room temperature over a period of hours, or even in ethyl acetate/acetic acid solution. The reason for the more rapid decomposition of 14 (compared to 6) in aqueous solution is not immediately obvious from the energetics shown in Scheme 5. We speculate that 13/14 is more sensitive to protonation than 2a/6; the more readily formed cations 13H⁺/14H⁺ rearrange with almost negligible barrier to give **12**H⁺ and **15**H⁺.

Considered together, the relatively slow decomposition of 14 in non-polar solvents (which may approximate the polarity of a P450 active site), compared with its rapid decomposition in aqueous solution, and the identical product ratios observed from the enzyme catalyzed oxidation of 11 and the rearrangement of 14 in aqueous solution together make it likely that 13/14 are indeed direct products of the P450_{BM-3} mediated oxidation of 11. The experimentally and theoretically determined properties of 14 are consistent with the idea that arene oxide 13 would have been formed in the P450_{BM-3}-catalyzed oxidation of ortho-xylene, as proposed by Wong et al.^[8] However, in the relatively nonpolar enzyme active site, as seen with 2a/6, 13 would have converted rapidly to give predominantly oxepin 14. This (14), upon release from the active site into aqueous solution, would then rapidly rearrange to the observed 12 and 15, thus eluding direct detection.

Despite a sustained interest in P450-catalyzed oxidation of aromatic compounds, our detection of **6** among the P450-catalyzed oxidation products of **1** is the first report of a discrete oxepin product from a reconstituted in vitro system, and indeed from a bacterial P450. The observation of oxepin **6** as a product from P450_{cin}- and P450_{cam}-mediated oxidation of **1** but not of **14** from P450_{BM-3} catalyzed oxidation of **11** appears significant. Quantum chemical calculations reveal that the rates of equilibration and relative stabilities of the **2 a/6** and **13/14** pairs are comparable. As none of the enzyme/substrate pairs (P450_{cin}/1, P450_{cam}/1, P450_{BM-3}/11) are natural pairings, it is unlikely that active site residues specifically inhibit the valence bond tautomerisation of an intermediate benzene oxide in one, but not another P450, or that the steric con-

Chem. Eur. J. **2016**, 22, 4408–4412

www.chemeurj.org

straints of an active site significantly change the relative stability of the benzene oxide/oxepin pair, as has been proposed for some substrate specific non-heme iron oxygenase systems.^[23] Therefore, the simplest explanation for these observations is that benzene oxides/oxepins are specific, if somewhat unstable, products of P450-catalyzed arene oxidation and not general intermediates. That is, aromatic oxidation would generally proceed through rearrangement of the Meisenheimer tetrahedral intermediate as previously proposed on the basis of computational studies.^[14e] Benzene oxide/oxepin formation would then be governed by the structure of the arene oxidized and perhaps its interaction with the P450. The fate of the oxepin produced is governed by its stability in aqueous solution: it may be stable enough to allow observation as with 6; it may spontaneously rearrange as with 14; or it may react, probably via its tautomeric arene oxide, intra- or intermolecularly with nucleophiles as previously proposed to give a range of metabolites.^[7,9] Although oxepins and their derivatives are known as natural products,^[23,24] the oxidative enzymes associated with their biogenesis have not to date been P450s. This raises questions as to whether biosynthetic P450s are capable of catalyzing specific formation of an oxepin, and if so how they promote oxepin formation over hydroxylation and what structural features are important in stabilizing the oxepin product in aqueous solution.

Experimental Section

The Supporting Information contains details of the synthesis of **6** and **14** as well as their spectroscopic characterization including NMR spectra, biochemical methods for the P450-catalyzed oxidations as well as the analysis of these reactions, and computational methods, computed geometries, and energies.

Acknowledgements

We gratefully acknowledge the support of the University of Queensland, Memorial University, the Natural Sciences and Engineering Council of Canada (NSERC) and the Australian Research Council (ARC). Computational resources at Compute Canada and ACENET, NCI NF, and UQ RCC are gratefully acknowledged along with the ARC for Future Fellowship awards to E.H.K. (FT120100632) and C.M.W. (FT110100851).

Keywords: arene oxide • benzene oxide • cytochrome p450 • oxepin • *tert*-butyl benzene

- a) D. Nelson, *Human Genomics* 2009, 4, 59; b) P. R. Ortiz de Montellano, J. J. De Voss in *Cytochrome P450: Structure, Mechanism, and Biochemistry* 3rd ed. (Ed.: P. R. Ortiz de Montellano), Kluwer Academic/Plenum Publishers, New York, 2005, pp. 183–245.
- [2] a) Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed.
 (Ed.: P. R. Ortiz de Montellano), Kluwer Academic/Plenum Publishers, New York, 2005; b) P. R. Ortiz de Montellano, S. D. Nelson, Arch. Biochem. Biophys. 2011, 507, 95 – 110.
- [3] a) J. Rittle, M. T. Green, *Science* 2010, *330*, 933–937; b) T. H. Yosca, J. Rittle, C. M. Krest, E. L. Onderko, A. Silakov, J. C. Calixto, R. K. Behan, M. T. Green, *Science* 2013, *342*, 825–829.

- [4] Other reactive oxidative intermediates have also been proposed to be responsible for some selected transformations. See, for example: a) M. J. Cryle, J. J. De Voss, Angew. Chem. Int. Ed. 2006, 45, 8221–8223; Angew. Chem. 2006, 118, 8401–8403; b) B. Wang, C. Li, K.-B. Cho, W. Nam, S. Shaik, J. Chem. Theory Comput. 2013, 9, 2519–2525; c) T. Nomura, T. Kushiro, T. Yokota, Y. Kamiya, G. J. Bishop, S. Yamaguchi, J. Biol. Chem. 2005, 280, 17873–17879; d) T.-W. Kim, J.-Y. Hwang, Y.-S. Kim, S.-H. Joo, S. C. Chang, J. S. Lee, S. Takatsuto, S.-K. Kim, Plant Cell 2005, 17, 2397–2412.
- [5] A. B. McQuarters, M. W. Wolf, A. P. Hunt, N. Lehnert, Angew. Chem. Int. Ed. 2014, 53, 4750–4752; Angew. Chem. 2014, 126, 4846–4848.
- [6] D. M. Jerina, J. W. Daly, Science 1974, 185, 573-582.
- [7] a) Q. Chen, J. S. Ngui, G. A. Doss, R. W. Wang, X. Cai, F. P. DiNinno, T. A. Blizzard, M. L. Hammond, R. A. Stearns, D. C. Evans, T. A. Baillie, W. Tang, *Chem. Res. Toxicol.* **2002**, *15*, 907–914; b) T. Shimada, *Drug Metab. Pharmacokinet.* **2006**, *21*, 257–276; c) P. M. Dansette, G. Bertho, D. Mansuy, *Biochem. Biophys. Res. Commun.* **2005**, *338*, 450–455; d) A. M. Hissink, M. J. Oudshoorn, B. V. Ommen, P. J. V. Bladeren, *Toxicol. Appl. Pharmacol.* **1997**, *145*, 1–9.
- [8] C. J. C. Whitehouse, N. H. Rees, S. G. Bell, L.-L. Wong, Chem. Eur. J. 2011, 17, 6862–6868.
- [9] a) D. J. Edwards, W. H. Gerwick, J. Am. Chem. Soc. 2004, 126, 11432– 11433; b) M. U. Huynh, M. C. Elston, N. M. Hernandez, D. B. Ball, S.-i. Kajiyama, K. Irie, W. H. Gerwick, D. J. Edwards, J. Nat. Prod. 2010, 73, 71– 74.
- [10] D. Jerina, J. Daly, B. Witkop, P. Zaltzman-Nirenberg, S. Udenfriend, Arch. Biochem. Biophys. 1968, 128, 176–183.
- [11] a) A. B. Lindstrom, K. Yeowell-O'Connell, S. Waidyanatha, B. T. Golding, R. Tornero-Velez, S. M. Rappaport, *Carcinogenesis* **1997**, *18*, 1637–1641; b) M. R. Lovern, M. J. Turner, M. Meyer, G. L. Kedderis, W. E. Bechtold, P. M. Schlosser, *Carcinogenesis* **1997**, *18*, 1695–1700; c) H. Selander, D. Jerina, J. Daly, *Arch. Biochem. Biophys.* **1975**, *168*, 309–321; d) H. G. Selander, D. M. Jerina, D. E. Piccolo, G. A. Berchtold, *J. Am. Chem. Soc.* **1975**, *97*, 4428–4430.
- [12] K. R. Korzekwa, D. C. Swinney, W. F. Trager, *Biochemistry* **1989**, *28*, 9019– 9027.
- [13] I. M. C. M. Rietjens, A. E. M. F. Soffers, C. Veeger, J. Vervoort, *Biochemistry* 1993, 32, 4801 – 4812.
- [14] a) S. P. de Visser, S. Shaik, J. Am. Chem. Soc. 2003, 125, 7413-7424;
 b) R. P. Hanzlik, K. Hogberg, C. M. Judson, Biochemistry 1984, 23, 3048-3055;
 c) C. M. Bathelt, L. Ridder, A. J. Mulholland, J. N. Harvey, J. Am. Chem. Soc. 2003, 125, 15004-15005;
 d) C. M. Bathelt, L. Ridder, A. J. Mulholland, J. N. Harvey, J. Am. Chem. Soc. 2003, 125, 15004-15005;
 d) C. M. Bathelt, L. Ridder, A. J. Mulholland, J. N. Harvey, J. Soc. 2003, 125, 15004-15005;
 d) C. M. Bathelt, L. Ridder, A. J. Mulholland, J. N. Harvey, J. Am. Chem. Soc. 2003, 125, 15004-15005;
 d) C. M. Bathelt, L. Ridder, A. J. Mulholland, J. N. Harvey, Org. Biomol. Chem. 2004, 2, 2998-3005;
 e) S. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar, W. Thiel, Chem. Rev. 2010, 110, 949-1017.
- [15] S. Shaik, P. Milko, P. Schyman, D. Usharani, H. Chen, J. Chem. Theory Comput. 2011, 7, 327–339.
- [16] a) E. Vogel, H. Günther, Angew. Chem. Int. Ed. Engl. 1967, 6, 385–401; Angew. Chem. 1967, 79, 429–446; b) H. Jansen, J. C. Slootweg, K. Lammertsma, Beilstein J. Org. Chem. 2011, 7, 1713–1721.
- [17] O. Sibbesen, Z. P. Zhang, P. R. Ortiz de Montellano, Arch. Biochem. Biophys. 1998, 353, 285–296.
- [18] a) D. Hawkes, G. Adams, A. Burlingame, P. Ortiz de Montellano, J. De Voss, J. Biol. Chem. 2002, 277, 27725–27732; b) J. E. Stok, K. E. Slessor, A. J. Farlow, D. B. Hawkes, J. J. De Voss, Adv. Exp. Med. Biol. 2015, 851, 319–339.
- [19] R. A. Benkeser, M. L. Burrous, J. J. Hazdra, E. M. Kaiser, J. Org. Chem. 1963, 28, 1094–1097.
- [20] E. Vogel, R. Schubart, W. A. Böll, Angew. Chem. Int. Ed. Engl. 1964, 3, 510; Angew. Chem. 1964, 76, 784.
- [21] W. Hückel, U. Wörffel, Chem. Ber. 1955, 88, 338-345.
- [22] a) C. C. Pye, J. D. Xidos, R. A. Poirier, D. J. Burnell, J. Phys. Chem. A 1997, 101, 3371–3376; b) J. Morgan, A. Greenberg, Struct. Chem. 2013, 24, 1945–1956.
- [23] R.-Z. Liao, P. E. M. Siegbahn, Chem. Sci. 2015, 6, 2754-2764.
- [24] C.-J. Guo, H.-H. Yeh, Y.-M. Chiang, J. F. Sanchez, S.-L. Chang, K. S. Bruno, C. C. C. Wang, J. Am. Chem. Soc. 2013, 135, 7205–7213.

Received: January 19, 2016 Published online on February 16, 2016

Chem. Eur. J. 2016, 22, 4408 – 4412

www.chemeurj.org

4412