Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Peng, H. Lu, Q. Yang, Y. Zhou, Y. Guo, Z. Deng and Q. Ding, *Org. Biomol. Chem.*, 2013, DOI: 10.1039/C3OB41955J.

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/obc Registered Charity Number 207890 Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Cross-Coupling/Annulations of Quinazolones with Alkynes for Access to Fused Polycyclic Heteroarenes under Mild Conditions

Hui Lu,^b Qin Yang,^a Yirong Zhou,^a Yanqin Guo,^a Zhihong Deng,^b Qiuping Ding,^b and Yiyuan peng^{*a,b}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Ruthenium-catalyzed regioselective oxidative cross-coupling/annulations of quinazolones with alkynes were successfully developed for direct access to fused polycyclic heteroarenes. The transformation proceeded well with a broad substrate scope under mild conditions to accomplish in moderate to high ¹⁰ yields.

Introduction

Published on 05 November 2013. Downloaded by Heinrich Heine University of Duesseldorf on 07/11/2013 17:02:59

- In the last few decades, transition metal-catalyzed C-H bond activation for the construction of C-C bond proved to be the most direct and efficient preparation of complex chemical compounds 15 in an atom- and step-economic manner.¹ Undoubtedly, rhodium (Rh) catalyst was the most widely used one to promote the oxidative coupling/cyclization sequence via C-H bound activation. A variety of directing groups have been successfully induced for various cheating assistant Rh-mediated dehydrogenative 20 annulations processes.² General functional groups containing oxygen or nitrogen atoms like carboxylic acid,³ carbonyl of ketone,⁴ phenolic hydroxyl,⁵ imine,⁶ oxime,⁷ benzamide,⁸ benzhydroxamic acid,9 hydroxamic acid,10 amide,11 acetanilide,12 acrylamide,¹³ enamine,¹⁴ urea,¹⁵ azide¹⁶ and some small ²⁵ heterocyclics¹⁷ including azole, benzimidazole, imidazole, benzoxazole, indole and pyridine etc, all served as potential directing groups. Very recently, a much less expensive ruthenium (Ru) catalyst has been employed by Ackermann et al. to replace Rh catalyst for many similar processes.¹⁸
- ³⁰ At the same time, fused polycyclic heteroaromatic frameworks bearing one or more nitrogen atoms have attracted significant attention for theirs unique biological and photo-electrochemical properties.¹⁹ However, the traditional synthetic routs were long and usually required costly complicated operations. Recently, the
- ³⁵ transition metal mediated C-H functionalizations have become an alternative and partially circumvented the existing shortcomings. Moreover, alkynes have been lately found extensive applications in various catalytic tandem sequential transformations to access multicyclic structures.^{2-18,20} Our group is always interesting in the
- ⁴⁰ synthesis of quinazoline derivatives²¹ and we anticipated that quinazolinones core structure may participate the catalytic tandem reactions with alkynes because it containing an amide moiety which have been proven to be effective directing group (scheme 1).^{18e,20} Herein, we present a useful ruthenium-catalyzed oridative group coupling/group/structure between groups and structure and structure
- 45 oxidative cross-coupling/annulations between quinazolones and

alkynes for facile access to fused polycyclic heteroarenes in regioselective fashion under mild conditions.

Scheme 1 Recent Examples of Amide Directing Transition Metalcatalyzed Oxidative Coupling/Annulations of Alkynes.

Results and discussion

As an initial attempt, 2-p-tolyl-4-quinazolinone (1a) was treated with diphenylacetylene (2a) in the presence of Ru catalyst (5 mol% [RuCl₂(p-cymene)]₂), oxidant (2.2 equiv of Cu(OAc)₂) and base (2.0 equiv of Na₂CO₃) in PhCl at 90 °C under N₂ atmosphere for 16 hours. To our delight, the reaction proceed ⁶⁵ clear to isolate 3a in 82% yield (Table1, entry 1). The structure of 3a was comfirmed by X-ray diffiraction analysis (see the Surpporting Information). When the reaction was performed in air under identical conditions, the yield did not fluctuate (Table1, entry 1). This result indicated that the atmosphere did not exert

any influence on the transformation. The following optimization of reaction parameters were all conducted systematically under air for simple experimental operation. Firstly, the solvent effects were investigated (see the Surpporting Information for detailed information). When toluene was used the yield increased to 02%

- ⁵ information). When toluene was used, the yield increased to 92% (Table1, entry 2). While halogenated solvent DCE provided moderate yield of 75% (see the Surpporting Informatiom for detailed information). The further examination including some aprotic polar solvent, such as THF, DMF, NMP and MeCN all ¹⁰ delivered inferior outcomes. Protic MeOH was also examined
- and generated low efficiency (see the Surpporting Informatiom for detailed information). So, aromatic solvent toluene was chosen as the optimal solvent for further optimization. Next, a group of oxidants like copper salts and silver salts were screened
- 15 (see the Surpporting Information for detailed information). The counter anion played significant role in the process. Only acetate could enhance the catalytic activity while others turned out to be unsuitable, thereby in agreement with literature description of carboxylate assistance for the transition metal-catalyzed C-H 20 functionalizations. Then, both inorganic and organic base were evaluated as additive (see the Surpporting Informatiom for detailed information). Only K₃PO₄ could afford good yield of 79%, while other inorganic bases including K₂CO₃, Cs₂CO₃, NaOH, and t-BuOK all gave moderate yield. On the other hand, 25 among the organic bases, triethylamine generated the highest yield of 85%, While DBU and DABCO just provided lower yields. Finally, the reaction temperature was also investigated for its well-known significant influence on the reaction rate. Higher or lower temperature seemed to be not appropriate for the 30 transformation because decreased yields were generated in such
 - cases (Table1, entries 6 and 7).

Published on 05 November 2013. Downloaded by Heinrich Heine University of Duesseldorf on 07/11/2013 17:02:59

Table 1. Optimization of	f Reaction	Conditions
--------------------------	------------	------------

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} + \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$						
1a 2a, 1.5 eq. 3a 3a						
entry	solvent	oxidant	base	T (°C)	yield (%) ^b	
1°	PhCl	$Cu(OAc)_2$	Na ₂ CO ₃	90	81(82) ^c	
2	Toluene	$Cu(OAc)_2$	Na ₂ CO ₃	90	92	
3	Toluene	AgOAc	Na ₂ CO ₃	90	87	
4	Toluene	$Cu(OAc)_2$	Et ₃ N	90	85	
5	Toluene	$Cu(OAc)_2$	Na ₂ CO ₃	120	67	
6	Toluene	$Cu(OAc)_2$	Na ₂ CO ₃	60	87	
7	Toluene	Cu(OAc) ₂ *H ₂ O	Na ₂ CO ₃	90	86	
^a The reaction was carried out on a 0.2 mmol of 1a with 1.5 equiv of 2a						
in presence of 5 mol% catalyst [RuCl ₂ (p-cymene)] ₂ , 2.2 equiv of oxidant						
and 2.0 equiv of base additive in 3 mL solvent at indicated temperature						

- in presence of 5 mol% catalyst [RuCl₂(p-cymene)]₂, 2.2 equiv of oxidant and 2.0 equiv of base additive in 3 mL solvent at indicated temperature for 16 hours. ^b Isolated yield. ^c The data in parentheses was obtained under N₂ atmosphere reaction condition.
- ³⁵ Encouraged by the above preliminary results, we continued to investigate the catalyst and reagent loading's effects on the catalytic process. The results are summarized in Table 2. The yield decreased sharply accompany by a reduction of the catalyst loading, oxidant loading or base loading (Table 2, entries 1, 4 and
- 40 6). On the other hand, when the dose of the three reagents increased, the yield did not raise anymore (Table 2, entries 3, 5 and 7). Additionally, the control experiments shown that in absence of any one of the reaction parameters or reagents, the
 - 2 | Journal Name, [year], [vol], 00-00

reaction could not proceed anymore. Furthermore, several other 45 kinds of ruthenium catalysts, such as Ru(PPh₃)Cl₂, View Article Online [Ru(bipy)₃]Cl₂*6H₂O, Ru(COD)Cl₂ and RbGl₃*012399755084*9555 examined, but only trace amount expected product were detected.

Table 2. Catalyst and Reagent Loading Screening

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$							
1a	2a, 1.5 e	eq.		3a 🗸 🔪			
entry	Ru catalyst	$Cu(OAc)_2$	Na ₂ CO ₃	yield (%) ^b			
	(x mol%)	(y equiv)	(z equiv)				
1	2.5	2.2	2.0	54			
2	5.0	2.2	2.0	92			
3	7.5	2.2	2.0	93			
4	5.0	1.2	2.0	52			
5	5.0	3.2	2.0	92			
6	5.0	2.2	1.5	69			
7	5.0	2.2	2.5	92			
^a The reaction was carried out on a 0.2 mmol of 1a with 1.5 equiv of 2a in							
presence of x mol% catalyst [RuCl-(n-cymene)], y equiv of $Cu(OAc)$.							

presence of x mol% catalyst $[RuCl_2(p-cymene)]_2$, y equiv of $Cu(OAc)_2$ and z equiv of Na_2CO_3 in 3 mL toluene at 90 °C for 16 hours. ^b Isolated yield.

50 With the optimized reaction conditions in hand, the substrate scope was explored. As illustrated in Table 3, a wide range of quinazolinones and alkynes could be well tolerated in our catalytic system. Different substituents on the 2-position benzene 55 ring were firstly probed (3a-3h). The substrates bearing electronic-donor substitutions generally afforded better outcomes than electronic-withdrawing ones. It was noteworthy that the halo atoms could be tolerant under the identical conditions albeit with moderate yields. Nevertheless, when the 2-position of the 60 benzene ring was substituted by methyl group on 2'-position (3h), the yield sharply decreased to 37% along with 56% starting material 1h recovered, probably due to the big steric hindrance. After finishing the above examination, we moved on to check the mother aromatic ring of the quinazolinone. The opposite 65 influence of the electronic properties on the catalytic transformation was observed this time. Unlike the previous results, the electro-deficient quinazolinones all produced higher yields than electro-rich ones no matter what the situations of 2position substituted benzene ring were (3i-3o). Subsequently, 70 different symmetric internal alkynes were also assessed. Gratifyingly, both the alkyl and aryl alkynes could react smoothly with quinazolinone 1a to provide the expect product in high yields (3p-3t). Notably, diethyl acetylene generated the best result to give almost quantitative yield of 3p.

Published on 05 November 2013. Downloaded by Heinrich Heine University of Duesseldorf on 07/11/2013 17:02:59

^aThe reaction was carried out on a 0.2 mmol of **1a** with 1.5 equiv of **2a** in presence of 5 mol% catalyst $[RuCl_2(p-cymene)]_2$, 2.2 equiv of $Cu(OAc)_2$ and 2 equiv of Na_2CO_3 in 3 mL toluene at 90 °C for 16 hours. Isolated yield.

Additionally, the regioselectivities were evaluated by the employment of 3'-position of benene ring substituted substrate **4** ⁵ and unsymmetric alkynes **6** and **8** (scheme 2). In case of **4**, only single regioisomer **5a** was detected probably caused by the steric hindrance difference. However, while unsymmetric alkynes **6** and **8** were ultilized, the moderate regioselectivities of 3:1 and 6:1 ratio were obtained, respectively. The structure of **7b** and **9b** were ¹⁰ also comfirmed by X-ray diffiraction analysis (see the Surpporting Informatiom).

Scheme 2 Evaluation of the Regioselectivity.

Moreover, some preliminary investigations were further carried ¹⁵ out for better understanding the details of the exact reaction mechanism (scheme 3). When the directions 187019/030681955 blocked by methyl group (10), the reaction could not proceed anymore. It meant the directing group was a pivotal element for the transition metal catalytic transformation. Then, when the 2-²⁰ position aromatic ring was replaced by alkyl chain, the much more challenged sp³ C-H bond activation did not occur. However, 2-propyl substituted quinazolinone 11 underwent the coupling with diphenylacetylene (2a) via the N-H bond cleavage to provide the product 12 in moderate yield. This phenomenon ²⁵ indicated that the N-H bond could be functionalized solely without the participation of the C-H bond activation.

Scheme 3 Preliminary Investigation of the Reaction Mechanism.

30 Conclusions

In summary, we have demonstrated an unprecedented ruthenium-catalyzed regioselective oxidative crosscoupling/cyclizations of quinazolones with alkynes for the facile construction of fused tetracyclic heteroarenes. The transformation ³⁵ proceeded well with a broad substrate scope under mild conditions to accomplish in moderate to high yields. Moreover, the preliminary investigations of the reaction mechanism showed that the N-H bond could be functionalized solely without the C-H bond cleavage. Further more work is currently underway in our ⁴⁰ laboratory for better understanding of the exact reaction pathway.

Experimental Section

All reactions were performed in reaction tubes under air. Flash column chromatography was performed using silica gel (60-Å pore size, 32–63 μm, standard grade). Analytical thin–layer 45 chromatography was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr (house 50 vacuum) at 25–35°C. Commercial reagents and solvents were used as received. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale.

General experimental procedure for synthesis of **3**. A mixture of ⁵⁵ quinazolinone (**1**) (0.2mmol, 1.0eq), the alkyne (**2**) (0.3mmol, 1.5eq), [RuCl₂(p-cymene)]₂ (5%), Na₂CO₃ (0.4mmol, 2.0eq), Cu(OAc)₂ (0.44mmol, 2.2eq), toluene (2ml) were added to a reaction tube. The mixture was stirred at 90 °C for 16 hours. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round ⁶⁰ bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel.

3-methyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (**3a**). White solid (yield 92%), mp: 264-265 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.78 (t, J = 7.2 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.6 (t, J = 7.2 Hz, 1H), 7.70 (t, J = 7.2 Hz, 1H), 7.10-7.05

⁵ Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.27-7.23 (m, 3H), 7.10-7.05 (m, 7H), 6.95 (s, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 147.7, 147.0, 142.7, 137.2, 135.6, 135.3, 134.4, 133.9, 131.2, 129.8, 128.5, 128.0, 127.7, 127.2, 127.2, 126.8, 126.7, 126.2, 125.4, 124.9, 120.1, 22.0; HRMS (ESI) calcd. for ¹⁰ C₂₉H₂₀KN₂O (M + K⁺), 451.1213; Found, 451.1224; IR (cm⁻¹) v

¹⁰ C₂₉H₂₀KN₂O (M + K), 451.1213; Found, 451.1224; IK (cm⁻¹) v
²⁹ 292, 1706, 1599, 1541, 1487, 1444, 1292, 1155, 822, 770, 694.
³ -methoxy-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8⁶ one (**3b**). White solid (yield 95%), mp: 246-247 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, *J* = 8.8 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 7.84-7.76 (m, 2H), 7.73-7.70 (m, 1H), 7.54-7.51 (m, 1H), 7.35 (t, *J* = 6.8 Hz, 1H), 7.28-7.22 (m, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 7.13-7.11 (m, 3H), 7.08-7.05 (m, 4H), 6.57 (d, *J* = 6.4 Hz, 1H), 7.08-7.05 (m, 2H), 6.57 (d, *J* = 6.4 Hz, 1H)

1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 161.4, 147.5, 147.2, 137.1, 135.9, 135.5, 134.4, 131.1, 129.3, 128.5, 20 128.1, 127.6, 127.3, 127.2, 127.2, 126.9, 126.5, 125.1, 120.7, 119.8, 116.3, 109.0, 55.4; HRMS (ESI) calcd. for C₂₉H₂₀N₂NaO₂ (M + Na⁺), 451.1422; Found, 451.1440; IR (cm⁻¹) v 2918, 1700, 1608, 1541, 1492, 1461, 1285, 1236, 857, 761, 702.

3-(dimethylamino)-5,6-diphenyl-8H-isoquinolino[1,2-

- ²⁵ b]quinazolin-8-one (**3c**). Yellow solid (yield 96%), mp: 278-279 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 9.2 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 7.79-7.71 (m, 3H), 7.52-7.51 (m, 1H), 7.31-7.22 (m, 3H), 7.10-6.97 (m, 6H), 6.98 (d, J = 8.8 Hz, 1H), 6.19 (s, 1H), 2.88 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6,
- $_{30}$ 152.6, 148.2, 147.7, 137.6, 136.1, 135.6, 134.2, 132.3, 131.1, 130.9, 128.9, 128.7, 128.5, 127.9, 127.2, 127.1, 126.6, 126.2, 124.2, 119.5, 116.0,113.5, 106.6, 39.1; HRMS (ESI) calcd. for $C_{30}H_{24}N_{3}O\ (M\ +\ H^+)\ 442.1919;\ Found,\ 442.1920;\ IR\ (cm^{-1})\ v\ 2960,\ 1728,\ 1608,\ 1537,\ 1492,\ 1467,\ 1290,\ 1124,\ 842,\ 778,\ 698.$
- 5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-one (**3d**). White solid (yield 77%), mp: 261-262 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.11 (d, *J* = 7.6 Hz, 1H), 8.16 (d, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.81 (t, *J* = 6.8 Hz, 1H), 7.62 (t, *J* = 6.8 Hz, 1H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 6.8 Hz, 1H), 7.25 (m, 3H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.12-7.07 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 147.5, 146.9, 137.0, 135.5, 135.2, 134.5, 133.9, 132.0, 131.2, 128.5, 128.3, 128.0, 127.8, 127.3, 127.2, 127.1, 126.9, 126.8, 126.2, 125.6, 120.3; HRMS (ESI) calcd. for $C_{28}H_{19}N_2O$ (M + H⁺), 399.1497; Found, 399.1506; IR (cm⁻¹) v
- ⁴⁵ 2930, 1697, 1607, 1546, 1487, 1468, 1298, 1137, 768, 696.
 3-fluoro-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-one
 (3e). White solid (yield 67%), mp: 247-248 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, *J* = 9.2 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.87-7.82 (m, 2H), 7.41 (t, *J* = 6.8 Hz, 1H), 7.33 (d, *J* = 8.0 Hz,
- ⁵⁰ 1H), 7.35-7.36 (m, 3H), 7.14-7.06 (m, 7H), 6.84 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, ¹ $J_{CF} = 252$ Hz), 161.2, 146.9, 146.8, 136.7, 136.6, 136.3 (d, ³ $J_{CF} = 10$ Hz), 135.0, 134.6, 131.0, 130.3, 130.2, 128.4, 128.3, 127.6, 127.2, 127.1, 127.0, 126.7, 125.7, 123.7, 120.1, 116.6 (d, ² $J_{CF} = 23$ Hz),111.9 ⁵⁵ (d, ² $J_{CF} = 23$ Hz); HRMS (ESI) calcd. for C₂₈H₁₈FN₂O (M + H⁺),
- ⁵⁵ (d, $J_{CF} = 23$ Hz); HRMS (ESI) calca. for $C_{28}H_{18}FN_2O(M + H)$, 417.1403; Found: 417.1423; IR (cm⁻¹) v 2919, 1704, 1613, 1549, 1489, 1469, 1292, 1202, 863, 766, 695.

3-chloro-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-one (**3f**). White solid (yield 66%), mp: 236-237 °C. ¹H NMR (400 $_{60}$ MHz, CDCl₃) δ 9.01 (d, *J* = 8.4 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H),

7.84-7.77 (m, 2H), 7.53 (d, J = 8.4Hz, 1H), 7.39 (t, J = 6.8 Hz, 1H), 7.26 (m, 3H), 7.12-7.06 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 146.8, 146.7, 138.6, 136.7, 136.6, 135.3, 134.8,

134.6, 131.1, 128.9, 128.7, 128.4, 128.3, 127.6, 127.2, 127.1,

- (**3g**). White solid (yield 56%), mp: 223-224 °C. ¹H NMR (400 ⁷⁰ MHz, CDCl₃) δ 8.94 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.85-7.78 (m, 2H), 7.70 (d, J = 8.8 Hz, 1H), 7.40 (t, J = 6.8 Hz, 1H), 7.29-7.27 (m, 4H), 7.13-7.05 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 147.0, 146.7, 136.7, 136.6, 135.5, 134.7, 134.6, 131.6, 131.0, 128.9, 128.7, 128.4, 128.3, 127.6, 127.2, 127.1,
- $_{75}$ 126.8, 126.5, 126.1, 125.9, 120.3; HRMS (ESI) calcd. for $C_{28}H_{18}BrN_2O~(M\,+\,H^+),\,477.0603;$ Found: 477.0597; IR (cm $^{-1})$ v 2930, 1712, 1604, 1544, 1479, 1330, 1288, 1175, 868, 744, 702.
- 1-methyl-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8one (**3h**). White solid (yield 37%), mp: 226-227 °C. ¹H NMR ⁸⁰ (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.44-7.37 (m, 3H), 7.26-7.24 (m, 3H), 7.09-7.06 (m, 8H), 3.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 148.3, 146.2, 141.1, 137.0, 136.3, 135.6, 134.9, 134.2, 132.7, 131.3, 130.8, 128.5, 128.0, 127.2, 127.0, 126.9, ⁸⁵ 125.8, 125.7, 124.8, 120.1, 27.2; HRMS (ESI) calcd. for C₂₉H₂₀N₂NaO (M + Na⁺), 435.1473; Found, 435.1486; IR (cm⁻¹) v 2926, 1689, 1606, 1552, 1490, 1443, 1282, 1139, 802, 764, 701. 11-methyl-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8one (**3i**). White solid (yield 70%), mp: 251-252 °C. ¹H NMR (400
- ⁹⁰ MHz, CDCl₃) δ 9.09 (d, J = 7.6 Hz, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.72-7.67 (m, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.56-7.52 (m, 2H), 7.25-7.18 (m, 3H), 7.17 (d, J = 7.6 Hz, 1H), 7.11-7.07 (m, 6H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 147.6, 146.9, 145.4, 137.1, 135.6, 133.9, 132.3, 131.8, 131.1, 130.9, 128.8, 95 128.4, 128.2, 128.0, 127.4, 127.3, 127.2, 127.1, 127.0, 126.8, 126.4, 126.1, 117.9, 22.0; HRMS (ESI) calcd. for C₂₉H₂₀N₂NaO (M + Na⁺), 435.1473; Found, 435.1464; IR (cm⁻¹) v 2960, 1690, 1610, 1544, 1483, 1442, 1282, 1074, 790, 700.

10-bromo-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-

- ¹⁰⁰ one (**3j**). White solid (yield 86%), mp: 230-231 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (d, J = 8.0 Hz, 1H), 8.26 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.61-7.54 (m, 2H), 7.26-7.25 (m, 3H), 7.18 (d, J = 7.6 Hz,1H), 7.13-7.06 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 147.8, 145.7, 137.6, 136.7,
- ¹⁰⁵ 135.3, 135.1, 133.9, 132.3, 131.1, 131.0, 129.6, 128.7, 128.5, 128.2, 128.1, 127.4, 127.3, 127.2, 127.1, 126.3, 121.4, 118.8; HRMS (ESI) calcd. for $C_{28}H_{18}BrN_2O$ (M + H⁺), 477.0603; Found, 477.0582; IR (cm⁻¹) v 2930, 1711, 1600, 1542, 1482, 1466, 1288, 1134, 821, 758, 697.
- 9-fluoro-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-one (**3k**). White solid (yield 82%), mp: 223-224 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (d, *J* = 8.0 Hz, 1H), 7.74-7.69 (m, 2H), 7.67-7.59 (m, 3H), 7.54-7.52 (m, 1H), 7.30-7.26 (m, 2H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.11-7.06 (m, 6H), 7.03-7.01 (m, 1H); ¹³C NMR (400 MHz, CDCl₃) δ 161.0 (d, ¹/₄) = 265 Hz, 148.0
- 7.6 Hz, 1H), 7.11-7.06 (m, 6H), 7.03-7.01 (m, 1H); ¹³C NMR 115 (100 MHz, CDCl₃) δ 161.0 (d, ¹*J*_{CF} = 265 Hz), 158.3, 148.9, 148.4, 136.4, 135.3, 135.0, 134.5 (d, ³*J*_{CF} = 10 Hz), 134.2, 132.4, 132.3, 131.1, 131.0, 128.9, 128.5 (d, ⁴*J*_{CF} = 5 Hz), 128.1, 127.8, 127.4, 127.1 (d, ⁴*J*_{CF} = 4 Hz), 126.8, 126.3, 122.6 (d, ⁴*J*_{CF} = 4 Hz), 111.7 (d, ²*J*_{CF} = 21 Hz), 110.0 (d, ⁴*J*_{CF} = 7 Hz); HRMS (ESI) 120 calcd. for C₂₈H₁₈FN₂O (M + H⁺) 417.1403; Found: 417.1413; IR
- (cm^{-1}) v 2933, 1710, 1611, 1544, 1488, 1444, 1284, 1141, 815, 777, 700.

3,11-dimethyl-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-one (**3l**). White solid (yield 80%), mp: 252-253 °C. ¹H NMR ¹²⁵ (400 MHz, CDCl₃) δ 8.98 (d, *J* = 7.6 Hz, 1H), 8.05 (d, *J* = 7.6 Hz, 1H), 7.72-7.66 (m, 2H), 7.53 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.28-7.24 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.12-7.02 (m, 6H),

^{4 |} Journal Name, [year], [vol], 00-00

Published on 05 November 2013. Downloaded by Heinrich Heine University of Duesseldorf on 07/11/2013 17:02:59

6.95 (s, 1H), 2.55 (s, 3H), 2.38 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 161.1, 147.8, 147.1, 145.4, 142.6, 137.3, 135.7, 135.3, 133.9, 132.3, 131.2, 131.0, 129.8, 128.9, 128.5, 128.0, 127.5, 127.2, 127.1, 126.8, 126.3, 126.1, 125.0, 117.8, 22.1, 22.0; s HRMS (ESI) calcd. for C₃₀H₂₂N₂NaO (M + Na⁺), 449.1630; Found, 449.1652; IR (cm⁻¹) v 2918, 1729, 1610, 1543, 1487, 14639, 1287, 1124, 787, 695.

- *b*]quinazolin-8-one (**3m**). White solid (yield 95%), mp: 254-10 255 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 8.0 Hz, 1H), 8.23 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.28-7.21 (m, 3H), 7.12-7.05 (m, 7H), 6.93 (s, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 147.9, 145.9, 143.0, 137.4, 136.9, 135.5, 135.3, 134.0, 131.1, 15 129.9, 129.5, 128.6, 128.5, 128.1, 128.0, 127.3, 127.2, 127.1, 126.9, 126.2, 124.8, 121.3, 118.4, 21.9; HRMS (ESI) calcd. for C₂₉H₂₀BrN₂O (M + H⁺), 491.0759; Found: 491.0740; IR (cm⁻¹) v 2923, 1689, 1597, 1541, 1489, 1463, 1292, 1153, 840, 728, 695. 3-chloro-11-methyl-5,6-diphenyl-8*H*-isoquinolino[1,2-
- ²⁰ *b*]quinazo-lin-8-one (**3n**). White solid (yield 57%), mp: 286-287 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, *J* = 8.8 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.56 (s, 1H), 7.47 (d, *J* = 8.8 Hz, 1H), 7.20-7.15 (m, 4H), 7.05-6.96 (m, 8H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 147.0, 146.8, 145.7, 138.5, 136.8, 136.7, 135.3, 134.8, 131.1, 132.8, 132.7, 132.4, 132.2, 137.6
- 25 136.7, 135.3, 134.8, 131.1, 128.8, 128.7, 128.4, 128.2, 127.6, 127.5, 127.2, 127.1, 127.0, 126.4, 125.8, 125.6, 117.9, 22.1; HRMS (ESI) calcd. for $C_{29}H_{20}CIN_2O\,(M\,+\,H^+)$, 447.1264; Found: 447.1294; IR (cm $^{-1})$ v 2919, 1689, 1608, 1544, 1482, 1442, 1287, 1197, 875, 787, 708.
- ³⁰ 10-bromo-3-chloro-5,6-diphenyl-8*H*-isoquinolino[1,2*b*]quinazolin-8-one (**3o**). white solid (yield 84%), mp: 232-233 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 8.4 Hz, 1H), 8.23 (s, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.53 (d, J= 8.0 Hz, 1H), 7.30-7.24 (m, 3H), 7.17-7.04 (m, 8H); ¹³C NMR ³⁵ (100 MHz, CDCl₃) δ 159.9, 147.1, 145.5, 138.9, 137.7, 136.5, 136.4, 135.3, 134.6, 131.0, 129.6, 128.9, 128.6, 128.4, 128.3, 127.7, 127.3, 127.3, 127.1, 125.7, 125.5, 121.4, 119.0; HRMS
- (ESI) calcd. for C₂₈H₁₇BrClN₂O (M + H⁺), 511.0213; Found: 511.0233; IR (cm⁻¹) v 2927, 1705, 1617, 1541, 1479, 1444, 1287, 40 1217, 885, 828, 696. 5,6-diethyl-3-methyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-one
- (3p). White solid (yield 98%), mp: 103-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 8.0 Hz, 1H), 8.31 (d, J = 7.6 Hz, 1H), 7.76-7.73 (m, 2H), 7.48 (s, 1H), 7.40 (t, J = 6.4 Hz, 1H), 7.35 (d, 4^{5} J = 8.0 Hz, 1H), 3.23 (q, J = 7.2 Hz, 2H), 2.91 (q, J = 7.2 Hz, 2H), 2.52 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 147.7, 146.8, 142.4, 137.5, 134.0, 132.7, 128.7, 127.5, 126.7, 126.4, 125.1, 125.0, 124.6, 123.0, 120.0, 23.5, 22.1, 20.5, 14.5, 14.2; HRMS (ESI) calcd. for $_{50}$ C₂₁H₂₀N₂NaO (M + Na⁺) 339.1473; Found: 339.1493; IR (cm⁻¹) v
- 2964, 2873, 1684, 1603, 1541, 1468, 1296, 1180, 820, 764, 698. 3-methyl-5,6-dip-tolyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8-one (**3q**). White solid (yield 93%), mp: 298-299 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, *J* = 8.0 Hz, 1H), 8.16 (d, *J* = 7.6 Hz, 1H), ⁵⁵ 7.85 (d, *J* = 8.0Hz, 1H), 7.78 (t, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.4 V. 100 M Hz, 00 M H
- Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.08 (d, J = 7.6 Hz, 2H), 6.96-6.93 (m, 7H), 2.36 (s, 3H), 2.35 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 147.8, 147.1, 142.6, 136.7, 136.2, 135.3, 134.3, 134.2, 132.6, 131.0, 129.6, 128.9, 128.7, 128.3, 60 128.0, 127.7, 127.2, 127.1, 126.6, 126.2, 125.2, 124.9, 120.2,
- ⁵⁰ 128.0, 127.7, 127.2, 127.1, 126.0, 126.2, 125.2, 124.9, 120.2, 22.0, 21.4, 21.3; HRMS (ESI) calcd. for $C_{31}H_{24}N_2NaO$ (M + Na⁺), 463.1786; Found, 463.1791; IR (cm⁻¹) v 2921, 1706, 1602, 1542, 1491, 1467, 1291, 1123, 831, 769, 694.
 - 5,6-bis(4-methoxyphenyl)-3-methyl-8H-isoquinolino[1,2-

 $C_{3}(11_{25}(3_{25}, 3_{25}$

5,6-bis(4-fluorophenyl)-3-methyl-8*H*-isoquinolino[1,2*b*]quinazolin-8-one (**3s**). White solid (yield 90%), mp 249-250 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, *J* = 7.6 Hz, 1H), 8.12 (d, *J* ⁸⁰ = 7.6 Hz, 1H), 7.81-7.77 (m, 2H), 7.43-7.36 (m, 2H), 7.05-6.95 (m, 6H), 6.85- 6.81 (m, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, ¹*J*_{CF} = 246 Hz), 161.4 (d, ¹*J*_{CF} = 245 Hz), 161.2, 147.4, 146.9, 142.9, 134.7, 134.5, 133.6, 133.1 (d, ⁴*J*_{CF} = 4

Hz), 132.8 (d, ${}^{3}J_{CF} = 8.0$ Hz), 131.4 (d, ${}^{4}J_{CF} = 3$ Hz), 130.2 (d, ${}^{85}J_{CF} = 8.0$ Hz), 130.1, 127.2, 127.1, 127.1,126.8, 125.9, 125.5, 124.9, 120.0, 115.3 (d, ${}^{2}J_{CF} = 21$ Hz), 114.5 (d, ${}^{2}J_{CF} = 22$ Hz), 22.0; HRMS (ESI) calcd. for C₂₉H₁₉F₂N₂O (M + H⁺), 449.1465; Found, 449.1488; IR (cm⁻¹) v 2921, 1681, 1600, 1548, 1508, 1467, 1293, 1223, 858, 778, 696.

⁹⁰ 5,6-bis(4-chlorophenyl)-3-methyl-8*H*-isoquinolino[1,2*b*]quinazolin-8-one (**3t**). Light yellow solid (yield 88%), mp: 256-257 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 7.2 Hz, 1H), 7.84-7.76 (m, 2H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 6.8 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* 95 = 8.0 Hz, 2H), 6.98 (t, *J* = 9.6 Hz, 4H), 6.84 (s, 1H), 2.35 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 161.2, 147.3, 146.9, 143.0, 135.5, 134.6, 133.8, 133.6, 133.3, 132.8, 132.4, 131.0, 130.2, 129.7, 128.9, 128.6, 127.7, 127.3, 127.1, 126.8, 125.9, 125.6, 125.0, 119.9, 22.0; HRMS (ESI), calcd. for $C_{29}H_{19}Cl_2N_2O$ (M + H⁺), 100 481.0874; Found: 481.0883; IR (cm⁻¹) v 2927, 1708, 1602, 1542, 1489, 1467, 1291, 1095, 831, 768, 697.

2-methyl-5,6-diphenyl-8*H*-isoquinolino[1,2-*b*]quinazolin-8one (**5a**). White solid (yield 49%), mp: 214-215 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 7.2 Hz, 1H), 7.73-7.71 (m, 1H), 7.54-7.52 (m, 1H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.27-7.25 (m, 2H), 7.13-7.10 (m, 3H), 7.08-7.06 (m, 4H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 147.6, 146.9, 138.7, 137.1, 135.7, 134.4, 133.4, 132.3, 131.7, 131.1, 131.0, 128.9, 128.5, 128.0, 110 127.8, 127.2, 127.2, 126.9, 126.8, 126.7, 126.3, 125.6, 120.2, 21.7; HRMS (ESI) calcd. for C₂₉H₂₁N₂O (M + H⁺), 413.1654; Found 412 1653; IB (cm⁻¹), 2020. 1604, 1604, 1548, 1471.

Found, 413.1653; IR (cm⁻¹) v 2920, 1694, 1604, 1548, 1471, 1445, 1286, 1127, 770, 697.

5-(4-methoxyphenyl)-3-methyl-6-phenyl-8*H*-isoquinolino[1,2-

- ¹¹⁵ *b*]quinazolin-8-one (**7a**). white solid, mp: 226-227 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, *J* = 8.0 Hz, 1H), 8.16 (d, *J* = 7.6 Hz, 1H), 7.86-7.79 (m, 2H), 7.41 (t, *J* = 8.4 Hz, 2H), 7.31-7.24 (m, 3H), 7.10-7.04 (m, 2H), 6.97-6.95 (m, 3H), 6.65 (d, *J* = 8.0 Hz, 2H), 3.72 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ¹²⁰ 161.6, 158.1, 147.8, 147.0, 142.7, 135.8, 135.1, 134.4, 134.0, 131.2, 129.7, 129.5, 128.1, 127.8, 127.1, 127.1, 126.7, 126.1, 125.3, 124.9, 120.2, 112.7, 55.0, 22.0; HRMS (ESI) calcd. for C₃₀H₂₃N₂O₂ (M + H⁺), 443.1760; Found, 443.1736; IR (cm⁻¹) v 2930, 1699, 1605, 1545, 1492, 1467, 1293, 1246, 832, 779, 696.
- ¹²⁵ 6-(4-methoxyphenyl)-3-methyl-5-phenyl-8*H*-isoquinolino[1,2*b*]quinazolin-8-one (7b). White solid, mp: 272-273 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.44 (d, *J*

Journal Name, [year], [vol], 00–00 | 5

¹⁰⁻bromo-3-methyl-5,6-diphenyl-8H-isoquinolino[1,2-

⁶⁵ b]quinazolin-8-one (**3r**). White solid (yield 90%), mp: 276-278 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H)^{iev} Argicle 07line 7.2Hz, 1H), 7.42-7.35 (m, 2H), 6.99-6.95 (m, 5H), 0.82 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 3.74 (s, 3H), 70 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 158.5, 158.0, 147.8, 147.1, 142.6, 135.4, 134.4, 134.3, 132.2, 129.7, 129.6, 129.6, 127.9, 127.5, 127.1, 127.1, 126.6, 126.1, 125.2, 124.9, 120.2, 113.5, 112.7, 55.2, 55.0, 22.0; HRMS (ESI) calcd. for C₃₁H₂₅N₂O₃ (M + H⁺), 473.1865; Found, 473.1894; IR (cm⁻¹) v

Organic & Biomolecular Chemistry Accepted Manuscrip

This journal is © The Royal Society of Chemistry [year]

= 8.0 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.15-7.13 (m, 3H), 7.07-7.04 (m, 2H), 6.98 (d, J = 8.8 Hz, 3H), 6.81 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 158.5, 147.7, 147.0, 142.7, 137.3, 135.5, 134.4, 134.3, 132.2, 5 131.0, 129.8, 128.9, 128.5, 127.6, 127.2, 127.1, 126.8, 126.7, 126.2, 125.3, 124.9, 120.1, 113.5, 55.2, 22.0; HRMS (ESI) calcd. for $C_{30}H_{23}N_2O_2$ (M + H⁺), 443.1760; Found, 443.1736; IR (cm⁻¹) v 2926, 1704, 1602, 1545, 1511, 1468, 1292, 1248, 828, 768, 694. 3,6-dimethyl-5-phenyl-8H-isoquinolino[1,2-b]quinazolin-8-10 one (9a). White solid, mp: 185-186 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 8.88 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.0 Hz, 1H), 7.84 -7.81 (m, 2H), 7.53 (t, J = 7.2 Hz, 2H), 7.48 (d, J = 7.2 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 6.8Hz, 2H), 6.80 (s, 1H), 2.50 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 15 MHz, CDCl₃) δ 162.7, 147.8, 147.1, 142.4, 137.2, 134.3, 134.2, 133.5, 130.7, 129.0, 128.9, 128.8, 128.0, 127.1, 126.9, 126.7, 125.5, 125.3, 124.6, 120.2, 21.9, 14.1; HRMS (ESI) calcd. for $C_{24}H_{19}N_2O (M + H^+)$, 351.1497; Found: 351.1492; IR (cm⁻¹) v 2917, 1701, 1606, 1537, 1491, 1466, 1296, 828, 774, 697. 3,5-dimethyl-6-phenyl-8H-isoquinolino[1,2-b]quinazolin-8one (9b). white solid, mp: 205-206 °C; ¹H NMR (400 MHz,

 $CDCl_3$) δ 8.96 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.57 (s, 1H), 7.49-7.39 (m, 4H), 7.35 (t, J = 7.6 Hz, 1H), 7.31 (d, 8.0 Hz, 2H); 13 C 25 NMR (100 MHz, CDCl₃) δ 161.0, 147.4, 147.0, 142.6, 138.0, 134.3, 134.1, 133.8, 129.5, 128.6, 127.8, 127.4, 127.3, 127.1, 126.6, 125.1, 125.0, 123.9, 120.2, 119.9, 22.1, 15.1; HRMS (ESI) calcd. for $C_{24}H_{19}N_2O$ (M + H⁺), 351.1497; Found, 351.1492; IR (cm⁻¹) v 2946, 1701, 1625, 1537, 1467, 1446, 1314, 828, 774, 642. ³⁰ (E)-3-(1,2-diphenylvinyl)-2-propylquinazolin-4(3H)-one (12).White solid, mp: 151-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (t, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 6.8 Hz, 10.0 Hz)3H), 7.37 (d, J = 8.0 Hz, 3H), 7.26 (t, J = 6.8 Hz, 3H), 7.23-7.18 (m, 3H), 6.84 (d, J = 7.2 Hz, 1H), 2.94 (t, J = 8.0 Hz, 2H), 1.94 ³⁵ (m, 2H), 1.05 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 166.1, 152.2, 150.4, 135.6, 134.0, 133.3, 132.6, 130.5, 129.4, 129.3, 129.2, 128.3, 127.9, 122.8, 119.5, 117.5, 111.6, 42.1, 22.4, 14.1; HRMS (ESI) calcd. for $C_{25}H_{19}N_2O$ (M + H⁺), 351.1497; Found, 351.1492; IR (cm⁻¹) v 2927, 1642, 1580, 1466, 40 1349, 1214, 1137, 832, 774, 604.

Acknowlledgements

Published on 05 November 2013. Downloaded by Heinrich Heine University of Duesseldorf on 07/11/2013 17:02:59

Financial support from National Natural Science Foudation of China (No. 21162012, 81261120413, and 21362014), Jiangxi Provincial Department of Science and Technoloy (for Jiangxi's Kay Laboratory of Graen Chemistry and no. 20122PAP203007)

⁴⁵ Key Laboratory of Green Chemistry, and no. 20122BAB203007), Jiangxi Educational Committee (GJJ10386), and Foundation for Young People (Yang Qin) of Jiangxi Normal University is gratefully acknowledged.

Notes and references

- ⁵⁰ ^a Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China Fax: 0086-791-88120396; E-mail: <u>yypeng@jxnu.edu.cn</u>; <u>yiyuanpeng@yahoo.com</u>
- ^b Jiangxi's Key Laboratory of green chemistry and college of chemistry, 55 Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- [†] Electronic Supplementary Information (ESI) available: [characterization data¹ H and ¹³C NMR spectra of all compounds, X-ray data for compounds **3a**, **7b**, and **9b** (CIF)]. See DOI: 10.1039/b000000x/ 1 Selected reviews: (a) J. A. Gladysz, *Chem. Rev.* 2011, **111**, No. 3
- 60 (2011 Frontiers in Transition Metal Catalyzed Reactions); (b) M. Beller and C. Bolm, *Transition metals for organic synthesis*; Wiley-

VCH: New York, 2004; (c) A. de Meijere and F. Diederich, (eds); Metal-catalyzed cross-coupling reactions; Wiley-VCH: New York, 2004; (d) R. D. Larsen, Organometallics in process here where online Springer: Berlin, 2004. DOI: 10.1039/C3OB41955J T. Satoh and M. Miura, Chem. Eur. J. 2010, 16, 11212.

- T. Satoh and M. Miura, *Chem. Eur. J.* 2010, **16**, 11212.
 (a) K. Ueura, T. Satoh and M. Miura, *Org. Lett.* 2007, **9**, 1407; (b) K. Ueura, T. Satoh and M. Miura, *J. Org. Chem.* 2007, **72**, 5362; (c) M. Shimizu, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.* 2009,
- **74**, 3478; (*d*) S. Mochida, K. Hirano, T. Satoh and M. Miura, J. Org. Chem. 2009, **74**, 6295.
- 4 (a) F. W. Patureau, T. Besset, N. Kuhl and F. Glorius, J. Am. Chem. Soc. 2011, 133, 2154; (b) K. Muralirajan, K. Parthasarathy and C. Cheng, Angew. Chem. Int. Ed. 2011, 50, 4169.
- 75 5 (a) T. Uto, M. Shimizu, K. Ueura, H. Tsurugi, T. Satoh and M. Miura, J. Org. Chem. 2008, 73, 298; (b) M. Shimizu, H. Tsurugi, T. Satoh and M. Miura, Chem. Asian J. 2008, 3, 881; (c) S. Mochida, M. Shimizu, K. Hirano, T. Satoh and M. Miura, Chem. Asian J. 2010, 5, 847.
- ⁸⁰ 6 (a) S. Lim, J. H. Lee, C. W. Moon, J. Hong and C. Jun, Org. Lett. 2003, 5, 2759; (b) D. A. Colby, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc. 2006, 128, 5604; (c) D. A. Colby, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 3645; (d) L. Li, W. W. Brennessel and W. D. Jones, J. Am. Chem. Soc. 2008, 130,
- W. Brennessel and W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414; (e) T. Fukutani, N. Umeda, K. Hirano, T. Satoh and M. Miura, Chem. Commun. 2009, 5141; (f) N.Guimond and K. Fagnou, J. Am. Chem. Soc. 2009, 131, 12050.
- (a) K. Parthasarathy and C. Cheng, J. Org. Chem. 2009, 74, 9359; (b)
 X. Zhang, D. Chen, M. Zhao, J. Zhao, A. Jia and X. Li, Adv. Synth. Catal. 2011, 353, 719.
- 9429; (d) Y. Kajita, S. Matsubara and T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058; (e)H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto and N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952.
 9 (a) N. Guimond, C. Gouliaras and K. Fasnou, J. Am. Chem. Soc.
- 9 (a) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908; (b) N. Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449.
 - (a) P. C. Too, Y. Wang and S. Chiba, Org. Lett. 2010, 12, 5688; (b)
 P. C. Too, S. H. Chua, S. H. Wong and S. Chiba, J. Org. Chem. 2011, 76, 6159.
- (a) J. Chen, G. Song, C. Pan and X. Li, *Org. Lett.* 2010, **12**, 5426; (b)
 J. Barluenga, M. Faňanás-Mastral, F. Aznar and C. Valdés, *Angew. Chem. Int. Ed.* 2008, **47**, 6594.
- 12 (a) D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess and K. Fagnou, J. Am. Chem. Soc. 2008, **130**, 16474; (b) D. R. Stuart, P. Alsabeh, M; Kuhn and K. Fagnou, J. Am. Chem. Soc. 2010, **132**, 110
 18326.
 - (a) Y. Su, M. Zhao, K. Han, G. Song and X. Li, Org. Lett. 2010, 12, 5462; (b) T. K. Hyster and T. Rovis, Chem. Sci. 2011, 2, 1606.
 - 14 S. Rakshit, F. W. Patureau and F. Glorius, J. Am. Chem. Soc. 2010, 132, 9585.
- 115 15 M. P. Huestis, L. Chan, D. R. Stuart and K. Fagnou, Angew. Chem. Int. Ed. 2011, 50, 1338.
 - (a) Y. Wang, K. K. Toh, J. Lee and S. Chiba, Angew. Chem. Int. Ed. 2011, 50, 5927; (b) T. Miura, M. Yamauchi and M. Murakami, Org. Lett. 2008, 10, 3085.
- 120 17 (a) N. Umeda, H. Tsurugi, T. Satoh and M. Miura, Angew. Chem. Int. Ed. 2008, 47, 4019; (b) K. Morimoto, K. Hirano, T. Satoh and M. Miura, Org. Lett. 2010, 12, 2068; (c) G. Zhang, L. Yang, Y. Wang, Y. Xie and H. Huang, J. Am. Chem. Soc. 2013, 135, 8850.
- (a) L. Ackermann, A. V. Lygin and N. Hofmann, Org. Lett. 2011, 13, 3278; (b) L. Ackermann and S. Fenner, Org. Lett. 2011, 13, 6548; (c) L. Ackermann, A. V. Lygin, N. Hofmann, Argew. Chem. Int. Ed. 2011, 50, 6379; (d) B. Li, H. Feng, S. Xu and B. Wang, Chem. Eur. J. 2011, 17, 12573; (e) L. Ackermann, L. Wang and A. V. Lygin, Chem. Sci. 2012, 3, 177; (f) L. Ackermann and A. V. Lygin, Org. Lett. 2012, 14, 764; (g) M. Deponti, S. I. Kozhushkov, D. S. Yufit and L. Ackermann, Org. Biomol. Chem. 2013, 11, 142; (h) L. Wang and L. Ackermann, Org. Lett. 2013, 15, 176; (i) P. Villuendas and E. P. Urriolabeitia, J. Org. Chem. 2013, 78, 5254; (j) W. Ma, K. Graczyk and L. Ackermann, Org. Lett. 2012, 14, 6318; (k) C. Kornhaaß, J. Li and L. Ackermann, J. Org. Chem. 2012, 77, 9190.
- 19 (a) T. Eicher and S. Hauptmann, *The Chemistry of Heterocycles*; Wiley-VCH: Weinheim, 2003; (b) A. R. Katrizky and A. F. Pozharskii, *Handbook of Heterocyclic Chemistry*, 2nd ed.; Pergamon: Amsterdam, 2000; (c) M. H. Elnagdi, S. A. S. Ghozlan

5

and I. A. Abdelhamid, *Arkivoc* 2008, 54; (*d*) S. K. Meegalla, G. J. Stevens, C. A. McQueen, A. Y. Chen, C. Yu, L. F. Liu, L. R. Barrows and E. J. LaVoie, *J. Med. Chem.* 1994, **37**, 3434; (*e*) Y. H. Hong, W. J. Lee, S. H. Lee, J. K. Son, H. Kim, J. M. Nam, Y. Kwon and Y. Jahng, *Biol. Pharm. Bull.* 2010, **33**, 1704.

- 20 (a) G. Song, D. Chen, C. Pan, R. H. Crabtree and X. Li, J. Org. Chem. 2010, **75**, 7487; (b) B. Li, H. Feng, N. Wang, J. Ma, H. Song, S. Xu and B.Wang, Chem. Eur. J. 2012, **18**, 12873.
- Y. Y. Peng, G. Y. S. Qiu, Q. Yang, J. J. Yuan and Z. H. Deng, Z. H.
 Synthesis 2012, 44, 1237.

View Article Online DOI: 10.1039/C3OB41955J

Organic & Biomolecular Chemistry Accepted Manuscript

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 7