CHEMISTRY LETTERS, pp. 2139-2142, 1987.

© 1987 The Chemical Society of Japan

 $\label{eq:stereoselective Preparation of $\beta$-C-Glycosides from 2-Deoxyribose} \\ Utilizing Neighboring Participation by 3-O-Methylsulfinylethyl Group$ 

Koicni NARASAKA, Yuh-ichiro ICHIKAWA, and Hideki KUBOTA

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

Acid catalyzed reaction of 2-deoxy-3-O-methylsulfinylethylribofuranosyl acetate with silyl enol ethers proceeded stereoselectively, resulting in the predominant formation of the corresponding  $\beta$ -C-glycosides.

Much attention has been devoted to various types of nucleosides because of their antitumor and/or antiviral activities.<sup>1)</sup> In the synthesis of these nucleoside derivatives,  $\beta$ -selective glycosylation method of ribose or 2-deoxyribose derivatives is required. The synthesis of  $\beta$ -glycosides from ribose derivatives has been attained stereoselectively by utilizing a neighboring group participation from 2-acyl group.<sup>2)</sup> As such a participation from 2-O-protecting group cannot be expected in the case of 2-deoxyribose,<sup>3)</sup> only the S<sub>N</sub>2 displacement of 2-deoxy-3,5-di-O-toluoyl- $\alpha$ -D-erythro-pentofuranosyl chloride by basic nucleophiles has afforded successful results in the preparation of  $\beta$ -glycosides of 2-deoxyribose, we have examined C-glycoside formation by the use of neighboring participation from a 3-O-substituent.

As a model reaction, we chose the C-glycosylation of 3-O-substituted 1-Oacetyl-5-0-benzyl-2-deoxy-D-erythro-pentofuranose (3-substituted 1-0-acetyl-2deoxyribose, 1 ) with the silyl enol ether of acetophenone 2 in the presence of a Lewis acid such as trityl perchlorate,<sup>5)</sup> SnCl<sub>4</sub> or trimethylsilyl trifluoromethanesulfonate (TMSOTf).<sup>6)</sup> The reaction of 3-O-benzyl derivative <u>la</u>, which is not expected to cause neighboring participation, gave  $\alpha$ - and  $\beta$ -C-glycosides with high selectivity for the  $\alpha$ -C-glycoside ( $3a\alpha:3a\beta$  = 82:18). To attain good stereoselectivity for the  $\beta$ -C-glycoside, the glycosylation of various 3-O-substituted 2deoxyriboses lb-f was examined in detail with the expectation that the 3-0substituent could regulate the stereoselection by the formation of a cyclic stabilized cationic intermediate. Among a variety of 3-substituents such as an ether, esters and sulfides, the alkylthioetnyl group was found to afford the promising results. That is, the treatment of the 3-0-methylthioethyl derivative  $\underline{1d}$  with the silyl enol ether  $\underline{2}$  in the presence of SnCl<sub>4</sub> in dichloromethane at -78 °C gave the corresponding C-glycoside  $\underline{3d}$  in 46% yield in the ratio of  $\alpha:\beta$  = 42:58. When bulkier sulfides such as ethylsulfide and t-butylsulfide were used instead of methylsulfide, less  $\beta\mbox{-stereoselectivity}$  was observed.

Next, the methylsulfide <u>ld</u> was converted to the corresponding sulfoxide <u>lg</u> by the consideration that the participation by the sulfinyl group should occur more efficiently with respect to the electronic and steric effects. The sulfoxide <u>lg</u> reacted with the silyl enol ether <u>2</u> to afford the  $\beta$ -C-glycoside predominantly (<u>3ga: 3gβ</u> = 32:68) in an excellent yield. These results are summarized in Table 1.



Table 1. The reaction of various 3-substituted 2-deoxyribose  $\underline{1}$  with  $\underline{2}^{a}$ 

|            | Y                                                    | Yield of $\underline{3}/\$$ | $\underline{3\alpha}$ : $\underline{3\beta}^{7}$ |
|------------|------------------------------------------------------|-----------------------------|--------------------------------------------------|
| la         | CH <sub>2</sub> Ph <sup>b)</sup>                     | 95                          | 82 : 18                                          |
| 1 <b>b</b> | CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> OMe | 83                          | 75 <b>:</b> 25                                   |
| lc         | CH <sub>2</sub> SMe <sup>c)</sup>                    | 56                          | 82 : 18                                          |
| 1d         | CH <sub>2</sub> CH <sub>2</sub> SMe                  | 46                          | 42 : 58                                          |
| le         | CH <sub>2</sub> CH <sub>2</sub> S <sup>t</sup> Bu    | 44                          | 68 : 32                                          |
| 1 <b>f</b> | CH2                                                  | 87                          | 49 : 51                                          |
| lg         | $CH_2CH_2S(O)Me^{d}$                                 | 92                          | 32 : 68                                          |

a) The reaction was carried out in the presence of  $\underline{2}$  (1.2 mol equiv.) and SnCl<sub>4</sub> (1.2 mol equiv.) at -78 °C.

b) The reaction was carried out at -45 °C.

c) Trityl perchlorate was used as a Lewis acid.

d) Yield and ratio were determined after the conversion of the products into the corresponding sulfones.

As the 3-0-methylsulfinylethyl group was found to realize good  $\beta$ -selectivity, the reactions of <u>lg</u> with silyl enol ethers <u>4A,B</u> and ketene silyl acetals <u>4C,D</u> were examined. The products were converted to the corresponding sulfones <u>5</u> to

determine the isomer ratio and the stereochemistry, and the results are listed in Table 2. Useful synthetic intermediates such as <u>5C,D</u> for the synthesis of various C-nucleosides<sup>8</sup>) were prepared with high  $\beta$ -selectivity (ca.  $\alpha:\beta = 1:9$ ) by the reaction of <u>lg</u> with ketene silyl acetals which are generally better nucleophiles as compared with silyl enol ethers.



|            | Nucleophile                                 | Lewis acid        | Yield of <u>5</u> /% | <u>5α</u> | : | <u>5β</u>        |
|------------|---------------------------------------------|-------------------|----------------------|-----------|---|------------------|
| 4A         | OSiMe3                                      | SnCl <sub>4</sub> | 82                   | 22        | : | 78               |
| <b>4</b> B | OSiMe <sub>3</sub><br>OSiMe <sub>3</sub>    | SnCl <sub>4</sub> | 76                   | 32        | : | 68 <sup>a)</sup> |
| 4C         | OSi <sup>†</sup> BuMe <sub>2</sub><br>∕∕OBn | TMSOTf            | 86                   | 9         | : | 91 <sup>9)</sup> |
| 4D         | OSiMe3<br>Me3SiO ✔── OMe                    | TMSOTf            | 91                   | 11        | : | 89               |

Table 2. The reaction of lg with silyl nucleophiles 4A-D

a) The structure of each stereoisomer was not determined absolutely, but by analogy with other results.

A typical experimental procedure is as follows: A dichloromethane (2 mL) solution of TMSOTF (0.80 mmol) was added slowly to a dichloromethane (10 mL) solution of <u>1g</u> (0.53 mmol) and <u>4C</u> (0.67 mmol) at -78 °C, and the mixture was stirred for 12 h at this temperature. The reaction was quenched by addition of pH 7 buffer and the mixture was extracted with dichloromethane. After purification by column chromatography on silica gel (hexane:ethyl acetate:methanol = 3:5:1, volume ratio), the products were oxidized at room temperature in methanol (10 mL) by the addition of 10%  $H_2O_2$  (10 mL) and ammonium molybdate(VI) tetrahydrate (0.08 mmol). The reaction mixture was extracted with dichloromethane and purified by column chromatography on silica gel (ethyl acetate:hexane = 2:1, volume ratio) to afford a mixture of  $\alpha$ - and  $\beta$ -C-glycosides 5C in 86% yield ( $\alpha$ : $\beta$  = 9:91).

Thus, by using the neighboring group participation of methylsulfinylethyl group on the 3-hydroxyl group, stereoselective  $\beta\text{-C-glycosylation}$  of 2-deoxyribose

was achieved, and these results suggest that the neighboring effect from the 3-O-position has the possibility to control the stereochemistry efficiently in the glycosylation of 2-deoxyribose.

## References

- Reviews: S. Hanessian and A. G. Pernet, Adv. Carbohydr. Chem. Biochem., <u>33</u>, 111 (1976); U. Hacksell and G. D. Daves, Jr., "The Chemistry and Biochemistry of C-Nucleosides and C-Arylglycosides," in "Progress in Medicinal Chemistry," ed by G. P. Ellis and G. B. West, Elsevier Science Publishers, B. V. (1985), Vol.22.
- 2) For example: U. Niedballa and H. Vorbruggen, J. Org. Chem., <u>39</u>, 3654 (1974);
  T. Ogawa, A. G. Pernet, and S. Hanessian, Tetrahedron Lett., <u>1973</u>, 3547; Y. S. Yokoyama, M. H. R. Elmoghayar, and I. Kuwajima, ibid., <u>23</u>, 2673 (1982).
- 3) W. Wierenga and H. I. Skulnick, Carbohydr. Res., <u>90</u>, 41 (1981).
- 4) A. Kolb, T. H. Dinh, and J. Igolen, Bull. Soc. Chim. Fr., <u>1973</u>, 3447; Z. Kazimierczuk, H. B. Cotton, G. R. Revankar, and R. K. Robins, J. Am. Chem. Soc., 106, 6379 (1984).
- 5) T. Mukaiyama, S. Kobayashi, and S. Shoda, Chem. Lett., 1984, 1529.
- 6) Each Lewis acid exhibited almost the same stereoselectivity in the glycosylation reaction.
- 7) The ratio of  $\alpha$  and  $\beta$ -glycosides <u>3</u> was determined by the comparison of their 400 MHz and 270 MHz <sup>1</sup>H NMR spectra with those of the glycosides <u>5C</u>. In fact, all of the product in Table 1 and <u>5C</u> show the characteristic patterns of H-2 and H-2' protons in the <sup>1</sup>H-NMR. The NMR signals of H-2 and H-2' are as follows;  $\alpha$ -isomer  $\delta$ =2.13-2.28 (ddd, J=1.3-1.9, 5.3-5.9, 13.0-13.8 Hz), 1.69-1.72 (ddd, J=6.1-6.5, 9.6-10.8, 13.0-13.8 Hz),  $\beta$ -isomer  $\delta$ =2.35-2.51 (td, J=6.5-6.9, 13.0-13.8 Hz), 1.80-1.84 (ddd, J=4.0-4.4, 5.5-5.9, 13.0-13.8 Hz).
- 8) C. K. Chu, I. Wempen, K. A. Watanabe, and J. J. Fox, J. Org. Chem., <u>41</u>, 2793 (1976); G. Just and M. Lin, Can. J. Chem., 55, 2993 (1977).
- 9) The major isomer <u>5C</u> was converted to the lactone <u>6</u> by hydrogenation and successive treatment with acetic anhydride-pyridine, and the stereochemistry of **5C** was determined as the  $\beta$ -isomer.

